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ABSTRACT
Recent experiments have demonstrated the self-assembly and long-range ordering of concentrated aqueous solutions of DNA and RNA
mononucleotides. These are found to form Watson–Crick pairs that stack into columns that become spatially organized into a columnar
liquid-crystalline phase. In this work, we numerically investigate this phase behavior by adopting an extremely coarse-grained model in
which nucleotides are represented as semi-disk-like polyhedra decorated with attractive (patchy) sites that mimic the stacking and pairing
interactions. We carry out Monte Carlo simulations of these patchy polyhedra by adapting algorithms borrowed from computer graphics.
This model reproduces the features of the experimental phase behavior, which essentially depends on the combination of pairing and stacking
interactions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226019

I. INTRODUCTION

The fundamental role of nucleic acids in biology arises from
their capacity for mutual selective interactions. This feature governs
all the key steps in the maintenance, transmission, and translation
of the genetic code. The knowledge and control of such interac-
tions have enabled a relentless flowering of new capacities that range
from the development of RNA-based drugs1 to nanotechnological
innovation.2 Watson–Crick selectivity results from a combination
of pairing and stacking interactions between the nucleotides. While
the combined effect of these two molecular processes is quantita-
tively known, the mechanism governing their interplay is still under
discussion and experimental scrutiny.3–5

The standard thermodynamic description of DNA is built on
the notion that the largest contribution to the binding strength of
complementary sequences is given by stacking forces, while pair-
ing mainly acts as a gatekeeper, providing a selective free energy
penalty when non-complementary bases are in contact.5,6 The rele-
vance of stacking in the interactions between distinct DNA and RNA
duplexes has emerged in the observation of spontaneous collective
ordering in concentrated solutions of oligomer duplexes provided by

well-paired blunt-ended terminals. In these systems, the attractive
interaction of the duplex terminals favors their linear aggregation
and, at sufficiently large concentrations and low temperatures, their
self-assembly into liquid crystal phases, in which long chains of
aggregated duplexes are equally oriented while preserving their 3D
liquid structure (nematic phase) or else adopting a hexagonal 2D
packing of the columns (columnar phases).7 Recent direct measure-
ments8 confirmed that inter-duplex end-to-end stacking is equal to
or even larger than intra-duplex stacking.

In previous works, the authors of the present manuscript
and other groups have developed coarse-grained models in which
DNA duplexes (DNADs) are approximated by hard cylinders (HCs)
and quasi-cylinders with the stacking interactions represented by
two attractive potentials at the two terminals.9–12 These models
well describe the phase behavior of DNADs (e.g., the B-DNA
CGCGAATTCGCG known as the Dickerson dodecamer), exhibit-
ing isotropic, nematic, and columnar phases.

Recent experimental research has demonstrated that self-
assembly and collective ordering are also present in solutions of
ultrashort DNA and RNA oligomers13,14 and even in solutions of
nucleotides.15 Specifically, aqueous solutions of DNA and RNA
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mononucleotide triphosphates (dNTPs) at sufficiently high con-
centrations and low temperatures undergo a phase transition to a
columnar liquid crystal phase.15 This finding marks a difference with
previous observations of liquid crystal ordering, in that here there is
no duplex pre-existing aggregation and ordering. In this case, the
linear aggregation has to rely on the simultaneous occurrence of
pairing and stacking, a behavior still not investigated via computer
simulation.

Atomistic simulations of nucleic acids16–18 are typically used
to study nucleic acids but they are computationally demanding
for investigating liquid crystalline ordering at high concentrations
(e.g. columnar phase). Moreover, atomistic force fields19–22 are
known to not accurately quantify the strength of base stacking
interactions.23–27 Other approaches based on a more coarse-grained
representation of DNA have also been proposed,28–33 but they are
also rather demanding in terms of computer time.

Here, we introduce a coarse-grained model of monomers, rep-
resenting each a mononucleotide, in which we mimic both pairing
and stacking through attractive patches. We show that with this
approach, we can retrieve a phase diagram matching observations
in conditions where both pairing and stacking are essential to the
findings. Pairs of DNA mononucleotides can stack one on top of
each other, forming longer strands and thus inducing the forma-
tion of liquid crystal phases. Unlike DNAD and their modeling with
HC,9,11,12 the cylinder-like self-assembled dNTP aggregates do not
exhibit a nematic phase, featuring instead a direct phase transition
from the isotropic phase into the columnar phase as the temperature
is lowered and the concentration is increased.

