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Introduction

Self-assembly is defined as the spontaneous formation of a complex structure start-
ing by elementary components (monomers). The resulting structure is encoded in
the interaction potential between the monomers. When this process is reversible, it
is also called supra-molecular polymerization or equilibrium polymerization. Re-
versible aggregation or equilibrium polymerization occurs when the energy scale of
the monomer-monomer interaction is such that the thermal fluctuations can com-
pete with bonding. In this case bonds between monomers can form and break and
thermal equilibrium can be reached within the experimental observation time scale.
Self-assembly is ubiquitous in nature and therefore has long been considered in
life science as crucial to understand living structures. The self-assembly of amphi-
pathic phospholipids into lipid membranes [1], the folding of polypeptide chains
into proteins [2, 3], the formation of DNA double helix from two complimentary
oligonucleotides, to name a few, are examples of self-assembly in nature. Even the
term self-assembly derives from an appreciation of the capacity of viruses to spon-
taneously reconstitute themselves from their molecular components [4].
As self-assembly is a self-correction process based on reversible, non-covalent or
weak covalent bonds, where the final assembly structure is coded in the shape and
interactions of the component monomers, it has a great potential as a method to
fabricate new materials from bottom-up with high accuracy [5]. In fact, it has
been extensively exploited in molecular synthesis. However recently much atten-
tion has been given to self-assembly in colloidal systems, i.e. particles of size of
order 1µm� 1nm dispersed in a solution of much smaller particles, for many ad-
vantages they offer. First, while with molecular synthesis the building block are
fixed, it is possible to synthesize colloids with desired shape, patch patterns and
patch geometry to obtain the targeted assemblies of interest. For example recently
Granick et. al. [6] have been successful in fabricating triblock Janus particles, i.e.
spherical colloids with electrostatic repulsion in the middle, hydrophobic attraction
at the poles. These colloids self-assembly into an open Kagome lattice, different
from the closed-packed crystal usually expected from hard spheres (figure 1). Fig-
ure 2 illustrates some of the shapes and patch patterns of colloid particles that have
been synthesised. Second, the large size of colloids makes it more convenient
to follow the self-assembly process in experiments, and to employ visible light to
investigate the systems. The third advantage, which is a consequence of the first
one, is that colloidal systems also make it easier to study self-assembly theoreti-
cally and numerically using primitive models. Primitive models are very simple
models, usually consist of only a hard core and a square-well potential, but they
offer the possibility to check theoretical hypotheses against exact numerical data
and lead to an understanding of the common, universal properties of self-assembly
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Figure 1: The triblock Janus particles and Kagome lattice produced by Granick et. al. Images and
caption reproduced from Ref. [6]

.

processes behind the diversity of the geometry and nature of the building blocks and
their patches [8].
An interesting case of self-assembly is when the interactions between monomers
favour the formation of linear chains. If the chains are sufficiently rigid, nematic
order may emerge in these systems. Examples of such systems include filamentous
viruses such as tobacco mosaic virus, fd and pf1 [9, 10, 11], protein and peptide
fibers and fibrils [12, 13, 14], cylindric micelles [15], DNA duplexes consist of hun-
dreds of base pairs [16, 17]. Self-assembly and nematic order can then couple and
promote the formation of longer chains. In some cases, self-assembly can even
induce nematic order in systems where the anisotropy of the monomers is not suf-
ficient to form nematic order, as in short DNA duplexes with end-to-end stacking
interaction [18] and hard spheres with short-ranged attractive, directional interac-
tion [19].
Despite the relevance of the phenomenon, there have been very few studies focus-
ing on isotropic-nematic phase transition in self-assembling systems. In particular a
precise computation of the phase boundary in those system is still lacking. Among
the most extensive works on the subject are the one by Lü and Kindt [19], which
studies self-assembly of sticky hard spheres which form rather rigid chains using
grand canonical ensemble simulations, and that by Kuriabova et. al. [20], which
approximately determines the phase boundary of sticky hard cylinders by NPT sim-
ulations and which also observes higher liquid crystal orders, namely columnar
liquid crystal, columnar crystal and cubatic-like phases.
Regarding theoretical study, on one hand, the isotropic-nematic phase transition in
non-self-assembling long hard rods is well described by the classical theory devel-
oped by Onsager [21] and Wertheim theory works extremely well with isotropic
self-assembling systems at low density [22]. On the other hand, although there
has been much effort to study theoretically the coupling between self-assembly and
isotropic-nematic phase transition [23, 24, 19, 20], the success is still somewhat
moderate. As suggested by Ref. [24], a successful theory has to take into account
both the polydispersity and flexibility of chains in self-assembling systems. In ad-
dition, proper approximation of steric interaction is also important as the nematic
phase only forms in high packing fraction.
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Introduction

Figure 2: Some examples of the shapes and patch patterns of recently synthesized colloids. Images
and caption reproduced from Ref. [7]

.

This thesis is another attempt to contribute to the understanding of the phenomenon.
Our aim is to exploit the available techniques of simulation to establish a procedure
to determine the isotropic-nematic phase boundary as well as coexistence prop-
erties of self-assembling systems with high precision and within reasonable time
frame, overcoming the obstacle of metastability usually presents in “traditional”
simulation methods like NPT ensemble or grand canonical ensemble simulations.
The availability of such a method is important to provide the data needed to check
against proposed, or to be proposed, theoretical frameworks on the coupling of ne-
matic order and self-assembly. The outline of the thesis is as follows. First we
will give a brief introduction on liquid crystal and DNA duplexes, which motivate
our study and coarse-grained model. In chapter 2 we represents Onsager theory for
isotropic-nematic transition in hard rods and Wertheim theory for isotropic phase
of self-assembling system. These two theories serve as the basis for the theory pro-
posed by De Michele et. al. [25] for isotropic-nematic phase transition in linear
self-assembly systems. A great advantage of the theory is that it is parameter-free,
i.e. all the parameters required for the theory can be computed by supplementary
simulations instead of resorting to guesses. The theory predicts a behaviour of self-
assembling systems at nematic coexistence which is quantitatively different from
non self-assembling systems, namely the nematic packing fraction at phase bound-
ary does not monotonically relates to the average aspect ratio of the chains. The

5



simulation techniques to be applied in this study are described in chapter 3. The
simulation methods described in chapter 3 will be applied to different models to
assess the results produced by the theory and validate the prediction, the details
are reported in chapter 4. We have been successful in computing numerically, with
high precision, the isotropic-nematic coexistent lines of those models over a large
range of packing fraction, as well as properties of systems at phase boundary such
as chain length distribution and average aspect ratio of chains, validating the pre-
dictions ans assumptions made by the theory. We also studied the dependence of
the phase boundary on the bending angles of short DNA dodecamers, modelling as
hard bent cylinders.

6



Chapter 1

Backgrounds

1.1 Liquid crystalline phases.

All of us are well acquainted with 3 matter phases: gas, liquid and crystal. A system
in gas and isotropic liquid phases possesses no long range order, whether it be posi-
tional or orientational. On the other hand, crystals exhibit 3D long range positional
order.
However if the particles of a system possess enough anisotropy, the system can ex-
hibit some intermediate order between isotropic liquid and crystal. These are liquid
crystalline phases. Liquid crystalline phases exhibit many mechanical properties of
liquid, but at the same time they have some optical properties of crystal, and hence
the name.
There are many different liquid crystalline phases and the classification of them is
usually based on their order and structure. Three major classes are nematic, smectic
and columnar phases. Below is a brief description of the phases and some of their
most common variants/subclasses.

Nematics and cholesterics In a nematic phase, the system possesses no long-
range positional order, but the particles tend to align along a common axis (figure
1.1a), called the director, which is represented by a unit vector n. The states of
director n and �n are indistinguishable, even if the 2 ends of the particles are dif-
ferent (for example when the particles are electrical dipoles).
If the particles do not possess mirror symmetry, the system can also exhibit cholesteric
phase. The cholesteric phase is similar to nematic phase in that there is only long-
range orientational order in the sysem. However it differs from the nematic phase in
that the director varies regularly in space, as can see in figure 1.1b. In the cholesteric
phase there exists a helical axis, along which the director rotates when one moves
along the axis (in the figure the helical axis is z). The distance along the helical axis
over which n rotates a full circle is called the pitch of the cholesteric. However,
because the 2 states of director n and �n are indistinguishable, the periodicity of
the cholesteric phase is only half of the pitch.
Recently, a new variant of nematic phase has been observed in experiments on bent
core particles [26, 27] although the theoretical prediction of its existence was made
more than 40 years ago [28]. In this variant, the system possesses orientational
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1.1. Liquid crystalline phases.

order both along a long axis and another short axis (see figure 1.1c).

(a) (b)

(c)

(a) Uniaxial nematic phase. Picture
adapted from Ref. [29].
(b) Change of nematic director in
cholesteric phase. Picture adapted
from Ref. [30].
(c) Biaxial nematic phase. Picture
adapted from Ref. [29].

Figure 1.1: Variants of the nematic phases.

Smectics In smectics the particles apart from having orientational order also or-
ganize in layers, which can slide over one another. Particles in the same layer do not
exhibit any positional order, so each layer is a 2D liquid. The thickness of the layers
can range from approximate the length of the particles to thousands of Ångströms.
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Chapter 1. Backgrounds

Smectic A Smectic C
Figure 1.2: Variants of the smectic phases. Images reproduced from [31].

(a) Hexagonal columnar (b) Rectangular columnar (c) Oblique columnar

Figure 1.3: Variants of the columnar phases.

Similarly to nematics, there are also many variants of smectics. The most 2 com-
mon of them are smectic A and smectic C (figure 1.2). In smectic A, the director of
each layer is normal to the planes of the layers. On the other hand, in smectic C the
director is tilted.

Columnars In columnars the particles stack into columns. In each column the
particles exhibit no long range positional order, while the columns themselves pack
into 2D crystal. The most common variant among the columnars is the hexagonal
phase, in which the 2D crystal formed by the columns is a hexagonal lattice, as can
be seen in figure 1.3a. In some other variants the particles within each column can
be tilted with respect to the column axis, as in the rectangular columnar 1.3b and
oblique columnar phase 1.3c.

Order parameter of the nematic phase
In this study we limit ourselves only in uniaxial nematic phase. Denote the unit
vector indicating the directions of particles in the systems ui. As discussed above,
in the nematic phase there is no preference in the arrangement of the 2 ends of
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1.1. Liquid crystalline phases.

single particles. Therefore the average of ui should be vanish. Thus, the nematic
order should be a tensor quadratic in ui:

Q
¯
= hui ⌦uii�

1
3

I
¯

(1.1)

In uniaxial phases the average can be rewritten via the director n as:

Q
¯
= S

✓
n⌦n� 1

3
I
¯

◆
(1.2)

This tensor Q
¯

has 3 eigenvalues:

q1 = q2 =�1
3

S q3 =
2
3

S

where
S =

1
2
[3h(ui ·n)i] (1.3)

The scalar quantity S measures the level of alignment of particles, and can be ex-
pressed via the angle distribution f (q), where cosq = ui ·n, as

S =
1
2
⌦
3cos2 q �1

↵
= 2p

pZ

0

P2(cosq) f (q)sinqdq (1.4)

where P2(cosq) is the second order Legendre polynomial. It can be shown easily
that in the isotropic phase, where particles have no preferential orientations, S = 0
and when the orientations of particles are perfectly ordered, S = 1.

Distinguish between uniaxial nematic and other liquid
crystalline phases in simulation
Because our attention is on the transition between isotropic phase and uniaxial ne-
matic phase, in our simulations sometimes we had to check that the systems we
were simulating were not in some other liquid crystalline phases.
First, to check if the system is not biaxial, we considered the 3 eigenvalues qi of
tensor Q

¯
. Denote q1 and q3 the smallest and largest, respectively, eigenvalue. In

the uniaxial phase, in thermodynamic limit, one has q1 = q2. Since our systems are
finite, the equality does not hold, but the quantity which measures the biaxiality of
the system:

h =
q2 �q1

q3
(1.5)

is very close to zero. On the other hand if h is remarkably different from zero, then
the system is biaxial.
To distinguish between the nematic phase and smectics and columnars, one pos-
sibility is to calculate the 3D pair distribution function and analyse the positional
correlation in the system. The 3D pair distribution function is defined as:

g(r) = 1
rN

*
N

Â
i=1

Â
j 6=i

d
�
r� (ri � r j)

�
+

(1.6)

where d (r) is the Dirac delta function.
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Chapter 1. Backgrounds

1.2 DNA duplexes
This introduction on the structure, geometry and phase behaviour of DNA duplexes
follows the review provided in Ref. [32].
DNA is a strand composed of repeated units called nucleotides. Each nucleotide
consists of a sugar molecule (deoxyribose), a nitrogen base (nucleobase) and a
phosphate group. There are 4 types of nucleotides, distinguished from each other
by their nucleobases: adenine (A), guanine (G), cytosine (C), and thymine (T). The
sugars and phosphate groups of different nucleotides alternately bond to each other
by covalent bonds and form the backbone of the DNA strand. It is the sequence of
the nucleotides that encodes the genetic information.
In nature, DNA strands usually do not stand alone but pair up with each other in
the double helix shape. The interaction between nucleotides belong to the 2 strands
are weak and allow the double helix to zip or unzip in the replication process in
the cells. The pairing of nucleotides are complementary: A bonds with T and C
bonds with G. The most common conformation of DNA double helix is B-DNA, in
which the nucleobases are on average perpendicular to the axis of the helix. The
periodicity of the helix is around 10 base pairs (⇠ 3.4 nm) while the diameter of the
helix is around 2 nm. An illustration of B-DNA form is provided in figure 1.4.
There are 2 kinds of interaction between the nucleotides of the 2 strands of a dou-

Figure 1.4: The double helix structure of DNA in its B-form, with its relevant dimensions and the
main interactions. Image and caption reproduced from Ref. [32].

ble helix: base pairing and base stacking. Base pairing are hydrogen bonds. The
free energy involves in base pairing is negligible compared to that in base stacking
in C-G pair and even positive in A-T pair. This suggests that in fact the role of base
pairing interaction is only to prevent the pairing of uncomplimentary nucleotides.
On the other hand, base stacking are non covalent attractive interactions between
adjacent nucleobases and plays the main role in holding the 2 strands together. The
ultimate conclusion on the nature of base stacking forces is not yet reached, but
hydrophobic effect is considered a plausible explanation.
Long DNA, consisting of 102 � 104 base pairs, has been known for half a century
to form liquid crystal phases in vitro and in vivo. It also has been shown that when
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1.2. DNA duplexes

it comes to isotropic-nematic phase transition, long DNA can be well described
as long hard rods: its nematic critical concentration is in good agreement with the
prediction of Onsager theory if the effective diameter is adjusted to account for elec-
trostatic repulsion (figure 1.5b).
However, a recent experiment by Nakata et. al. [18] reported that even short B-
DNA duplexes (less than 20 base pairs) with end-to-end stacking interaction form
liquid crystal phases, including nematic and columnar phases (figure 1.5a). The
B-DNA duplexes have diameter D ⇡ 2nm and length L ⇡ N/3nm where N is the
number of base pairs, i.e. the elongation of those short DNA duplexes are less than
4. Both prediction by Onsager theory for long hard rod and numerical study of hard
rods shows that particles of elongation L/D < 4.7 do not exhibit nematic order at
any packing fraction [33]. The nematic phase observed in short B-DNA duplexes
therefore is likely a consequence of the self-assembly of those duplexes into rigid
aggregation. Indeed, when unpaired bases were added to those duplexes to weaken
stacking interaction, the liquid crystal phases disappear.

12



Chapter 1. Backgrounds

(a) Nano-length B-DNA duplexes can be idealized as hydrophilic cylinders with hydropho-
bic ends capable of end-to-end adhesion and stacking into units sufficiently anisotropic to
orientationally and positionally order into liquid crystal phases. The nematic (N) phase
is formed at lower concentration and the uniaxial columnar phase at higher concentration.
Image and caption reproduced from [18].

(b) Phase behavior of DNA molecules of different lengths. Helices longer than 100 bp
(full triangles) display isotropic-to-nematic transition at concentrations reasonably well de-
scribed by Onsager theory once the diameter is rescaled for electrostatic repulsion (contin-
uous black line). On the contrary, short DNA strands lack the necessary anisotropy to spon-
taneously align and their critical concentrations (open triangles) imply end-to-end stacking
into longer aggre-gates. The dashed line is a guide to the eye. Long DNA and nanoDNA
data are from Refs. [34] and [18], respectively. Figure and caption reproduced from Ref.
[32].
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Chapter 2

Theories

In this chapter we briefly summarize 2 important theories of isotropic-nematic phase
transition and self-assembly, namely Onsager theory and Wertheim theory, which
often serve as frameworks for theories that study the coupling of the 2 phenomena.
Afterwards the theory proposed by De Michele et. al. [25] to study the phase tran-
sition in self-assembly systems is presented.

2.1 Onsager theory for isotropic-nematic phase
transition in systems of long hard rods

Onsager theory [21] pioneered the study of isotropic-nematic phase transition. This
was the first theory to explain the transition by considering only the competition of
2 types of entropy, namely orientational entropy and the entropy associating with
the orientation-dependent excluded volume, rather than the usual energy-entropy
competition. Onsager theory was also among the first ones to apply density func-
tional theory in solving a physics problem.
Below we give a short summary of the theory, following both the original article
and the review made in Ref. [35].
Onsager theory considers the dilute limit of rod systems, and the free energy con-
sists of the ideal part and the second virial expansion:

ef = bF
N

= ln
�
L3r

�
�1�Sor +B2r +O

�
r2� (2.1)

where b is, as usual, the inverse of the multiplication of temperature and Boltzmann
constant, L is the De Broglie wavelength, r is the number density of the system;
Sor is the orientational entropy and relates to the orientational distribution of the
particles f (u) as follows:

Sor =�
Z

f (u) ln [4p f (u)]dW (2.2)

B2 is the second virial coefficient which accounts for the 2-particle interaction and
can be computed via Mayer function:

B2 =� 1
2V

Z
dr1

Z
dr1

Z
dW1

Z
dW2 f (u1) f (u2)F1,2 (2.3)
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Chapter 2. Theories

where F1,2 is the Mayer function F1,2 = exp(bU1,2)� 1, U1,2 is the pairwise po-
tential energy. For hard core particles, F1,2 =�1 if the 2 particles 1,2 overlap, and
F1,2 = 0 otherwise. As a result, B2 relates to the excluded volume vexc of the 2
particles as follows:

B2 =�1
2

Z
dW1

Z
dW2 f (u1) f (u2)vexc (2.4)

For long rods, where the end effects can be neglected, the excluded volume between
2 rods forming an angle g with each other was estimated by Onsager as:

vexc = 2L2D|sing| (2.5)

where L and D are the length and diameter of the rods, respectively.
In summary, the free energy (2.1) can be rewritten as:

ef = ln
�
L3r

�
�1+

Z
f (u) ln [4p f (u)]dW�rL2D

Z
dW1

Z
dW2 f (u1) f (u2)sing

(2.6)
The orientational distribution is determined as the one that minimizes the free en-
ergy in (2.6) with the constraint

R
dW f (u) = 1:

d
d f

⇣
ef [ f ]

⌘
= µ̃ (2.7)

where µ̃ is the Lagrange multiplier. After taking the derivation in (2.7) one arrives
at:

ln [4p f (u)] = µ̃ �2rL2D
Z

dW f (u)sing (2.8)

= µ̃ � 8
p

fX0

Z
dW f (u)sing

Here one introduces the notations of packing fraction f = rLpD2

4 and elongation of
a rod X0 = L/D.
One notices that equation (2.8) always take the isotropic form of f (u), namely
f (u) = 1/(4p) as one of its roots. In this case the second virial coefficient B2 ⌘
Biso

2 = pL2D/4 and the free energy of the system in isotropic phase is:

ef = ln
�
L3r

�
�1+rBiso

2 (2.9)

which yields the excess chemical potential of the system as:

b µexc = 2rBiso
2 (2.10)

On the other hand substituting f (u) = 1/(4p) into equation (2.8) one has:

µ̃ = 2rBiso
2 (2.11)

i.e., µ̃ = b µ .
At high packing fraction, however, equation (2.8) can have a second root. Instead

15



2.1. Onsager theory for isotropic-nematic phase transition in systems of long hard
rods

of resolving the equation by directly taking the derivative, Onsager chose a trial
function with a variational parameter a and solving the equation

∂ ef
∂a

= 0 (2.12)

Denote z0 the unit vector along the nematic director. Due to the symmetry of the
hard rods, the trial function should fulfil the 2 following condition:

(
f (u)⌘ f (q) where q = cos�1 (z0u); and
f (q) = f (p �q)

(2.13)

The trial function chosen by Onsager was:

fO(q) =
a

4p sinha
cosh(a cosq) (2.14)

With this trial function, the nematic order can be computed as:

S(a) = hP2(cosq)i= 2p
pZ

0

P2(cosq) fO(q)dq (2.15)

= 1+
3

a2 �3
cotha

a
So when a ! 0, fO(q) reduces to the isotropic distribution ! 1/(4p) and consis-
tently, S ! 0. In the opposite limit when a ! • S ! 1, i.e. perfect order.
The spread of fO(q) in angle is measured by mean square of sin(q 0/2), this time
q 0 is the acute angle between the direction of a rod and the nematic director:

D�
2sin

�
q 0/2

��2
E
= 2

cotha
a

⇡ 1
a

(2.16)

namely the standard deviation of the angle is approximately a�1/2.
The free energy in the nematic phase has the following form:

ef = ln
�
L3r

�
+ f1(a)+2fX0 f2(a) (2.17)

The coexitence of 2 phases is determined by imposing the condition of equality of
chemical potential and pressure of the 2 phases, which relate to the free energy as
follows:

b µ = ef +r

 
∂ ef
∂r

!
(2.18)

bP = r2

 
∂ ef
∂r

!

For the isotropic phase one has to use expression (2.9) for the free energy, while for
nematic phase one uses (2.17) and the value of a fulfilling (2.12).
In the limit L/D ! • Onsager theory gives exact results [36]. However, given
that Onsager theory neglects the virial coefficient of higher order than second, it
is expected that theory only works in low packing fraction and largely elongated
rods. It is suggested that the theory only produces quantitatively correct result when
L/D > 100, although qualitatively reliable results can be expected for shorter rods
of aspect ratio L/D > 20 and higher [37, 38, 39].
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Chapter 2. Theories

2.2 Wertheim theory for isotropic self-assembling
systems

A study which applies Wertheim perturbation theory in investigating a similar model
was introduced in [22]. A very good agreement with simulation results was ob-
served in the isotropic phase at low density (r < 0.1). We briefly summarize the
Wertheim theory in this section (most of this part follows Ref. [22]).
In this theory, the free energy is written as a sum of the free energy of the reference
system (hard sphere in the present case) Fhs

W , i.e.[40]:

bFhs
W

V
= r [lnr �1]+r 4f �3f 2

(1�f)2 (2.19)

and the contribution of the bonding part Fbond
W :

bFbond
W
V

= r (2lnX �X +1) (2.20)

where X the fraction of sites that are not bonded.
A chain of l particle consists of 2 unbonded sites, which has the probability of X2,
and l � 1 bonds, which occurs at the probability of (1�X)(l�1). Thus the number
density n(l) of chains of length l is related to X by:

n(l) = rX2(1�X)(l�1) (2.21)

X can be computed from the mass-action equation:

X =
1

1+2fXD
(2.22)

Where we have introduced D:

D =
1
vd

Z
gHS(r) [exp(bu0)�1]dr (2.23)

Here gHS(r) is the reference hard sphere pair correlation function and the integral
is taken over the bonding volume.
If one considers the linear approximation of gHS(r) one has [41]:

D =
Vb

vd
[exp(bu0)�1]g(f) (2.24)

where g(f) is given by

g(f) = A0 (f)+A1 (f)xFK (2.25)

The 2 functions A0 and A1 depend only in the packing fraction of the system:

A0 (f) =
1�f/2
(1�f)3 (2.26)

A1 (f) =
9
2

f (1+f)
(1�f)3
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On the other hand the factor xFK depends only on the geometry of the system. For
the Kern-Frenkel model one has

xFK = 1� 3
4
(1+d )4 �1
(1+d )3 �1

(2.27)

By rewriting equation (2.22) in the form of chemical equilibrium equation
1�X

X2 = 2fD (2.28)

one can see that within Wertheim theory, bonding can be seen as a chemical reaction
between two unreacted sites forming a bonded pair where the quantity 2D plays the
role of an equilibrium constant (in unit of inverse concentration). In view of the
meaning of 2D one can derive the formula for the entropic contribution per bond in
the low packing fraction and low temperature limit (ebu0 � 1):

sb = ln(2Vb/vd), (2.29)

On the other hand, the theory can also be viewed as a mean field theory of chain
association, with ln2D the free energy of one bond. In this view the bonding free
energy of the whole system can be written as the difference between the free energy
of chains, including the transitional contribution of chains and the bonding energy
to make a chain, with the ideal gas free energy of monomers:

bFbonding

V
=

•

Â
l=1

n(l) [lnn(l)�1� (l �1) ln2D]�r (lnr �1) (2.30)

Using the expression (2.21) of n(l) and definition (2.28) of D, one can retrieve the
expression (2.20). The advantage of the theory is that it provides a well-defined
description of the bond free energy via the pair distribution function of the system.
The average chain length within Wertheim theory is given as:

MW ⌘ Â•
l=1 ln(l)

Â•
l=1 ln(l)

=
1
X

=
1
2

⇣
1+

p
1+8fD

⌘
(2.31)

To lead to the final expression of MW , we made use of the equation (2.22).
It is worth noting that the Wertheim theory uses the hard sphere system as the ref-
erence system and does not require any fitting parameter. The excluded volume
interactions enter via the radial distribution function of the reference system, as
shown in equation (2.24).

Figure shows simulation result obtained in Ref. [22] for hard spheres of the
same size with our model, with 2 opposite spherical patches at number density
r < 0.1 (equivalent to packing fraction f ⇡ 0.05). As can be seen in the figures, the
theory produces results with excellent agreement with simulation at low density.

2.3 De Michele et. al. theory for isotropic-nematic
phase transition in self-assembly system

We apply here the same theory that was used for studying self-assembly of bi-
functional patchy superquadrics [25]. In the investigated model, the bi-functional
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Chapter 2. Theories

Figure 2.1: (a) Average chain length as a function of the density for all studied temperatures. Lines
are the Wertheim theory predictions: dashed lines assume gHS = 1, while full lines are based on
the full radial dependence of gHS. (b) Scaled representation of L vs 2fD. The line is the function
M(x) =

�
1+

p
1+2x

�
/2. In both figures symbols are simulation data. Figures and captions from

[?].
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particles aggregates to form chains of various lengths. In principle, chains of any
length, i.e. number of monomers, l can be generated, from l = 1 to l = •. The
system is thus composed by a polydisperse set of polymers, which continuously
change their lengths, by merging with other polymers or breaking of the constituting
bonds. It is natural to write the free energy of such system as a sum over all possible
lengths, assuming the only interaction between the different polymers is dictated by
excluded volume interactions. In this case the free energy F can be written as:

bF
V

=
•

Â
l=1

n(l){ln [vdn(l)]�1}+
•

Â
l=1

n(l)so(l) (2.32)

+
h(f)

2

•

Â
l=1
l0=1

n(l)n(l0)vexcl(l, l0)� (bu0 +sb)
•

Â
l=1

(l �1)n(l).