The combination of the different mechanisms of assembly,
in which both pairing and stacking are present, and the differ-
ent resulting phase diagrams, missing the nematic phase, call for
the development of computational models able to capture these
features.

II. MODEL AND SIMULATION DETAILS
Based on the model previously developed by some of the

authors of the present paper for DNADs, we model dNTPs as
semi-disk-like polyhedra (SDPs) of diameter D = 2.0 nm and height
h = 0.2 nm decorated with four attractive patches, as shown in
Fig. 1(a). The value of D is a standard approximation for B-DNA
duplexes.10,34 Here, the duplexes might better map into a somewhat
larger cylinder because of the two additional phosphates at each
nucleotide. However, since the internal structure of the observed
columns of pairs is undetermined and since the choice of D = 2
nm is by itself an approximation balancing backbone ridges and
grooves, we opted for the minimalist approach of holding D to
the standard value to keep our model as simple as possible. Any
attempts to account for the additional steric hindrance and elec-
trostatic interactions carried by the triphosphate groups of dNTPs
would require careful atomistic simulations beyond the scope of
this work. More specifically, two patches are placed along the cut
edge of the semi-disk to replicate the base–base pairing interac-
tion, while two additional patches are located at the center of
the two bases of the semi-disk to mimic the stacking attraction
between two dNTPs. In the following, we will use reduced temper-
ature T∗ = kBT/Us and reduced pressure P∗ = Pv0/(kBT), where T
and P are temperature and pressure, respectively, v0 is the volume

FIG. 1. (a) Patchy semi-disk model of a DNA mononucleotides. Each semi-disk-
like polyhedron, with D = 2.0 nm and h = 0.2 nm, has four attractive patches, two
for stacking and two for pairing. (b) Side view of a 12 base pair long DNA double
strand modeled with 24 semi-disks. Small blue spheres highlight the vertices of
the polyhedra.

of an SDP, and Us is the stacking energy. To take into account
the twist typical of B-DNA duplexes and, thus, properly account
for its flexibility, the two stacking patches are placed on each
monomer so as to give rise to a complete revolution of their colum-
nar assembly every ten bases. This is achieved by rotating the two
patches belonging to a single semi-disk (SD) by π/10, as shown
in Fig. 1(a).

For the overlap detection needed in Monte Carlo (MC) sim-
ulations, we employed the Xenocollide algorithm,35 a very efficient
and robust (i.e., ensuring that no overlaps are missed) method that
has been already used in computer graphics engines. Since self-
assembled aggregates of DNA mononucleotides resemble double-
stranded DNA duplexes (DNADs), our SDPs are designed in such
a way that they self-assemble into cylinder-like aggregates [see
Fig. 1(b)]. We adjusted the model parameters to obtain reasonable
values for the persistence and contour length of the self-assembled
DNA duplexes (see Appendix B). These adjustments include a fine-
tuning of the spatial placement and size of the pairing patches, as
well as a refinement of the geometry and position of the stacking
patches.

The phase behavior of DNADs has been successfully repro-
duced by a model based on patchy HCs.10 For example, Dickerson
dodecamers have been successfully modeled as HCs decorated with
two sticky patches on their bases.12 It is expected that if dNTPs are
modeled by exact patchy semi-disks that self-assemble into cylinder-
like aggregates (CLAs), the correct phase behavior can be obtained.
Anyway, we model a dNTP as an SDP composed of a finite num-
ber of vertices, thus differing from an exact semi-disk (i.e., the solid
obtained by taking half of a disk). Hence, an issue to address is to
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estimate the minimum number of vertices of the SDP, which pro-
vides a physical behavior of the system equivalent to that of exact
semi-disks. In Sec. II A, we will discuss a procedure to establish
this minimal number of vertices. Another important issue con-
cerns equilibration times. Starting from a configuration of fully
unbonded SDPs, they have to self-assemble into cylinder-like aggre-
gates and under the right conditions organize into a liquid crystalline
phase. This process can be rather demanding in terms of computing
time; hence, in Sec. II B, we will discuss a procedure to speed up
equilibration.