Here b = 1/kBT and kB is the Boltzmann constant which is set to 1, so that T is
measured in units of the potential well. n(l) denotes the number density of chains
with length l, which obeys the normalization condition:

•

Â
l=1

ln(l) = r (2.33)

where r is the number density of the system. vd is volume of a monomers. Chains of
different lengths are treated as different species and the first term is the free energy
of a mixture of ideal gas of these species. In the second term, so(l) describes the
orientational entropy lost in the free energy of a chain of length l in the nematic
phase.
The third term accounts for the contribution of steric interaction. vexcl(l, l0) is the
excluded volume of two chains of lengths l and l0. To compensate for the absence
of higher virial coefficients one introduces the Parsons-Lee prefactor [42]:

h(f) = 1
4

4�3f
(1�f)2 (2.34)

where f is the packing fraction of the system and relates to number density as
follows:

f = rvd (2.35)

The last term accounts for the bonding free energy and includes the energetic (u0
term) and entropic (sb term) contributions.
According to Ref [24], the excluded volume has the quadratic form of the chain
lengths:

vexcl(l, l0) = 2A+2BX2
0 ll0+2vdK

l + l0

2
(2.36)

X0 is the elongation of the particle, and reduces to 1 if the particle is sphere. Parame-
ters A, K and B depend on f (u), the orientational distribution function of monomers.
They can be computed numerically. The detailed procedure is described in 3.4.2.
As we assume that the system is isodesmic, namely the bonding free energy lost
when a particle is added to a chain is independent on the chain length, the chain
length distribution takes the exponential form:

n(l) = r
M (M�1)

e�l[ln(M)�ln(M�1)] (2.37)
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Here, M is the average chain length and is defined by:

M =
Â•

1 l n(l)
Â•

1 n(l)
(2.38)

Substituting equations (2.37) and (2.36) into (2.32) and calculating the sums over
chain lengths, one has:

bF
V

=
r
M

h
ln
⇣vdr

M

⌘
�1

i
+r M�1

M
ln(M�1)�r lnM+

•

Â
l=1

n(l)so(l)+

+ h(f)


B+
K
M

+
A

M2

�
r2 �r(bu0 +sb)

✓
1� 1

M

◆
(2.39)

At equilibrium, the value of M is the one that minimizes the free energy, i.e.:

∂ (bF/V )

∂M
= 0 (2.40)

2.3.1 Isotropic phase
In the isotropic phase the orientational distribution function f is uniform, i.e.:

f (u) = 1
4p

(2.41)

The parameters of vexcl in this case are denoted as AI , KI and BI . Since monomers
randomly orientate, the term contains so(l) in (2.39) vanishes. The free energy is
now written as:

bFI

V
=

r
M

h
ln
⇣vdr

M

⌘
�1

i
+r M�1

M
ln(M�1)�r lnM+

+ h(f)


BI +
KI

M
+

AI

M2

�
r2 �r(bu0 +sb)(1�M�1) (2.42)

By taking the derivative as in (2.40) and neglecting terms of order O(1/M2), one
obtains the following formula for average chain length:

MI =
1
2
+

1
2

q
1+4fesbeKIfh(f)+bu0 (2.43)

sb can be deduced if we compare the expression of MI above with the one derived
in Wertheim theory at low packing fraction and temperature limit:

MW
I =

1
2

✓
1+

r
1+8f Vb

vd
ebu0

◆
(2.44)

At low packing fraction eKIfh(f)/vd ⇡ 1. By comparing expressions (2.43) and
(2.44) in this limit, one obtain:

esb =
1
2

Vb

vd
(2.45)
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2.3.2 Nematic phase
In the nematic case, the excluded volume depends on the angular distribution func-
tion of monomers f (u), which is still unknown. We assume that f (u) has the
following form, which was suggested by Onsager [21] and works quite well for
sphero-cylinders:

f (u)⌘ fO(q) =
a

4p sinha
cosh(a cosq) (2.46)

where q is the angle between the monomer’s direction and the nematic director and
a is the variational parameter. fO is normalized as:

2p
pZ

0

fO(q)sin(q)dq = 1 (2.47)

The factor 2p is the result of the integral over the azimuthal angle. 2p fO(q)sin(q)dq
is the probability that the direction of a monomer forms an angle in the range
[q ,q +dq ] with the nematic director.
Next, we need to evaluate the term which corresponds to the orientational entropy
distribution, ŝo = Â•

l=1 so(l)n(l). Up to now there is no exact analytic expression
for that term. However, in the following two limits of flexible chain al � lp (lp is
the persistence length) and rigid chain al ⌧ lp the following formulas for flexible
chains have been proposed [?, ?, 25] :

so(l)FC = ln(a/4)+
a �1

4lp
al � lp

sRC
o (l) = ln(a)�1+

a �1
6lp

al ⌧ lp (2.48)

Because the distribution of chain length is rather wide, we use a combination of
both limits:

ŝo =
l0�1

Â
l=1

sRC
o (l)n(l)+

•

Â
l=l0

sFC
o (l)n(l) (2.49)

To estimate l0, we have to rely on another approximation proposed by Odijk [?],
which we cannot use directly due to its rather computational inconvenience in the
minimization procedure required to evaluate the free energy in equilibrium:

ŝOd
o =

•

Â
l=1

n(l)
⇢

ln(a)+
(a �1)l

6lp
+

5
12

ln


cosh
✓
(a �1)l

5lp

◆�
� 19

12
ln(2)

�

(2.50)
In the reasonable range of M and a for the models considered, we determine l0
as the value which minimize the difference between the two approximations (2.49)
and (2.50) of ŝo. Although l0 is slightly dependent on lp, we noted that the value
l0 ⇡ 9 is appropriate for the systems we studied. In summary, the free energy in the
nematic phase is written as:

bF
V

=
r
M

h
ln
⇣vdr

M

⌘
�1

i
+r M�1

M
ln(M�1)�r lnM+

+ h(f)


BN +
KN

M
+

AN

M2

�
r2 �r(bu0 +sb)

✓
1� 1

M

◆
+ ŝo (2.51)
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In analogy with the isotropic case, we minimize the free energy and neglect the term
AN/M2, obtaining the expression for nematic average chain length MN :

MN =
1
2
+

1
2

q
1+afesbeKN(a)fh(f)+bu0 (2.52)

2.3.3 Phase coexistence
The phase boundaries of the isotropic-nematic transition fI = vdrI and fN = vdrN
can be determined by minimizing the free energy (2.42) and (2.51) with respect to
the average chain length of each phase and a , along with the constraints PI = PN
and µI = µN . Specifically, we have the following set of equations:

∂FI(rI,MI)

∂MI
= 0 (2.53)

∂FN(rN ,MN ,a)

∂MN
= 0 (2.54)

∂FN(rN ,MN ,a)

∂a
= 0 (2.55)

PI(rI,MI) = PN(rN ,MN ,a) (2.56)
µI(rI,MI) = µN(rN ,MN ,a) (2.57)
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Chapter 3

Simulation techniques

In this chapter we present the procedure we applied to study the isotropic-nematic
phase transition. The procedure is based on some basic Monte Carlo techniques,
which we also briefly describe in this chapter.
In addition, the hit-and-miss Monte Carlo is also employed to compute some pa-
rameters required by the theory. Because some details of the simulation method
relate to the specific geometry of the models, which are to be introduced in the next
chapter, we will discuss them when we introduce the models, and only the general
schemes are described here.

3.1 Basic Monte Carlo techniques
The introduction below largely follows the details provided in Refs. [43], [44] and
[45].

3.1.1 A brief introduction to Monte Carlo method and
Metropolis sampling

Monte Carlo method stems from the idea of using random number to solve problem.
As an example, let say we want to compute the integral of a particular function f (x)
on [a,b], assuming that the function is bounded in this range. One way to do it is
employing numerical integration method, like the Sampson method. Alternatively
we can enclose the area under the function in a rectangular (see figure 3.1), and then
generate a large number of random points N in the rectangular and counts the ones
that fall under f (x), denoted Nh. The integral is given by

I =
Nh

N
⇥Area of the rectangular (3.1)

The method describe above is called the hit-and-miss Monte Carlo method. There
is another Monte Carlo method to compute I, in which the integral is rewritten as:

I = (b�a)h f (x)i ⌘ (b�a)
1
N

N

Â
i=1

f (xi) (3.2)
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Chapter 3. Simulation techniques

Figure 3.1: An illustration of the ’hit and miss’ Monte Carlo method. The bounded function f (x) on
[a,b], over which one wishes to compute the integral, is enclosed in a rectangular. A large number
of points is generated randomly in this rectangular. The ratio between the number of points falling
under the function (the red shaded region) and the total number equals to that between the integral
and the area of the rectangular.

In this method we compute the average value of f (x) on [a,b] by generating N
random points xi in this range and calculate the values of the function at those
points.
The question is now which method is better, the numerical method or Monte Carlo.
It is suggested that with the numerical method the error in d dimension decreases
as n�c/d where n is the number of small range [a,b] is divided into and c is some
parameter independent of n and d. On the other hand the error in Monte Carlo
method decreases as n�1/2 regardless of the dimension [45]. This means in 1D the
numerical method is a better option, but in 3D and higher dimension spaces, Monte
Carlo is better.
In physical problems one usually needs to compute multi-dimensional integrations
such as the partition function:

Z =
Z

drN exp
⇥
�bH

�
rN�⇤ (3.3)

This integral is of dimension dN, where d is the dimension of the system. Even if
we consider a system consisting of only 100 particles in a cubic box, a tiny number
in simulations, and take m points along each axis, there will be m300 function eval-
uations to be made, which is impossible. So in this case Monte Carlo method not
only is more precise but the only practical means.

Metropolis sampling Still, the error produced by uniform sampling described
above is only small with smooth functions. However the functions one most often
has to deal with in physics, for example the partition functions, are usually narrowly
peaked. With these functions most of the random points generated uniformly will
fall in regions where the value of the function is zero, while only a small portion of
points falls in the regions which contribute most to the integral.
To resolve this problem, Metropolis suggested a method in which instead of just
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generating unrelated random points uniformly, one constructs a series of biased
random walk in the high dimension space. Every attempt to move from the current
position in phase space will be rejected or accepted depending on the value of the
function at the 2 relevant positions.
Denote as N (|oi) the probability density of finding the system around state |oi. We
would like to construct a matrix p (|oi ! |ni) of transition from the current state
|oi to a new state |ni so that N is proportional to the numbers of points at each state.
When the system is in equilibrium, the probability that the system leaves a state has
to be equal to the probability that the system arrives at that state from other states,
i.e:

N (|oi)Â
|ni

p (|oi ! |ni) = Â
|ni

N (|ni)p (|ni ! |oi) (3.4)

This is the balance condition. However, for simplicity’s sake, in practice one usually
impose a stronger condition, the detailed balance:

N (|oi)p (|oi ! |ni) = N (|ni)p (|ni ! |oi) (3.5)

Although the detailed balance is not essential, its lack in a simulation scheme is
ominous and highly likely to lead to systematic error.
Denote a (|oi ! |ni) the matrix determining the probability that the system at-
tempts to ’walk’ from the current state |oi to a new state |ni and acc(|oi ! |ni)
the probability that the trial walk is accepted. The transition matrix can then be
written as:

p (|oi ! |ni) = a (|oi ! |ni)acc(|oi ! |ni) (3.6)

Again, for the sake of simplicity, one usually assume that a is symmetric, i.e.
a (|oi ! |ni) = a (|ni ! |oi). With this condition and equation (3.6) one derives
from the detailed balance (3.5) the equation for the acceptance probability of a trial
move:

acc(|oi ! |ni)
acc(|ni ! |oi) =

N (|ni)
N (|oi) (3.7)

According to the Metropolis scheme one accepts a trial move as follow:

acc(|oi ! |ni) =

8
<

:

1 if N (|ni)� N (|oi)
N (|ni)
N (|oi) otherwise

(3.8)

It should be reminded that if a trial move is rejected, the old state should be counted
again when computing averages values of the system.

3.1.2 Monte Carlo simulation in canonical ensemble (NVT)
In the canonical ensemble the probability density that a system is found around state
|oi is given by:

N (|oi) e�bUo (3.9)

The acceptance rule for a trial move from state |oi to state |ni is then:

acc(|oi ! |ni) =
(

1 if Un Uo

e�b (Un�Uo) if Un >Uo
(3.10)
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where b = (kBT )�1, T is the temperature of the system.
There are 2 kinds of trial moves in an NVT simulation: transitional move and ro-
tational move of single particles, and they should be performed at equal average
frequency. The procedure to perform NVT Monte Carlo simulation is as follow

1. Randomly pick a particle in the system.

2. Attempt to rotate or translate the particle. The type of trial move is randomly
assigned to ensure detailed balance is fulfilled. One simple way of randomly
assign the type of displacement is to generate a randome number r. If r < 0.5
one goes for the translation move, otherwise rotation move is chosen.

3. Compute the energy difference of the system between the new state and the
old one.

4. If Un  Uo, accept the move. Otherwise compute e�b (Un�Uo). Generate a
random number r in the range [0,1].
If r < e�b (Un�Uo) accept the trial move. Otherwise the move is rejected.

3.1.3 Monte Carlo simulation in isobaric-isothermal ensemble
(NPT)

When the system is in isobaric-isothermal ensemble, apart from the displacement
moves similar to that in NVT simulation, one wishes to keep its number of particles
N, pressure P and temperature T fixed, while its volume (or number density) is
allowed to fluctuate. Therefore in NPT simulation, apart from the translational and
rotational moves of single particles as in NVT simulation, one also attempts to
make a small change to the volume of the system. The scheme to perform a volume
change move is as follows:

1. Assuming that the current box size of the simulation box is Lo and its vol-
ume Vo = L3

o. One tries to change the volume of the system an amount of
DV , where DV is a random number in the range [�DVmax,DVmax]. To ensure
detailed balance, the value of DVmax is fixed in the production stage (i.e. after
the system has been equilibrated and now simulation is performed to gather
statistics).
The scaling parameter is given by r = (1+DV/V )1/3. The new box size and
new positions of particles is then

Ln = rLo (3.11)
ri,n = rrio

The direction of the particles are kept unchanged.

2. Compute the change in system energy DU =Un �Uo. The acceptance rule is
given by [43]:

acc = min
�
1,exp

�
�b

⇥
DU +PDV �Nb�1 ln(1+DV/V )

⇤ �
(3.12)
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where P is the pressure of the system and N is the number of particles.
Generate a random number r between [0,1]. If r < acc one accepts the move,
otherwise the move is rejected.

In most cases, the volume change move is a rather expensive one as the interac-
tions between all particles have to be re-computed. The computational cost of a
volume change move is comparable of that of N particle moves. It is therefore
recommended that this move is performed at an average frequency of 1/N of that
of particle moves. Analogously to in NVT simulation, before each trial move one
would decide which kind of move to be perform using a random number rather than
regularly.

3.1.4 Monte Carlo simulation in grand canonical ensemble
(GCMC)

In this ensemble the number of particles in the system (or its number density) is
allowed to fluctuate, under the condition that its chemical potential µ is fixed (in
fact, µ is chemical potential of the system in comparison of that of ideal gas). Hence
a new kind of trial move is introduced: the removal/insertion of a particle. The
procedure is as follows:

1. Decide whether an insertion or removal is to be perform, again this is done
using a random number. The 2 moves should be done at equal average fre-
quency

2. If the move is a removal, one randomly picks a particle in the system to be re-
moved; if it is an insertion, one randomly generates the position and direction
of the new particle.

3. Compute the change in system energy DU . The acceptance rules of removal
and insertion are respectively given by [43]:

accremoval = min
⇢

1,
V

L3 (N +1)
exp [b (µ �DU)]

�
(3.13)

accinsertion = min
⇢

1,
L3N

V
exp [�b (µ +DU)]

�

Here L is the De Broglie wave length, which is usually set to 1 in simulation.

The frequency of the particle exchange trial move in GCMC should not be too high.
Take, for example one has a successful removal move. This will leaves a ’hole’
in the system. If the frequency of exchange trial move is high, it is likely that
a new particle will be attempted to add to the hole before it is eliminated by the
displacement of particles around it. In this case one artificially increases the time
the system visit the same state. In this study we set the average frequency of the
exchange trial move approximate to the number of particles in the system, therefore
on average each particle is displaced around once before another insertion/removal
trial is made.
Again, the frequency of exchange trial move should be kept unchanged during the
course of simulation production stage in order not to violate the detailed balance.
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3.1.5 Periodic boundary condition and reduced units in
simulation

Periodic boundary condition (PBC)

In simulation one can only deal with some thousand or dozens of thousand of par-
ticles, while macroscopic systems usually contains much larger number of particles
than that (around the order of Avogadro number). With that small number of par-
ticles, the interfacial effect becomes significant. Hence to simulate bulk behaviour
PBC is often employed. The idea is consider the system as a cell of an infinite lat-
tice, i.e. for each particle at position r in the simulation box, there will be an infinite
numbers of its images located at:

rl,m,n = r+ ilLx + jmLy +knLz (3.14)

where Lx, Ly, Lz is the sizes of the simulation box, i, j, k are the unit vectors along
the box edges and l,m,n is a set of arbitrary 3 integers.
PBC along all 3 dimensions are applied in all of our simulations.

Reduced unit

It is more convenient to use reduced units in simulations, namely one chooses the
units of length, energy and mass as the basis and units of other quantities are ex-
pressed through these units. In addition, many constants like Boltzmann constant,
De Broglie wave length, etc. are set as 1. The reason of convenience is twofold.
First, many physics constants are of many orders of magnitude different from unit,
which presents a difficulty for numerical computation with computers and can heav-
ily affect its precision. Second, many states with different values of quantities in real
units actually correspond to just one state in simulation of reduced units. Therefore
by employing reduced units one can describe all those equivalent states with just
one state in simulation.
From now on to make clear the reduced units are used, we will use the superscrip-
tion ⇤ whenever we report simulation results.

3.2 Scheme to compute phase coexistence lines

3.2.1 Determine coexistence packing fraction using successive
umbrella sampling (SUS)

One of the main obstacles in studying first order phase transition and locating coex-
istence point is that to transit from one phase to another, the system has to overcome
a large free energy barrier, which relates to the free energy cost to create the inter-
face separating the 2 phases. Straightforward techniques such as NPT and GCMC
usually suffer from metastability, where the system remains in the metastable phase
even when its pressure or density is far beyond the transition point.
Ref. [46] proposed another method, successive umbrella sampling, to compute the
free energy, with which the coexistence point can be determined. When the num-
ber of particles can be used as the order parameter, the free energy of the sys-
tem can be computed via the equilibrium probability distribution P(N), F(N) =
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�1/bP(N)+ constant. Similarly to �F , near transition P(N) also exhibits 2 max-
ima and a valley in between. The probability difference between the maxima and
the valley is usually of many orders of magnitude. Due to the low probability at
the valley, if one samples the whole range of number of particles that contains the 2
peaks in one simulation, it is very likely that the system will be trapped under one
of the peaks in most of, or even all, simulation time. The result therefore suffers
heavily from poor statistics in the region of the valley and the other peak.
The idea of SUS is to divide the range of interest into many small windows of
size w. A GCMC simulation is then performed on each window to measure how
frequently the system visit a particular state in that window. The simulations on
different windows are independent of each other. Once the data for each window
are obtained, the continuity condition is imposed on the window edges to achieve
the unormalized probability distribution in the whole range:

P(N)

P(0)
=

H1r

H1l
· H2r

H2l
· · · Hk(N)]

Hkl
(3.15)

where Hkl , Hkr and Hk(N) is the histogram of the left and right boundary of the kth
windows, and a state N in that window, respectively.

At coexistence, the equal weight rule applies, i.e. the areas under 2 peaks have
to be equal [47, 48, 49]:

hNiZ

0

P(N)dN =

•Z

hNi

P(N)dN (3.16)

where the average value of number of particles hNi is defined by:

hNi=

•R

0
NP(N)dN

•R

0
P(N)dN

(3.17)

When one starts the GCMC simulation one does not know the chemical potential
at coexistence, and the resulting Psim(N) is very likely to not fulfil the condition
of equal areas mentioned above. However one can reweight it [48] to obtain the
distribution at coexistence Pcoex thanks to the following relations:

Psim(N) =
1

ZGC
ZN eb µsimN

Pcoex(N) =
1

ZGC
ZN eb µcoexN (3.18)

and therefore
Pcoex(N)

Psim(N)
= c0

h
eb (µcoex�µsim)

iN
(3.19)

Here ZN is the canonical partition function and ZGC is the grand partition function;
c0 is a constant independent of N. Please note that in equation (3.18) the distri-
butions are normalized but normalization is not necessary to apply the reweighing
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formula (3.19), as the normalization constants will all go into c0.
Once one has obtained the coexistence probability distribution, the numbers of par-
ticles at coexistence in the 2 phases are defined as:

N1 = 2

hNiR

0
NP(N)dN

•R

0
P(N)dN

N2 = 2

•R

hNi
NP(N)dN

•R

0
P(N)dN

(3.20)

In practice, one replaces the • limit in equations (3.20) by the largest number of
particles simulated Nmax. Nmax is chosen so that the probability distribution at this
value is smaller than that at the minimum. The steps of SUS are sketched in figure
3.2.

Figure 3.2: A sketch of steps to compute a coexistence point using SUS.

By investigating many small windows instead of a large one, the system is forced
to spend a sufficient amount of time in every state and hence one can gather a good
statistics for the whole range of N. Moreover, the waiting time for simulation is also
significantly improved if the simulations on different windows are done in parallel.
Alternatively one can sample one window after another (as the authors of Ref [46]
did) and use the distribution of previous windows to extrapolate the weight function
for the next window to even further flatten the distribution of that window.
There are some comments in order for the implementation of SUS.
First, care has to be taken for an attempt to make the system leave its current win-
dows. Apart from rejecting the attempt, one also has to increment the histogram at
the corresponding window edge by 1 to fulfil detailed balance.
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3.2. Scheme to compute phase coexistence lines

Second, one has to consider how large an window should be. As discussed earlier,
since P(N) is quite steep for most part, a larger window results in poorer statistics
for the same simulation time. Therefore one tempts to limit the window size to 1
whenever possible. However in some cases, for example when the free energy land-
scape is complex and involves other variables, that practice can lead to difficulty in
sampling, as the author discussed in his application of the method in Ref. [50].
Third, one also has to consider whether adjacent windows should overlap by only
1 state or more. Increasing the overlap between adjacent windows can improve the
accuracy of P(N), but it is rather expensive, because one has to simulate the over-
lapped states twice. However, in Ref. [46] the authors suggested that the precision
should not be significantly lowered if the windows overlap only by 1 state.
Implementation In this study we limited both the overlap between adjacent win-
dows and the size of each window to 1, i.e. a particular window kth includes 2
states k and k+1. In all of our calculations of P(N) we had to investigate a range of
around 400�500 particles, therefore it is infeasible to simulate them consecutively
to benefit from histogram reweigh. Thus we sampled the windows simultaneously.
Furthermore, we figured that it is not always necessary to start sampling from empty
state, i.e. N = 0. By performing a short NVT simulation on a number of systems
of different packing fraction, one can have a rough estimate on where phase transi-
tion occurs, and afterwards sample only systems around that area. In this case the
LHS of equation (3.19) will be P(N)/P(Nmin), where Nmin is the smallest number
of particles one studies. Since all of the systems we sampled with SUS contained
no less than around 2000 particles, this practice spared us of the unnecessary effort
to sample 2000 windows below the interested range.
All of our initial configurations to start SUS are in nematic phase, for 2 reasons.
The first is to reduce metastability, as it is easier for a nematic system to make the
transition to isotropic phase if it is the stable one than the other way round. The
second reason is to predetermine the director rather than letting random moves in
the simulation course decide it. We will explain why this is necessary in section
3.2.3.
After initiating the simulations we first let the systems equilibrate, during this period
the histograms was not counted. Depending on specific models, number density of
the systems and temperature, equilibrating takes around 4⇥ 106 � 10⇥ 106 MC
steps. Once the systems had equilibrated, we stopped the simulations and restarted
from the last configuration obtained in the equilibrating stage. We now had en-
tered production stage. In this stage the histograms were updated every time an at-
tempt to insert/delete a particle was made. The statistic were collected over around
4⇥ 106 � 10⇥ 106 MC steps, depending on the systems. As a check whether the
statistic had been good enough, we first looked into the evolution of the histograms
to see if they were close to convergence, i.e. exhibiting a plateau, or not. How-
ever this check alone is not enough. Since the full P(N) in (3.19) is obtained by
’stitching’ hundreds of windows together, even a minor change in the histogram of
each window can result in a significant change in P(N). Therefore we computed
full P(N) and the values of average numbers of particles at coexistence after every
approximately 1.5�2⇥106 MC steps. If the updated values we got did not signif-
icantly different from the previous ones (for the average numbers of particles, the
criterion is precision to 1 decimal place), we stopped the simulations.
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3.2.2 Kofke integration
Kofke integration method [51] allows us to obtain the coexistence lines over a range
of temperature (or pressure) once one has an initial point of coexistence. When one
moves along the coexistence lines the temperature, pressure and chemical poten-
tial of the systems remain in equal with each other and their variations obey the
following equations:

dµ = �s1dT + v1dP (3.21)
dµ = �s2dT + v2dP

where s and v are molar entropy and volume, while the subscriptions refer to the
2 phases of interest. Take the subtraction of 2 equations in equation set (3.21) and
recall that the Gibb potentials of the 2 systems are also equal along the coexistence
lines, one obtains:

P
T

=� 1
T

h2 �h1

v2 � v1
(3.22)

which is nothing but Clausius-Clapeyron equation. Here h is the molar enthalpy.
As equation (3.22) is a differential equation, it can be solved numerically by calcu-
lating the integral. For this purpose, it is preferable to rewrite equation (3.22) in the
following form so that the slope of the RHS becomes more gentle:

d lnP
db

=� h2 �h1

bP(v2 � v1)
(3.23)

where b = 1/(kBT ) with kB is the Boltzmann constant.
For the sake of generality, one rewrites the equation (3.23) as follows:

dy
dx

= f (x,y) (3.24)

where the integral can be taken either over x or y. The difference between integrat-
ing a differential equation such as the Clausius-Clapeyron equation and integrating
a “normal” mathematical function is that the right hand side of (3.24) is only im-
plicitly dependent on the variable. Therefore for each integration step, one needs
to perform 2 separate simulations to compute the relevant quantities of both phases
and their differences. In the specific case of the Clausius-Clapeyron equation, for
example, two NPT simulations at the same pressure and temperature are required
to compute the enthalpy and volume per particle. Here lies the advantage of Kofke
technique: the 2 simulations can be performed independently and do not have to
rely on particle exchange, a huge obstacle in systems of high volume fraction or
consisting of large molecules.
Because the RHS of equation (3.24) depends on both the dependent and indepen-
dent variables, when the independent variable, let say x, makes an increment h from
xi in step i to xi+1 in step i+1, the value of f is still unknown. Therefore the com-
putation of yi+1 has to be done in two steps, the first step to get a rough estimation
of how f varies from xi to xi+1 and the second step to refine the result, sometimes
relying also on the values obtained in more than 1 previous steps. Such a process
points to predictor-corrector techniques. A number of predictor-corrector formulas
have been proposed, and the ones suggested by Kofke are listed in table 3.1.
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Table 3.1: List of predictor-corrector formulas proposed in Ref. [51]. The denotions P and C stand
for predictor steps and corrector steps, respectively. n is the number of previous steps required to be
able to use the formula for current step. The subscripts refer to the step number. The denotions x, y,
h and f are the same as in the text.

Name Type n Formula

Trapezoid
P 1 yi+1 = yi +h fi

C 1 yi+1 = yi +
h
2
( fi+1 + fi)

Midpoint
P 1 yi+1 = yi�1 +2h fi

C 1 yi+1 = yi�1 +
h
3
( fi+1 +4 fi + fi�1)

Adams
P 4 yi+1 = yi +

h
24

(55 fi �59 fi�1 +37 fi�2 �9 fi�3)

C 3 yi+1 = yi +
h

24
(9 fi+1 +19 fi �5 fi�1 + fi�2)

Predictor-corrector algorithm of 3rd and higher order improve accuracy but can
lead to instability at large integration steps. Another difficulty arises from employ-
ing those algorithms is that integration steps are fixed in the course of integration.
Ref. [52] proposed another predictor-corrector scheme that balances between sta-
bility and accuracy, and at the same time provides the flexibility in adjusting inte-
gration step. In this scheme the predictor step is of little relevance and a simple
Euler formula is used. The formula for the corrector step is as follows:

yi+1 = Ayi�1 +Byi +D
1

Â
k=�1

Ck fi+k (3.25)

Again, the subscriptions refer to the integration step. There are 2 alternative sets of
the parameters available to use, as listed in table 3.2.

The greatest concern usually raised about Kofke integration is that it is hard
to control how errors propagate during the course of integration and how far the
integrated data deviate from the actual coexistence lines. Kofke suggested that when
it is possible to choose the direction of integration, one can rely on this formula to
decide which way leads to smaller error:

DP = DP|i
Dv|i
Dv

(3.26)

where i refers to the initial point; the symbol D indicates the difference of the vari-
ables follow it between 2 phases.
The application of Kofke integration does not limit to the temperature-pressure
plane. In fact, equation (3.21) is a special case of the following general equation
[53]:

r0df0 = r1df1 +r2df2 +r3df3 + . . . (3.27)
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Table 3.2: List of predictor-corrector formulas proposed by Ref. [52]. The subscript i refers to the
step number. The denotions x, y and f are the same as in the text. In both variants h j = x j+1 � x j
and r = hi�1/hi.