A. Semi-disks as convex polyhedra
The Xenocollide algorithm’s time complexity for checking the

overlap between two polyhedra scales linearly with the number of
vertices. Therefore, selecting the appropriate number of vertices
involves balancing efficiency and accuracy.

Here, we discuss how to determine the minimal number of ver-
tices of each SDP to provide an accurate description of the physical
properties of the system. Our strategy was to build the equation

FIG. 2. Equation of state of HCs with an aspect ratio of L/D = 3.7. The equation
of state of HCs is compared with the one obtained for HCPs with 16, 24, and 32
vertices.

FIG. 3. Top view of HCPs and two SDPs with a mesh of vertices providing the same
accuracy in their physical behavior. The HCP comprises a total of 32 vertices (16
on the bottom and 16 on the top), while an “equivalent” SDP is composed of 18
vertices.

of state (EOS) of hard convex polyhedra that have a cylinder-like
shape (HCPs) and to compare this EOS with that of real hard cylin-
ders. We carried out MC simulations in the isobaric–isothermal
(NPT) ensemble for HCs of aspect ratio X0 = L/D = 3.7, where L
is their length and D is their diameter. We also simulated HCPs
with the same aspect ratio and composed of 16, 24, and 32 vertices.
Before the production runs, we equilibrated the system for at least
4 × 106 MC steps and we checked the equilibration by inspecting
system density.

Figure 2 shows the resulting EOS (i.e., P∗ vs volume fraction
ϕ) obtained for HCs and HCPs with a variable number of vertices.
It can be seen that a very good approximation of the EOS of HCs is
achieved with V = 32 vertices and that already with 16 vertices, the
qualitative physical behavior is obtained, where in this case, there is
just a slight shift of EOS toward smaller volume fractions. Hence,
in our numerical simulations of SDPs, to achieve the same level of
approximation obtained for HCs with 32 vertices, we use 18 vertices
for SDPs, as shown in Fig. 3.

B. From patchy hard cylinders to patchy semi-disks
In this section, we provide details of the procedure that we

used to speed up the equilibration. The key idea is that if patchy
SDPs self-assemble into cylinder-like aggregates one can first simu-
late patchy HCPs and then use equilibrium configurations of patchy
HCPs—where patchy HCPs are replaced with patchy SDPs—to
investigate the phase behavior of patchy SDPs. According to this
strategy, one has to first check that patchy SDPs fully self-assemble
into CLAs.

To verify that this is the case, we performed simulations of a
system composed of a small number of SDPs (i.e., small enough
to have affordable computational times) and we checked that they
almost fully self-assemble into CLAs. In Fig. 4, we show an initial
isotropic configuration of SDPs and the resulting final (equilibrium)
configuration where all SDPs self-assembled into CLAs.

We simulate patchy HCPs with X0 = 2 decorated with two
patches per base (where the choice of two patches will be justified
later) to obtain N and Col phases. Patchy HCs with X0 = 2 and one
patch per base11,12 exhibit a phase behavior compatible with experi-
ments if a suitable stacking energy is chosen. In order to have a phase
behavior of patchy HCPs (which have two patches per base) identical
to one of patchy HCs (which have one patch per base), it is suffi-
cient to ensure that the stacking free energy of the aggregation of two
patchy HCPs is identical to that of two patchy HCs. The procedure
to achieve this is discussed in detail in Appendix A.

To obtain N and Col configurations, we build the whole EOS
of N = 180 patchy HCPs, which exhibits isotropic (I), nematic (N),
and columnar (Col) phases, as shown in Fig. 5 We verified that by
employing N = 1440 HCPs, the EOSs do not change appreciably,
thus ruling out possible finite-size effects.

To distinguish the various phases, we inspect the radial distri-
bution function and we make use of the nematic S and hexagonal ψ6
order parameters. The nematic order parameter S is defined as the
largest eigenvalue S of the order tensor Q, i.e.,

Qαβ =
1
N

N

∑
i
[

3
2
(ui)α(ui)β −

1
2
δαβ], (1)
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FIG. 4. (a) Starting configuration of the simulation with N = 300 SDPs. Simulation
snapshots after two (b), four (c), and six (d) million MC steps. The SDPs that are
fully paired are shown in blue.