Variant 1 Variant 2

A = 0 A =
1

r2(3+2r)

B = 1 B = 1� 1
r2(3+2r)

C�1 = �1
r

C�1 = 0

C0 =
1
r
+4+3r C0 =

1
r
+2+ r

C1 = 2+3r C1 = 1+ r

D =
hi

6(1+ r)
D =

hi

3+2r

fi are “field” variables and ri are their conjugate “densities”. Field variables have to
be equal among coexistence phases; f0 is the field variable that does not explicitly
involve in the integration process. Examples of f � r couples are pressure and
molar volume, chemical potential and species fraction in a mixture. When one
considers the coexistence only between 2 phases, the general form of Claudius -
Clapeyron equation is:

df2

df1
=�D(r1/r0)

D(r2/r0)
(3.28)

This generalized equation opens up to numerous applications. Less “conventional”
applications includes studying how isotropic-nematic phase transition depends on
the flexibility of polymers [54], studying the effect of polydispersity on fluid-solid
transition of hard spheres [55]. Bolhuis and Frenkel also applied this method to
trace the coexistence lines of monodisperse hard spherocylinder systems when their
aspect ratio varies [33]. Similarly, Philip J. Camp et. al. studied in Ref. [56] the
isotropic-nematic transition of uniaxial hard ellipsoids when the elongation varies.
Another important class of problems can be addressed with the method is studying
the effect of the variational of a potential on coexistence, starting from a reference
system, as did by Agrawal and Kofke to study fluid-solid transition in soft spheres
with hard sphere as reference system [57] or Abascal and Vega to develop a new
model for water [58]. In this case the pairwise potential is written as u(l ) where
u(l = 0) = ure f , the potential of the reference system and u(l = 1) = ud , that of
the destination system. The conjugate variable of l is then

xg =
∂g
∂l

=

⌧
∂u
∂l

�
(3.29)

Implementation

35



3.2. Scheme to compute phase coexistence lines

Pressure of SUS points To start Kofke from a point obtained by SUS first
one needs to estimate the pressure of the coexistence systems obtained from SUS.
If ones starts SUS from an empty states, this can be done easily using equations
(3.18) for a normalized distribution:

P(0) =
1

ZGC
(3.30)

with ZGC = ebPV . Hence the pressure at coexistence can be computed as P =
�(1/bV ) lnP(0).
However since we did not start SUS from empty state, we turned to a conventional
method of using NPT simulations. We performed a batch of NPT simulations at
guessed values of pressure and check which pressure yielded the average packing
fraction coinciding the values from SUS.

Predictor-corrector implementation The predictor-corrector implementation
is as follows:

1. Update bi from the previous step i to bi+1 = bi +h.

2. Compute the value of predictor pressure Pp from the previous step, using one
of the equations in table 3.1. We will report in details about the choices when
we discuss each system in chapter 4.

3. Perform NPT at Pp, computing the average value of molar enthalpy and vol-
ume for both phases and the RHS of (3.23).

4. Compute the corrector pressure Pc using the formula corresponding to the one
we used to compute the predictor pressure in table 3.1, or a formula in table
3.2.

5. Perform NPT at Pc and compute the RHS of (3.23) at this pressure.

6. If the difference between the 2 pressures fulfils the convergence condition we
set, i.e ����

Pc �Pp

Pp

���� 5⇥10�3 (3.31)

Pc is taken as the pressure at bi+1. Otherwise repeat from step 4, this time
using the values of Pc and the RHS one obtains at this pressure as the predictor
values.
At this point almost all our systems yielded a new value of P(1)

c fulfilling
(3.31). P(1)

c is then accepted as the pressure at bi+1. In the only occasion it
did not, the value of P(1)

c also went further from Pp than Pc, signifying that
the step size was too large. In this case we reduced the step size and restarted
from step 1.

Depending on the temperatures, the RHS of (3.23) is computed over 4� 8⇥ 106

MC steps, excluding equilibrating.
To check the accuracy of Kofke, we integrated equation (3.23) along both direction
and on each direction we computed at least one other coexistence point using SUS.
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3.2.3 Reducing finite size effect
When performed SUS simulations we tried to keep a stable interface between isotropic
and nematic phase in coexistence systems. Due to the employment of PBC, there
were in fact 2 parallel interfaces in these systems. When such interfaces exist, the
excess free energy in the system is dominated by the interface free energy, which is
given by:

DF = 2gS (3.32)
where S is the area of the interface, the factor 2 accounts for the presence of 2 in-
terfaces. If one can keep the interaction between the 2 interfaces negligible, the
resulting P(N) will exhibit 2 distinctively separated peaks with a flat valley in be-
tween, which clearly defines the areas under each peak and hence the position of
phase coexistence. Indeed, if the 2 interfaces do not interact, there will be no free
energy cost when one slightly changes their distance by changing the number of
particles of a phase between them. On the other hand, without the presence of these
stable interfaces, the interface free energy in different systems where coexistence
occurs may vary considerably depending on the spontaneous formation of bubbles
of a phase inside the other. As a result, the valley P(N) will have a ragged shape
instead of a plateau.
As suggested in Ref. [59], to keep the interaction between the interfaces small we
made the simulation boxes elongated, with the box edge normal to the interfaces
large in relevance to the areas of the interfaces. To minimize the well depth, the
interface should be parallel to the nematic director. Specifically, in our SUS simu-
lations we used boxes whose sizes Lx ⇥Ly ⇥Lz satisfy:

Lx � Ly and Lx � Lz (3.33)
where z is parallel to the nematic director. All initial configurations consists of
particles aligning perfectly with the nematic director. As the simulations go, in the
systems where coexistence occurs interfaces will form perpendicularly to x. As an
illustration, in figure 4.6a we present a snapshot of a hard cylinder system obtained
from SUS simulation.
Another concern is the box size parallel to the nematic director. When the system
is in nematic phase, the chains can get quite long and the box should be large to
not suppress the growth of long chains. In Kofke simulations Lz was chosen to
approximate length of chains consisting of around 40 particles. As for SUS, since
Lz is constrained by condition (3.33), Lz was usually around the length of 15-mers
chains, which was still larger than the average chain length in all of the systems
we studied. We assessed the affect of finite size effect by comparing the results of
SUS and Kofke integration, as the two simulations were implemented independent
of each other except for the initial points of Kofke were obtained from SUS.

3.3 Some other details of the simulations

3.3.1 Linked list
Most of the simulation effort is spent on calculating the interaction between parti-
cles. In each attempt to move a particle in MC simulation, one has to estimate the
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interaction of the particle with other N �1 particles in the systems, i.e. the compu-
tation effort scales as N. However, as the interaction investigated in this study are
all short range, each particle can only interact with some few particles close to it
and it is not necessary to compute its interaction with the rest. Thus we apply the
trick represented in [44] in order to eliminate those unnecessary effort.
The idea is simple: one divides the simulation box into small cells, so that each
particle can interact with only other particles in the same cell and 26 neighbour
cells. The computation cost for the construction scales as N. For NVT and GMC
simulations, the cells only have to be constructed once at the beginning. The list of
neighbour cells of each cell remains during the simulation. After the first construc-
tion one also has a list of particles in each cells. Afterwards each time a particle
is displaced only its cell has to be updated. In NPT simulation, the cells have to
be reconstructed each time the volume is changed, which is performed around once
out of every N attempts to move a single particle. Therefore in all cases the total
interaction computation cost is approximately N�1 times less than when the trick is
not implemented.

3.3.2 Creating an initial configuration at high packing fraction
In our simulations sometimes we need to build up a initial configuration densely
packed without any positional order. If one just generates particles randomly the
packing fraction cannot reach a very high value. For example with hard sphere this
method can hardly go beyond around 0.37. Other options include performing NPT
or GCMC simulations, but they are generally slow.
We therefore employed another scheme, adapted from strategies proposed in Refs.
[60, 61] to create configurations of densely packed polydispersed hard spheres. As-
suming one needs to create a box of size Lx ⇥ Ly ⇥ Lz containing N spheres of
diameter s . At first one fills the box of N particles not of the desired diameter but
of diameter s⇤ < s . Next one performs a simulation with the following trial moves:

1. Positional displacement: similarly to that of an NVT simulation. However
at each attempt one only needs to check that the displaced particle do not
overlap with other particles and the usual acceptance rule relating to energy
does not apply.

2. Particle enlargement: pick a random particle and expand it to the largest pos-
sible diameter not beyond s that does not involve any overlap.

With this scheme, a configuration of hard sphere with packing fraction of 0.51 can
be achieved in a matter of minutes.

3.4 Computation of parameters required by theory

3.4.1 Bonding volume

In a cubic box of size b one generates Nc f = 2 ⇥ 108 random configurations of
2 particles and counts the number of times they form a bond, Nb. The bonding
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volume is then computed as:

Vb =
Nb

N2
pNc f

⇥b3 (3.34)

Here Np is the number of patches of a partcile. The size of the box should be large
enough for both particles, regardless of they directions, to fit in when they merely
touch (both hard core and patches considered).

3.4.2 Excluded volume and parameters
To estimate the parameters AI , KI , BI and AN , KN , BN we performed separate MC
simulations to calculate the excluded volume as a function of chain length and of
nematic parameter a in nematic case. For simplicity we take l = l0, and the formula
for the excluded volume of two chain of length l becomes:

vexcl(l) = 2(A+ vdKl +2BX2
0 l2) (3.35)

We generate 2 chains, each of which consists of l monomers in a cubic box of size
s where s is larger than two times of the maximum length of a chain, including
the space among particles. The directions of the monomers conform to (2.41) for
the isotropic case or (2.46) for the nematic case. That procedure was repeated for
Ntrial ⇡ 5 ⇥ 108 times and we counted the number of times that the two chains
overlapped, denoted by Noverlap. The excluded volume is then given by:

vexcl =
Noverlap

Ntrial
s3 (3.36)

Isotropic case

AI , KI and BI can be estimated by a quadratic fit of the excluded volume as a function
of l. For all of the models we studied in this report, the values of AI obtained from
the fitting, which is indicated by the fits of vexcl(l) at l = 0, are rather small. Hence
it is reasonable to neglect this term when deducing the expression of the average
chain length, as is done in the theory.

Nematic case

The method discussed in this part was proposed in Ref. [62]. One assumes that
AN(a)⇡ 0, as in the case of isotropic chains and KN(a) = KHC

N (a), where KHC
N (a)

is the parameter corresponding to the end-midsection contribution of the excluded
volume of 2 hard cylinders, which has been computed in Ref. [62]:

KHC
N (a)⇡ 4

p

4

Â
i=0

di

a i (3.37)

with d0 = 3.0846, d1 =�4.0872, d2 = 9.0137, d3 =�9.009 and d4 = 3.3461.
In analogy to KN , BN can be written as a series of 1/a1/2:

BN(a) =
p
4

D3
✓

h1 +
h2

a1/2 +
h3

a

◆
(3.38)
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By fitting the numerical values of vexcl as a function of 2 variables l and a as in
equation (3.35), one obtained the values of hk where k = 1�3, and hence the ana-
lytical expression of vexcl .

3.4.3 Persistence length
The persistence length measures the stiffness of an isolated polymer. It can be
extracted by computing the orientational correlation function Co:

Co(i) = hUm+i ·Umi (3.39)

where i or i+m are indexes of monomers within a chain; Ui is the unit vector rep-
resenting the direction of the ith monomer. The brackets indicate an ensemble aver-
age, i.e. taken over all configurations and values of m. Co(i) decays as exp(�i/lp).
Thus to compute persistence length, one needs to generate a large number of chains
of random configurations (i.e. directions and positions of particles within a chain)
and take average of the quantity Um+i ·Um. After computing the orientational corre-
lation function with average taken over those chains, one fits it exponentially to get
lp.
For each model in this study the number of random configurations generated were
Nc ⇡ 106 �107 and chain lengths were set at 50.
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Simulation results and comparison to
theory

4.1 Hard cylinders with 2 spherical patches at bases

4.1.1 Model
Our model of sticky hard cylinder is based on the short DNA duplexes. We in-
vestigated hard cylinders of diameter D and length L = 2D. To account for the
end-to-end stacking, each cylinder is decorated with 2 attractive spherical patches
of diameter d = 0.125D and whose centers lie on the axis of the cylinder, at the dis-
tance of h = 0.075D away from the nearest base. The patches on different cylinders
interact via a square-well potential:

VSW (x) =

(
�u0 if r  d
0 if r > d

(4.1)

where x is the distance between the centers of 2 patches. An illustration of the
model is provided in figure 4.1.
The chosen geometry of the patches ensure no branching can occur. The estimation

Figure 4.1: An illustration of the model being investigated. Particles are hard cylinders of diameter
D and length L = 2D with two interaction sites on their axes, represented by the yellow spheres. 2
particles are bonded when 2 spheres of them overlap.

of the persistence length of the model is around 11 monomers, ⇡ 22D, comparable
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with the persistence length of B-DNA measured in experiments, ⇡ 50nm [32].
The volume of a particle of this model is given by

vd ⌘ vhc =
pLD2

4
(4.2)

4.1.2 Checking overlap between 2 hard cylinders
We based on the outline provided in Ref. [63] to build an algorithm to check if 2
hard cylinders overlap. Denote Ci, i = 1,2 the centers of mass of the cylinders, Oi,a,
a = 1,2 the centers of their bases, and ui the unit vector indicating their directions.
The outline of the steps is as follows:

1. Check if the 2 cylinders are parallel, i.e. u1 = ±u2. In case they do, they
overlap if and only if the 2 following condition fulfil: |u1 ·C1C2| < L and
|u1 ·C1C2|< D.

2. Spherocylinders overlap.
We encapsulated each cylinder in a spherocylinder of the same diameter and
length, constructed by adding to its bases 2 hemispheres (figure 4.2). Check-
ing overlap between the 2 spherocylinders is a cheap calculation and if they
do not overlap then the 2 cylinders too do not.

To do this first one computes the distance between the lines 2 containing

Figure 4.2: 2 cylinders are encapsulated in 2 spherocylinders of the same length and diameters. Ci
are centers of the cylinders; ui are the unit vector indicating their directions. Ai are arbitrary points
on the axes of the 2 cylinders.

their axes. Any couple of points Ai, i = 1,2 on these 2 lines can be written as
Ai = Ci + tiui. Minimizing the distance between them with respect to t1 and
t2 yields the distance between the lines. The results are:

t⇤1 =
X �KY
1�K2 (4.3)

t⇤2 = �Y �KX
1�K2 (4.4)

(A1A2)
2
min = C1C2

2 +2t⇤2 Z �2t⇤1Y �2t⇤1 t⇤2 K +(t⇤1)
2 +(t⇤2)

2 (4.5)
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where one defines:

K = u1 ·u2 (4.6)
X = u1 ·C1C
Y = u2 ·C1C

If d � D the two spherocylinders and hence the 2 cylinders do not overlap.
Otherwise one needs to check if the 2 points A⇤

i, j corresponding to the mini-
mized distance both lie inside the 2 cylinder rims, in which case the 2 cylinder
rims overlap. This happens if the 2 following conditions satisfy:

|t⇤1 |< L/2 and |t⇤2 |< L/2 (4.7)

If not, either the 2 rims do not overlap, or the overlap also involves a disk-disk
or disk-rim overlap, in either case one needs to continue to next step.

3. Disk-disk overlap
If the 2 disks overlap, obviously their intersection must lie on the intersection
line between the 2 plane containing them. Therefore one begins by checking
if the intersection line is a secant to both the 2 disks: if it does not intersect at
least 1 of the disks at 2 points, one can conclude that the 2 disk do not overlap.
Otherwise, denote the intersection points Bi,a where i refers to the disks and
a refers to any of the 2 points on the same disk. Their possible relations in
space are illustrated in figure 4.3.

Figure 4.3: Possible relative positions of the intersection points of the circumferences of the disks
and the intersection line of the 2 planes containing the 2 disks

The 2 disks overlap if and only if for at lease one point Bi,a one has:

Bi,aB j,1 ·Bi,aB j,2 < 0 (4.8)

The 2 different subscripts i and j implies 2 different disks.
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4.1. Hard cylinders with 2 spherical patches at bases

4. Disk-rim overlap.
This step is the most expensive one. We used the algorithm suggested in Ref.
[64] here, with some alteration.
The idea of the algorithm is using an iteration scheme to determine the short-
est distance between a point on a disk (on cylinder 1) and a point on the axis
of the second cylinder. Denote A2 a point on the axis of the second cylinder
and T1 the point on the circumference of the disk that is nearest to A2. T1 can
be determined by minimizing (T1 �A2)2 with the following constraints:

(T1 �O1)
2 =

D2

4
and (T1 �O1) ·u1 = 0 (4.9)

which yields 2 solutions:

T±
1 = O1 ±

D
2

A2 �O1 � ((A2 �O1) ·u1) ·u1q
((A2 �O1)⇥u1)

2
(4.10)

Denote T±
? and T±

k the absolute value of the perpendicular and parallel pro-
jections of

�
T±

1 �C2
�

on u2. The next points T1 and A2 in the iteration are
given by:

Tnew
1 =

(
T� if T�

? < T+
?

T+ if T+
? < T�

?
Anew

2 = C2 +Tnew
1k ·u2

Once the iteration convergence condition has been met, the disk and rim can
be determined to overlap if and only if the following conditions are met:

T? < D/2 and Tk < L/2 (4.11)

In Ref. [64] the authors tested the algorithm with the iteration convergence
condition set at 5 decimal places. As for the choice of initial point, they
chose A2 = C2. On the other hand we set the convergence condition at�
Tnew

1 �T1
�2  1e�14 and at first chose a random point on the cylinder axis

as initial point. While implementing the algorithm we noticed that some-
times the convergence point of the scheme depended on the initial point. So
we chose initial point differently: we considered 32 points equally placed on
the disk circumference and among them looked for the point that was nearest
to the axis and the point on the axis nearest to that point was taken as the first
point.

4.1.3 Computed excluded volume, persistence length and
bonding volume

Generation of a particle bonded with an available particle

To compute the excluded volume and persistence length one needs to generate
chains of particular length, by adding one particle after another. A straightforward
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scheme would be repeatedly generate a new particle of random direction and posi-
tion in the proximity of the destination particle until they are bonded. However, as
the bonding volume of the models of interest are very small (values will be given
later), this method would be not very effective. A more effective method is putting
the new particle directly in a bonded configuration with the destination particle. The
description of the method is provided below.

1. Generate the patch of the new particle which is to be bonded with the desti-
nation particle.
Denote the center of the destination patch Ad . The center of the patch of new
particle to be bonded with the destination patch, denoted by An, then has to
be within the sphere of radius d and centering at Ad . An is given by:

An = Ad +
⇣

r1/3d
⌘

v (4.12)

Here v is a random unit vector and r is a random number in the range [0,1].

2. Generate another unit vector un, which is to be the direction of the new parti-
cle.
In the isotropic case, un is simply a random unit vector. In the nematic case
one wants the distribution of the angle q1 formed by un and the nematic direc-
tor to conform to a specific distribution function f (q) (the usual dependence
on the azimuthal angle does not present thanks to the cylindrical symmetry of
the nematic phase). It can be done with the following steps:

(a) Generate a random unit vector v. The angle it forms with the director z
is determined as q1 = arccos(v · z).

(b) The probability that the direction of a particle of the chain form an angle
(q) with the nematic director is

p(q)dq = f (q)sin(q)dq (4.13)

which means that the probability density is p(q) = f (q)sin(q).
Generate a random number r in the range [0,1]. If r < p(q1) one accepts
the generated vector. Otherwise it is rejected and one returns to step (2a).
If the nematic angle distribution f can be written as a function of only
cosq , as in the case of the Onsager distribution we chose in our study:

fO(cosq) = a
4p sinha

cosh(a cosq) (4.14)

then the probability distribution in equation (4.13) can be rewritten as

p0(cosq)d (cosq) = f (cosq)sin(q)dq =� f (cosq)d (cosq) (4.15)

In this case one only needs to generate random number x in the range
[�1,1] and check if x < f (v · z). This will be slightly faster as one
does not have to compute the trigonometric functions and their reverses,
which are more expensive.

3. Once one has determined the position of one patch and the direction of the
new particle, given the geometry of the particle, one can easily determine its
center.
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4.1. Hard cylinders with 2 spherical patches at bases

Results

To compute the excluded volume in the isotropic case we generated 108 configu-
rations of 2 chains of length 1�8, whereas in nematic case 5⇥108 configurations
were generated for 4 different values of l with a ranges from 10 to 30 with step 5.
The simulation results and fittings are presented in figure 4.4.

(a) Isotropic case

(b) Nematic case

Figure 4.4: Numerical estimation and fitting of vexcl of sticky hard cylinders as a function l (isotropic
case) and a (nematic case). Symbols are simulation results and dashed lines are fits according to
equation (3.35), using expressions (3.37) for KN and (3.38) for BN .
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The results of the orientational correlation function is presented in figure 4.5. To
obtain this function around 2⇥ 106 chains of length 50 were generated. By fitting
this to an exponential function we got lp = 11.62 (monomers). As for bonding

Figure 4.5: Correlation function as defined in (3.39). Symbols are simulation results and line is
exponential fit, from which the persistence length can be extracted.

volume, after generating 2⇥ 108 configurations we determined Vb/vhc = 1.706⇥
10�3.

4.1.4 Simulation results
We computed the isotropic-nematic phase coexistence lines exploiting SUS and
Kofke techniques. SUS simulations were performed at 4 temperatures T ⇤ = 0.120,
0.135, 0.149 and 0.158. The points at T ⇤ = 0.149 was used as starting points for
Kofke integration, while other points served as check points. The integration was
taken over b with the step h = 0.2, using formula listed in table 3.1.
As discussed in section 3.2.3, all the boxes used in SUS are elongated along x axis
while the nematic director is along z axis. The number of particles in the systems
ranges from 1750�2850, depending on the temperature. For each temperature the
range of particles for which P(N) is computed is around 400. The details are re-
ported in table 4.1.

As an illustration for the points discussed in section 3.2.3, we provide in figure

Table 4.1: Details of box sizes and number of particles in SUS simulations. The motivation of using
elongated boxes are explained in section 3.2.3

T ⇤ Lx/D Ly/D Lz/D N

0.120 52.5 9.5 29.5 2400 - 2850

0.135 47.0 8.0 26.0 1750 - 2150

0.149 47.0 8.0 26.0 1930 - 2440

0.158 47.0 8.0 26.0 2000 - 2500

4.6 a snapshot of a system simulated using SUS where the two phases coexist, as
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4.1. Hard cylinders with 2 spherical patches at bases

well as two of the reweighted P(N)s obtained by SUS. In the snapshot one can
see clearly two parallel interfaces, a consequence of periodic boundary condition.
Thanks to the elongated shape of the boxes the interfaces between the two phases
are stable: they establish parallel to the nematic director z, which minimizing the
free energy barrier, and the long box size along x axis increases the distance be-
tween them, therefore reducing their interaction. As a result, two peaks are well
defined and separated by a flat region, as can be seen in 4.6b. We also made the
box along y axis shorter to reduce the number of particles needed to handle. As for

(a)

(b)

Figure 4.6: (a) A snapshot of a system where coexistence occurs, obtained in SUS simulations. To
guide the eye, the two phases are roughly distinguished by different colours: orange for isotropic
phase and cyan for nematic phase. There are 2 interfaces between the phases in the system, a
consequence of periodic boundary condition. The snapshot is taken at T ⇤ = 0.149 and the system
contains N = 2150 particles. (b) Some of the reweighted probability distributions of number of
particles obtained in SUS simulations. A clear flat region separating the two peaks is the result of
stable interfaces, making possible by elongated shape of the boxes.

Kofke, we used cubic boxes for isotropic systems and elongated boxes for nematic
ones. Naturally the longest edge is the one along the nematic director z. When im-
plementing Kofke we noticed that the result was not very sensitive to the precision
of enthalpy and volume per particle of the systems in previous steps. Therefore at
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each temperature, after estimating the packing fractions of 2 phases by NPT simu-
lation, we switched to NVT simulations to collect statistics of average chain lengths
of the systems, as NVT simulation is faster. For both NPT and NVT simulations,
the box sizes of isotropic systems are Lx = Ly = Lz ⇡ 8D and those of nematic ones
are Lx = Ly ⇡ 10D and Lz ⇡ 40D.
The phase boundary computed by simulation and theory are shown in figure 4.7. As

Figure 4.7: Numerical and theoretical computation of phase boundary of hard cylinders with two
attractive sites at their bases. Solid lines are prediction according to the theory proposed in Ref.
[25]. Circles are estimations by SUS, while triangles are results of Kofke integration, which starts
from SUS points at T ⇤ = 0.149.

can be seen in the figures, the 2 methods yield highly consistent results. Consider-
ing the largely different box sizes using in the 2 methods, particularly the size along
the nematic director, this indicates that when it comes to packing fraction, the finite
size effect in SUS simulations is rather small. The numerical result is well captured
by the theory, although the isotropic coexistence packing fraction is slightly under-
estimated. As expected, the packing fraction at boundary of both phases increase
with temperature, as the formation of bonds is less favourable. According to both
the simulation data and theory prediction, the coexistence region narrows monoton-
ically as temperature lowers.
In systems without self-assembly that display isotropic-nematic phase transition,
particles have a fixed aspect ratio that determines the packing fraction at phase
boundary. On the contrary, in self-assembling systems such as the ones we stud-
ied, particles form chains of different number of monomers, whose average value
M vary according to the packing fraction at phase boundary. The quantity X0M
can be used to approximate the aspect ratio of an average chain in a self-assembly
system as an equivalent to the that of a particle in non self-assembling systems. In
figure 4.8a we investigate the relationship between the quantity X0M with the pack-
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4.1. Hard cylinders with 2 spherical patches at bases

ing fraction at phase boundary in our system. Interestingly, it differs quantitatively
from that of non self-assembling systems. As opposed to the monotonic dependence
in the latter (the longer the particles, the lower packing fraction at which the system
nematize), what we observe here is a re-entrance: as the packing fraction at the
nematic boundary increases, the average aspect ratio exhibits a minimum, beyond
which it increases with the packing fraction. Although the theory overestimates the

(a)

(b)

Figure 4.8: Re-entrance of the average aspect ratio X0M as coexistent packing fraction increases. In
both figures, symbols are numerical estimations while lines are theoretical predictions. (a) Compar-
ison between simulation results and the theory proposed in Ref [25], which is represented by solid
lines. Some couples of points on the isotropic and nematic phase boundary lines at the same tem-
perature are jointed by dotted lines with the value of the corresponding temperature reported next to
them. (b) Comparison between simulation results and other theories: 1-Onsager (dot-dashed lines),
2-Lü and Kindt (dashed lines), and 3-Kuriabova et al. (solid lines).
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average chain length at high packing fraction, it captures the re-entrant behaviour.
To understand the cause of the re-entrance one can consider the expressions (2.52)
and (2.43) of MN and MI . At low temperature limit the nematic packing fraction at
phase boundary is low and MN µ

p
ebu0 goes to infinity. On the other hand at rather

high temperature and hence nematic packing fraction at coexistence MN ⇡
p

aMI .
While MI approaches 1 at high temperature, a quickly increases as the system be-
comes more ordered due to high packing fraction. That explains why MN exhibits a
minimum in intermediate range.
Next, in figure 4.8b we compared the numerical results with other available theo-
ries:
1 - Onsager’s theory, which studies isotropic-nematic phase transitions of hard
cylinders without self-assembly.
2 - Lü and Kindt’s theory, which studies systems of hard spheres self-assembling
to stiff chains (with persistence length of order hundreds to thousands of particles).
The parameters are chosen to fit the present hard cylinder model.
3 - Kuriabova et al.’s theory, which studies self-assembling hard cylinders.
According to our computation, none of the theories predict the non-monotonic de-
pendence of average aspect ratio on packing fraction at coexistence. Moreover, Lü
and Kindt’s theory largely overestimates the values of the two quantities.
Next we investigate the chain length distribution of the systems at isotropic and
nematic coexistence. According to suggestion by Ref. [19] for spheres, the distri-
bution is bi-exponential because short chains remain isotropic even when the system
as a whole is nematic. On the contrary, the theory proposed in chapter 2 assumes a
single exponential one. Therefore it is important to check the validity of the assump-
tion. We plot the logarithm of chain length distribution computed by simulation and
theory at different temperature in figure 4.9. As can be seen in these plots, in both
isotropic and nematic systems, the distributions are well approximated by a single
exponential function. Also, in the inset of figure 4.9b we plot the nematic order
of subsystems containing chains of the same number of monomers. Only chains
containing less than 3 monomers are isotropic and deviate from the fits.
As the nematic packing fraction at coexistence at high temperature is rather high,

we computed the 3-dimensional pair distribution function g(r) to check if there is
any transitional order presents in the systems. The expression of g(r) is given in
(1.6).
The contour plots of g(r) on 2 planes y = 0 (i.e. parallel to the nematic director)
and z = 0 (perpendicular to the nematic director) at a random chosen points on the
higher half of nematic peaks are represented in figure 4.10, showing that no transi-
tional order exists in those systems.
To conclude, we performed thorough simulations to determine the isotropic-nematic

coexistence lines of self-assembling cylinders. The two techniques exploited in our
study produce highly precise results comparing to each other, showing their robust-
ness as means of locating phase boundary, overcoming the obstacle of metastability
one usually have with other methods like NPT or GCMC.
The numerical data, for the first time, confirm the re-entrant behaviour of average
chain length on increasing coexistence nematic packing fraction, predicted by the
theory proposed in Ref. [25]. The theoretical prediction of phase boundary is also
in good agreement with numerical results. This provide a benchmark in theoret-
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(a)

(b)

Figure 4.9: Chain length distribution at phase boundary at different temperatures of (a) isotropic sys-
tems and (b) nematic systems. The symbols are simulation data while dashed lines are exponential
fits. The inset of (b) shows the nematic order as a function of chain length in nematic systems.

ical study of isotropic-nematic phase transition coupling with self-assembly. Our
simple model can be a reference for a wide class of biological systems with aggre-
gation. The values of average chain length can also be estimated in experiments via
measurements of the elastic constant.
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Figure 4.10: An example of 3-dimensional pair distribution function g(r) in the simulated systems.
The data is of a system at temperature T ⇤ = 0.20 and f = 0.47. (a) g(r) on plane z= 0 (perpendicular
to the nematic director) and (b) on plane x = 0 (perpendicular to the nematic director).
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4.2. Bent cylinder

4.2 Bent cylinder
Experiments have shown that for short DNA duplexes ( 12 base pairs), the isotropic-
nematic phase boundary is sequence dependent. This suggests that more details of
the structure of the duplexes should be taken into account in studying their phase
transition. We hypothesize that the duplexes can be considered as bent core parti-
cles whose bending angle is a parameter of the process. The idea was inspired by
recent findings on banana-shaped molecules. Followed by the work of Niori et al.
[65] which shows that achiral bent core molecules display unusual ferromagnetic
properties, much attention has been given to them from all theoretical, numerical
and experimental points of view. Those systems are also the first to exhibit biaxial
nematic phase [26, 27].

4.2.1 Model
We modelled the DNA duplexes as a bent hard cylinder, which can be either sym-
metric and asymmetric (to be referred to as SYBC and ASBC from now on, respec-
tively). In both cases, the bent cylinder consists of two unaligned cylinders of the
same diameter D, joining each other at one point on their axes. The bending angle,
denoted qb, is defined as the complementary angle of the one formed by the 2 axes.
The contour length of the bent cylinder, measuring along the axes of the two com-
ponent cylinders, is Lc. The contour length is the sum of two parts L1 and L2, as
shown in figure 4.11. It should be noted that the lengths of the 2 component cylin-
ders were chosen so that there is no void between their middle bases, and therefore
are slightly larger than L1 and L2. In the case of SYBC, L1 = L2, while L1 6= L2 in
ASBC case (see figure 4.11 ).
Two spherical patches near the bases of the duplexes are added to mimic stacking

Figure 4.11: An illustration of symmetric bent cylinder (SYBC) and asymmetric bent cylinder
(ASBC). Particles are hard cylinders of diameter D and length L with two interaction sites on their
axes, represented by the yellow spheres.

interaction. The centers of them lie on the axes of the component cylinders at a dis-
tance h = 0.075D from the nearest bases. The diameter of the patches is d = 0.25D.
As in the case of hard cylinders described above, these values are chosen to prohibit
branching on one hand, and yield large bonding volume and reasonable persistence
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length on the other hand.

Determination of bending angle by all-atom simulations

To determine the geometry of the duplexes, we performed atomistic molecular dy-
namics to determine the geometry of the bent core, using both TIP4/2005 and TIP3P
models of water. The sequences that we investigated are listed in table 4.2, along
with their nematic concentration at coexistence obtained experimentally. The equi-

Sequence Label cN (mg/ml)

AATGAATTCATT AAT 500

CGCGCCGGCGCG allCG2 570

AATAAATTTATT allAT 600

AACGAATTCGTT AAC 620

CCGGCGCGCCGG allCG1 670

CGCGAATTCGCG DD 730

ACCGAATTCGGT ACC 850

Table 4.2: List of the DNA sequences studied by all-atom simulations, their labels and the nematic
concentration at coexistence (cN) from Ref. [66].

librium conformation of some of the sequences yielded by all-atom simulation is
shown in figure 4.12. Note that they slightly bend at different level. In figures 4.13

Figure 4.12: Some equilibrium conformations of 3 different sequences obtained in all-atom simula-
tion. Note the slightly different bending angles of them.

we put together the experimental data of nematic concentration at phase coexistence
of the sequences and their bending angle qb which we got from all-atom simulation.
The plots display an obvious correlation between the two quantities.
The detailed geometry of the sequences computed by all-atom simulation are listed

in table 4.3. The data suggest that the SYBC model is a good approximation of
the sequence because even if ASBC model is considered, the ratio L1/L2 is always
rather close to 1. Based on the results of all-atom simulation we opted for the model
of symmetry bent cylinder of L = 3.6nm and D = 1.8nm, i.e. L = 2D.
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4.2. Bent cylinder

Figure 4.13: Critical nematic concentration cN , obtained from Ref. [?], versus the bending angles
qb of the sequences obtained from all-atom simulations for (a) ASBC model and (b) SYBC. The red
lines are to guide the eye. The label of each sequence is put next to its corresponding symbol.

TIP4P/2005 SYBC ASBC

Sequence qb qb L1 (nm) L2 (nm) L1/L2

AT 159.8 149.0 1.88 2.13 0.88

allCG2 144.3 143.3 1.89 2.12 0.89

allAT 151.0 146.7 1.89 2.12 0.89

AAC 157.3 148.7 1.88 2.13 0.88

allCG1 138.6 138.2 1.89 2.13 0.89

DD 145.3 144.3 1.88 2.12 0.89

ACC 130.9 132.4 1.90 2.10 0.90

TIP3P SYBC ASBC

Sequence qb qb L1 (nm) L2 (nm) L1/L2

AAT 152.8 146.3 1.89 2.12 0.89

allCG2 141.3 140.4 1.89 2.12 0.89

allAT 147.5 144.1 1.88 2.12 0.89

AAC 147.0 143.7 1.88 2.12 0.89

allCG1 146.0 142.6 1.89 2.13 0.89

DD 143.3 143.4 1.88 2.12 0.89

ACC 134.4 135.7 1.89 2.11 0.90

Table 4.3: Parameters of the SYBC and ASBC models evaluated from the all-atom simulations for
two different water-models (TIP4P/2005 and TIP3P) for the studied DNA sequences.

56



Chapter 4. Simulation results and comparison to theory

4.2.2 Simulation results of isotropic-nematic phase transition
We performed NPT simulations to locate the phase boundaries of bent cylinders of
different values of qb at temperature T ⇤ = 0.12. To reduce metastability we started
all the simulations from initial nematic configurations. The equations of state of
three values of qb was displayed in figure 4.14. The discontinuity of those lines
indicates phase transition in the systems. The fact is confirmed by the jump in ne-
matic order, which is plotted on the right panel of the same figure.

With the data obtained from NPT simulations, we represent the dependence of

Figure 4.14: The equation of states of bent cylinders with different bending angles qb, obtained by
NPT simulations. The jump in packing fraction f indicates the transition from isotropic phase to
nematic phase. It is confirmed by the sudden increase of the nematic order S.

packing fraction at phase boundary on bending angle in figure 4.15 against theory
prediction. The simulation results agree reasonably well with theory, capturing both
the rapid increase of the phase boundary packing fraction as well as the narrowing
of the gap when bending angle decreases. This implies the potential of extending
the theory for systems with smaller bending angles, for which phase coexistence
occurs at packing fraction so high that can be hard to access by simulation.
Further more, to evaluate the effect of metastability on the NPT simulation results,
we re-estimate the phase boundary for bending angle qb = 160 using SUS. The
result is also shown in figure 4.15 by green circle symbols. As expected, the coexis-
tence range of packing fraction computed by SUS is bracketed by that obtained by
NPT, but the discrepancy is less than 10%.

We speculated that the steep increase of phase coexistence packing fraction
stemmed from the higher flexibility of chains formed by more bending monomers.
Two snapshots of systems of different bending angles at the same temperature and
pressure provided in figure 4.16 give the visual impression that more bending parti-
cles, i.e. with smaller qb, self-assemble to more flexible chains.
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Figure 4.15: The dependence of isotropic-nematic phase boundary on bending angle, simulation
(symbols) versus theory (solid lines).

To provide a proof for the hypothesis, we investigate the dependence of persis-

Figure 4.16: Snapshots of two systems of hard bent cylinders with different bending angles qb at
the same temperature and pressure, obtained from NPT simulation. The particles of higher level of
bending self-assembly to chains which are significantly more flexible.

tence length lp on qb, and the theoretical phase diagram with all parameters kept
unchanged except for the persistence lengths, which are replaced by the value corre-
sponding to qb = 180. The results are shown on figures 4.17. lp shows a remarkable
similar sharp increase as qb decreases to the coexistence packing fraction. In addi-
tion, as the value of persistence length is replaced by that of qb = 180, the packing
fraction only slightly changes as qb varies. The results confirm that the persistence
length is the main contribution to the strongly dependence of packing fraction on
qb.

We also compared the theory prediction of nematic concentration at coexistence
cN as a function of bending angles with experimental data. To do it first we needed
to decide on the geometrical parameters of the monomers to use in the theory. We
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Figure 4.17: The dependence of isotropic-nematic phase boundary on bending angle, simulation
(symbols) versus theory (solid lines).

set the diameter and contour length of monomer at 1.8nm and 3.6nm, respectively,
compatible with the geometry of DNA dodecamers. As for the bending angles, the
estimation by all atom simulation is taken as there are no experimental data avail-
able.
Another parameter required by the theory is the stacking free energy GST , which
was obtained from experimental measures. Since there is no consensus on its value,
we considered 2 limited cases GST = �0.9 and GST = �2.5kcal/mol, compatible
with the estimations made in Ref. [62].
The numerical and experimental evaluation of cN versus qb is reported in figure
4.18a. The experimental data with error bar falls with the grey theoretical band,
again reflecting the possible range of GST . Interestingly, the grey band narrows as
the bending angle decreases, indicating that for highly bent particles, cN becomes
less sensitive to GST . The explicit dependence of cN on GST is shown in figure
4.18b. Because GST varies with temperature, this indicates that for highly bent par-
ticles cN only weakly depends on temperature. A further experimental measurement
of the dependence of cN on temperature in these systems can provide a validation
of the theory.
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(a)

(b)

Figure 4.18: (a) The critical nematic concentration cN obtained experimentally versus bending angle.
The value of bending angles are results of all-atom simulation. (b) The dependence of cN on GST .

60



Chapter 4. Simulation results and comparison to theory

4.3 Spheres
Hard spheres with sticky spots are interesting in the theoretical point of view to
build the theory framework for self-assembling systems since its reference systems,
hard spheres, have been thoroughly studied with many analytical descriptions of
their properties available.

4.3.1 Model
In this report we study hard spheres of diameter D with 2 opposite attractive sites.
The sites on two particles 1 and 2 interact via Kern-Frenkel potential [67]:

VKF(r) =

8
>>><

>>>:

�u0 if

8
><

>:

D < r < D+d and
cos(q1)> cos(qmax) and
�cos(q2)> cos(qmax)

0 otherwise

(4.16)

where q1 and q2 are the angle between the directions of the site on particle 1 and
2, respectively, and vector r which roots at the center of particle 1 and points to the
center of particle 2; d and qmax are parameters of the potential. Please refer to figure
4.19 for an illustration of the model.
One can enforce the rule of no more than 1 bond per patch by imposing the follow-
ing condition for the open angle qmax for a particular value of d :

sin(qmax) [2(1+d/D)]�1 (4.17)

The Kern-Frenkel potential offers the flexibility to manipulate the bonding volume
and persistence length independently, to some extent, with each other. To study
the isotropic-nematic transition we set d = 0.546D and cos(qmax) = 0.9462, which
results in maximum bonding volume. In addition, we also studied the average chain
length in the isotropic phase for different values of the parameters.

Please refer to figure 4.19 for an illustration of the model. For this model the

Figure 4.19: The model of hard sphere with Kern-Frenkel patches. (a) A illustration of a particle
and its Kern-Frenkel patches. (b) In 2D, an example of 2 bonded particles with explanations of the
parameters of the model; note that the two bonding patches (yellow spherical cones) overlap and
vector r joining the centers of 2 particles penetrates the caps of both patches.

volume of a monomer is given by:

vd ⌘ vs =
1
6

pD3 (4.18)
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4.3.2 Computed excluded volume, persistence length and
bonding volume

As discussed earlier, when generating chains to compute excluded volume and per-
sistence length, it is more effective to put a new particle directly in bonding region
of the destination particle. The scheme to do so for Kern-Frenkel model is described
below.

Generation of a particle bonded with an available particle

Denote the unit vector along the direction of the destination particle ud , ud points
to the destination patch, and the center of the hard sphere Cd . The generation of a
new particle bonded to the destination particle involves 3 steps:

1. Generate the center of the new particle, Cn.
First, CdCn has to be outside of the spherical core of the destination particle.
Second, it has to be within the spherical cone whose axis is ud , open angle is
qmax and radius is (D+d ). The problem is actually similar to that in step 2
of the scheme in the case of spherical patch, the only difference is that now
we have to take into account also the limit in solid angle.
Denote as a the unit vector parallel to CdCn, and v1, v2 2 random unit vectors
which are both perpendicular to ud and to each other. a is given as:

a = sin t (sinf1v1 + cosf1v2)+ [r (1� cosqmax)+ cosqmax]ud (4.19)

where f1 is a random number in the range [0,2p], r is random number in the
range [0,1] and T ⇤ = arccos(r (1� cosqmax)+ cosqmax). After generating a
one still needs the norm of CdCn, denoted cc. Recall that cc has to be no
smaller than the diameter of the hard spheres. With this in mind one keep
generating a random number r and until its value satisfies r1/3 (D+d ) � D.
Cn is then given by:

Cn = Cd +
h
r1/3 (D+d )

i
a (4.20)

2. Generate the direction of the patch of the new particle which is to be bonded
to the destination patch, denoted un.
Again, this vector has to be within the spherical cone whose open angle is
qmax and radius is (D+d ), but whose axis is now CnCd . Therefore to gener-
ate un we use the same scheme used to generate the direction of CdCn.
If we compute the excluded volume in the nematic case we also require that
un conforms to the angle distribution, which is done similarly to step 2 of the
scheme in the case of spherical patch.
When generating chains to compute the persistence length (to be discussed
in the next part), the direction of the new particle is always set to be the unit
vector anti-parallel to un. This choice ensures the consistency with how the
persistence length is defined.
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Figure 4.20: Numerical estimation and fitting of vexcl of sticky hard spheres as a function l. Symbols
are simulation results and dashed lines are fits according to equation (3.35), using expressions (3.37)
for KN and (3.38) for BN .

Results

To compute the excluded volume in the isotropic case we generated 2⇥108 configu-
rations of 2 chains of length 2�9, whereas in nematic case 1.5⇥108 configurations
were generated for 4 different values of l with a ranges from 1 to 40 with step 2
for a < 20 and step 1 for a � 20. The simulation results and fittings are shown in
figure 4.20.

As for the persistence length, we generated around 2⇥106 chains of length 50
for each set of values of d and qmax. The results are plotted in figure 4.21. The
data fit well to quadratic function. From the fitting function, we extrapolated the
persistence length at d ! 0 of lp = 7.3. From now on, whenever we study systems
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of different patch sizes, qmax always takes the largest value that satisfies condition
(4.17).

Figure 4.21: Persistence length corresponding to different sizes of the patches. Symbols are simula-
tion data whereas dashed line is quadratic fit.

The bonding volume of sphere with Kern-Frenkel patches can be computed an-
alytically [41]:

Vb/vs = 2
h
(1+d/D)3 �1

i
[1� cos(qmax)]

2 (4.21)

The dependence of bonding volume on patch range is plotted in figure 4.22 It
reaches the maximum at d/D ⇡ 0.546.

Figure 4.22: Bonding volume as a function of patch range.
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4.3.3 Simulation results
Properties of isotropic phase

We were interested in how Wertheim theory works with higher packing fraction
reported in [22]. In figure 4.23 the results of average chain length as a function of
packing fraction in isotropic phase for different patch sizes at different temperatures
T ⇤ = 0.12,0.13,0.14 and 0.15 are reported. To obtain the results, we use NVT sim-
ulations. The boxes are cubic and their sizes are around 21D. The predictions of
Wertheim theory and theory by De Michele et. al. are also reported for comparison.

(a) d/D = 0.02 (b) d/D = 0.2

(c) d/D = 0.4 (d) d/D = 0.546

Figure 4.23: The average chain length in isotropic phase for different patch sizes at different tem-
peratures. As discussed earlier, as the patch ranges shorten, their open angles widen accordingly to
keep the bonding volume at the maximum volume without permitting multi-bonding. In all figures,
symbols are simulation data, solid lines are predictions by Wertheim theory and dashed lines are
predictions by De Michele et. al. theory.

As can be seen in the figures, the agreement between simulation data and theory
predictions depend not only on packing fraction of the systems but also on temper-
ature and the patch size. At the smallest patch range, Wertheim theory still works
very well up to a quite high packing fraction of around 0.4 for all temperatures. The
range over which the Wertheim theory is in good agreement with simulation data
narrows as temperature decreases or the patch range increases. For the largest patch
range studied, at high temperatures, namely T ⇤ = 0.145 and T ⇤ = 0.155, the theory
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becomes unreliable, yielding an artificial turning point of the average chain length
on the increase of packing fraction.
In contrast to Wertheim theory, the theory by De Michele et al. works better as the
patch range increases. Surprisingly, while at very short patch range the theory works
better at higher temperatures, at larger patch ranges, its agreement with simulation
seems to improve as the temperature lowers.

Isotropic - nematic phase transition

As with hard cylinders, we computed the isotropic-nematic phase coexistence lines
exploiting SUS and Kofke techniques. SUS simulations were performed at 3 tem-
peratures T ⇤ = 0.120,0.130 and 0.155. The points at T ⇤ = 0.130 was used as initial
points for Kofke integration, while other points served as check points for the inte-
gration from T ⇤ = 0.130. The integration was taken over b with the step h� = 0.4
for decreasing b and h+ = 0.2 for increasing b . The reason h+ is chosen smaller
than h� is because at the first integration step up on b with step 0.4, we figured that
the predictor-corrector seemed not convergent. The fact that the scheme converges
with decreasing b but not with increasing b with the same step is consistent with the
discussion in section 3.2.2 about the accumulation of error is proportional to Dv�1

and according to our theory prediction as well as the results we obtained for hard
cylinder, Dv increases when b decreases. At the same time, we also use SUS point
at T ⇤ = 0.155 as a starting integration point to obtain 2 more points at lower b , with
integration step 0.2. In all integration, we use trapezoid and midpoint formula for
the first and second integration step, and variant 1 listed in table 3.2 for the 3 steps
and beyond.
As discussed in section 3.2.3, all the boxes used in SUS are elongated along x axis
while nematic director was along z axis in the cases of T ⇤ = 0.120and0.130; as for
T ⇤ = 0.155, the nematic director is parallel to the diagonal vector of the y� z plane,
to give more room for longer chains. In all cases, the box size was 40⇥ 16⇥ 16.
The numbers of particles in the systems range from 4500�7380, depending on the
temperature. For each temperature the range of particles for which P(N) was com-
puted was around 500. The details are reported in table 4.4
The phase boundary computed by simulation and theory are shown in figure 4.24.

Table 4.4: Details of number of particles in SUS simulations. The motivation of using elongated
boxes are explained in section 3.2.3

T⇤ N

0.120 4500 - 5020

0.130 5100 - 5630

0.155 6830 - 7380

Again, the 2 methods yields very agreeable results although the step of b is some-
what large. At low packing fraction the theory captures the numerical result well.
However as the coexistent packing fraction increases, the discrepancy becomes sig-
nificant. A possible explanation is that Parsons-Lee factor does not work well with
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spheres [68].

Figure 4.24: Numerical and theoretical computation of phase boundary of sticky hard spheres. Solid
lines are prediction by the theory proposed in Ref. [25]. Circle symbols are estimations by SUS,
while triangles are results of Kofke integration, which starts from SUS points at T ⇤ = 0.130.

In figure 4.25 we present the dependence of coexistence pressure on tempera-
ture. The values of pressure were obtained from Kofke integration and from NPT
simulation for SUS points. In the range of temperature we studied, the coexistence
pressure fits well to a cubic function. Again, the results yielded by Kofke and SUS
are in quite good agreement with each other.

An interesting feature of the systems at phase boundary is the distribution of
chain length. Kindt et al. suggested in Ref. [19], which is then generally accepted,
that in self-assembling systems of attractive hard spheres in nematic phase the chain
length distribution are bi-exponential. According to Ref. [19], in nematic systems
the short chains remain isotropic and the entropy loss when a particle is added to
a short chain quickly increases as the chain grows longer. However Ref. [19] only
investigated systems with rather stiff chains whose persistence lengths are of order
of 100 or 1000 particles. Our study on the other hand provides a complement with
flexible chains whose persistence lengths are around 18 particles.

The numerical results of chain length distribution in some of the isotropic we
studied are presented in figures 4.26 and 4.28. In figure 4.26 we also plotted the
theoretical distribution (2.37) with the value of r and M taken from simulation
results. Apart from long chains whose statistics is poor due to their scarceness,
the theoretical distribution fits extremely well to the numerical data, suggesting that
the distribution proposed by (2.37) describes highly accurately the chain lengths in
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Figure 4.25: Coexistence pressure as a function of temperature. Symbols are simulation data, ob-
tained from Kofke integration or from NPT simulation for SUS points. Dashed line is a cubic fit of
the points obtained from Kofke.

isotropic systems.
As for nematic systems, to study the behaviour of their short chains, we computed
the nematic order Sl of subsystems of chains of the same length l, shown in figure
4.27. For all temperatures we studied, only very short chains, around 3-mers or less,
are isotropic. As expected, at higher temperature and hence higher nematic packing
fraction at phase boundary, the length limit under which the chains remains isotropic
decreases. At the highest temperature T ⇤ = 0.155 for example, even dimers can be
considered to be nematic.

The distributions of nematic systems at coexistence are reported in figure 4.28.
They slightly bended around short chain limits. The positions of the bends coincide
with the region where the corresponding S(l) steeply increases, moving towards
shorter chains as the number density becomes higher, which is consistent with the
reason provided by Ref. [19] for the bi-exponential behaviour. However they still
fit nicely to a single exponential function (when doing the fitting we excluded the
very long chains, namely chains consisting of more than 100 monomers, for their
poor statistics). Again, only 3-mers or shorter chains clearly deviate from the single
exponential fit.
As in the case of hard cylinders, the re-entrant behaviour is also observed by both

simulations and theory, as is seen in figure 4.29. The reduced temperature where
the re-entrance occurs is around T ⇤ = 0.130 while the theory predicts 0.144.

It is interesting to check the appropriateness of the Onsager trial distribution
2.14. Although the function is known to work very well with non-assembling hard
spherocylinders, to our knowledge, it has not been validated for self-assembling
systems. We extracted the trial function from simulation results in two ways:

1. Fit the simulation data to the function. The results are shown in figure 4.30a

2. Compute the nematic order from simulations and numerically solve equation
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Figure 4.26: Chain number density of some isotropic systems at coexistence. Symbols are simulation
data. Lines are theoretical exponential distribution according to equation (2.37), using the values of
number density r and average chain length M obtained from simulation.

(2.16) to get a , from which the function can be determined. The results are
shown in figure 4.30b

As can be seen in the figures, at higher temperatures (and hence packing fractions)
the results obtained from 2 methods are consistent and confirm that the trial function
capture very well the angle distributions of the systems. However at lower packing
fractions, the agreement deteriorates. Although the simulation data fit very well to
the function form, they fit at the wrong values of a . When computing the function
from the values of a obtained from nematic order, the results significantly deviate
from simulation data. For comparison, the values of a obtained by the 2 methods
are plotted in figure 4.31. A possible explanation for the function working better at

Figure 4.27: The dependence of nematic order on chain length in systems at different temperatures.
Symbols are simulation data. Two dashed lines indicate the points of dimers and trimers.
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Figure 4.28: Chain number density of some isotropic systems at coexistence. Symbols are simulation
data. Lines are single exponential fits. Long chains of more than 100 monomers are excluded in the
fitting as their statistic are rather poor due to scarceness.

Figure 4.29: The re-entrance behaviour of sticky hard spheres. Red circles are numerical results.
Solid lines are estimates by theory [25].

higher packing fraction is that at higher packing fractions the chains are less flexible
and their shapes approximate straight hard rods more closely.
Figure 4.31 also confirms that a increases steeply at high packing fraction, consis-
tent with our argument that it is the large values of a at high packing fraction that
leads to re-entrance behaviour.

Finally, we check that at high packing fraction the systems are still in nematic
phase, by computing the pair distribution function defined in equation (1.6). The
result for a configuration at T ⇤ = 0.1652, the highest temperature we studied, is
shoen in figure 4.32. As can be seen in the figure, there is no transitional order
occurs in the system in both planes parallel and perpendicular to nematic director.
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(a)

(b)

Figure 4.30: Angle distribution in simulation systems (symbols) compared to Onsager trial function
(lines). (a) Solid lines are fitting results of simulation data to the function; (b) the parameter a of the
function is determined from the value of nematic order of the systems, making use of relation (2.16).
Dashed lines represent the according function. In both figures, the lines are plotted in the same color
of their corresponding simulation data.
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Figure 4.31: Orientational distribution in nematic sytems. Symbols are simulation data, while lines
are fit to Onsager’s distribution, which is assumed in the theory. Inset: the values of a , which are
obtained by the fitting, for systems below and beyond the nematic re-entrant number density.

(a) (b)

Figure 4.32: Pair distribution function of a configuration at T ⇤ = 0.1652 (a) in a plane parallel to the
nematic director and (b) in a plane normal to the nematic director.
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Conclusion

We have presented in this thesis a procedure to accurately locate isotropic-nematic
phase boundary in self-assembling systems over a range of temperature, based on
a combination of simulation techniques proposed by Ref. [46] (SUS), Ref. [51]
(Kofke integration) and Ref. [59]. By investigating simultaneously many small win-
dows instead of a large windows to compute the probability distribution of number
of particles, not only SUS reduces the computation time but also improve precision
as the distribution in each windows is rather flat. The tricks suggested by Vink
helps reduce the finite size effect in SUS and improve its precision without greatly
increasing the number of particles. On the other hand Kofke integration allows one
to calculate coexistent lines from the first coexistent points obtained from SUS. For
both sticky hard cylinders and hard spheres we performed extra SUS points (3 for
hard cylinders and 2 for spheres) as checkpoints for Kofke integration and found out
that the results the 2 methods produced are in excellent agreement with each other.
This suggests that the techniques are robust as a tool to study phase transition in
self-assembling systems numerically. This is important in building a theory frame-
work, as phase transition in self-assembling systems are complicated and theories
need to start from simple models whose parameters can be estimated accurately.
These parameters are often not available in experiments.
We also compared numerical results with the theory developed by De Michele et.
al. [25]. The theory attempts to take into account many different aspects of self-
assembling systems that are sometimes omitted by other theories: flexibility, poly-
dispersity and modelling differently the entropy loss in nematic phase of short and
long chains. The theory is also parameter free, in the sense that all the required pa-
rameters can be computed by simulations. For the systems of sticky hard cylinders
and bent cylinders, the theory quantitatively agrees with simulation data when it
comes to phase coexistent packing fraction. For spheres, the agreements deteriorate
as the temperature, and hence coexistent packing fraction, increases.
Remarkably, the simulation results confirm a prediction made by the theory about
the re-entrance behaviour of self-assembling systems, namely as the nematic coex-
istent packing fraction increases, the average aspect ratio of the chains exhibits a
minimum rather than monotonically decreases as in non self-assembling systems.
The re-entrance behaviour is the results of coupling between nematic order and
self-assembly. The confirmation of the theory’s prediction by simulation results in-
dicates the promise of the theory as a framework to study isotropic-nematic phase
transition in self-assembling systems.
In addition, we applied the theory to study the dependence of isotropic-nematic
phase transition of sticky bent cylinders on their bending angles. Recent experi-
ments have shown that the nematic critical concentration of DNA dodecamers is
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sequence dependent. We showed that such phenomenon can be explained if the
DNA dodecamers are modelled as symmetric bent cylinders. Using theoretical and
numerical approach, we showed that bent cylinders with higher bending level, i.e.
smaller bending angle, self-assemble into chains with smaller persistence length,
which results in higher nematic packing fraction at coexistence. The theory there-
fore can be considered the first to study the isotropic-nematic phase transition in
bent core systems.
Finally, we studied in details the structure of sticky hard sphere systems at coexis-
tence. We pointed out that for systems of high flexibility, namely when the persis-
tence length of isolated chain is of order 20 monomers, the chain length distribution
even in nematic phase can be well described by a single exponential function. This
is different from self-assembling systems of rigid chains studied by Lü and Kindt,
where the double exponentiality is more pronounced and have to be taken into ac-
count. We also verified that the trial distribution proposed by Onsager works quite
well at high packing fraction in system of hard spheres. This result is not triv-
ial considering that Onsager proposed it for non self-assembling systems of highly
anisotropic particles. In addition, we computed explicitly the parameter of the ori-
entational distribution function proposed by Onsager [21] and adopted in the theory
of De Michele et. al. [25] and confirmed that the re-entrance of the average aspect
ratio is associated with a steep increase in such parameter.
Although this study focuses on isotropic-nematic transition, the same simulation
procedure can be exploited to study other phase transitions. In fact, a possible ex-
tension of this study can be other liquid crystal phases in self-assembling systems,
such as smectic and columnar phases. Another extension include improving the
theory proposed by De Michel et. al. so that it works better with spheres and yields
more accurate predictions for average chain length at high packing fraction.
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