FIG. 5. Equation of state for patchy HCPs with aspect-ratio X0 = 2 and two attrac-
tive patches per base. The simulations employ N = 180 particles and evolve over
4 × 106 MC steps. The squares in red represent the simulations whose final con-
figurations are used for simulating patchy SDPs after the replacement of patchy
HCPs.

where N is the number of particles, αβ ∈ {x, y, z}, and the unit vector
uiα is the component α of the orientation (i.e., the symmetry axis) of
particle i. If S is significantly larger than 0, particles are aligned along
a given axis called the nematic director.

The hexagonal order parameter ψ6 is defined as

ψ6 = ⟨
1
N

N

∑
i=1

1
n(i)

n(i)
∑
j=1

e6iθij⟩, (2)

where n(i) is the number of first neighbors to the molecule i on the
same layer and θij is the angle between the two molecules i and j for
an axis orthogonal to the nematic axis. Finally, the radial distribution
function is defined as follows:

g(r) =
1
ρN
⟨

N

∑
i=1
∑
j≠i

δ(r − (ri − rj))⟩, (3)

where ρ is the density of the system, ri is the position of the ith
particle, and δ(r) is the Dirac delta function.

From these patchy HCP simulations, we selected the state
points shown as red squares in Fig. 5 to obtain nematic and
columnar configurations.

In these configurations, we replaced each patchy HCP with a set
of 24 patchy SDPs, as illustrated in Fig. 6.The replacement of patchy
HCPs with CLAs of patchy SDPs has to be done without introducing
overlaps between SDPs; hence, the SDPs must be entirely contained
within the original cylinder. Moreover, the distance between the
paired bases of the CLA is chosen in such a way that the final height
matches that of the original cylinder. Additionally, the CLA is con-
structed by introducing a rotation of π/5, between successive base
pairs, to ensure that the stacking patches are all bonded. Note that
the adoption of four-patch HCPs, where two patches on one base
are rotated with respect to the ones on the other base, ensures that
after having replaced them with patchy SDPs, the bonds between two
patchy HCPs are preserved.

Figure 7 shows a nematic configuration before [Fig. 7(a)] and
after [Fig. 7(b)] the replacement of patchy HCPs with patchy SDPs
for P∗ = 0.55.

To verify the stability of N and Col, obtained by substituting
patchy HCPs with CLAs composed of paired patchy SDPs, we per-
formed NVT simulations. Since we used N = 180 patchy HCPs to
build the initial configurations, the total number of SDPs in these
simulations was equal to 4320.

FIG. 6. A patchy HCP is replaced by 24 patchy SDPs. The patches of the HCP are
rotated in such a way that they coincide with the ones of the two terminal SDPs
once the replacement has taken place.
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FIG. 7. (a) Nematic phase with cylinders at pressure P∗ = 0.55. (b) Nematic phase
after replacement of patchy HCPs with patchy SDPs.

III. RESULTS
Experiments indicate that the stacking interaction strength is

larger than the pairing interaction strength although a clear analysis
of the interplay, and possibly cooperativity, of pairing and stacking
is still missing. According to Ref. 8, the stacking free energy for A–T
interactions is about three times larger than the pairing free energy.
In our model, the entropic penalties associated with stacking and
pairing—which are of comparable values—are determined by patch
geometry and positioning, in turn, chosen to approximate the per-
sistence length of the SDP aggregates. Thus, by construction, our
model does not enable an easy modulation of entropy variations.
We instead differentiated the enthalpic values by setting a stacking
energy two times larger than the pairing energy. This “moderate”
choice, motivated by the need to avoid lowering too much the
pairing free energy, appears, to further checks, not to affect signif-
icantly the phase diagram (see Sec. III A for a further discussion). As
an initial configuration for simulating patchy SDPs, we used those
corresponding to the red squares in Fig. 5.

The patchy SDPs and their stability are studied by carry-
ing out an MC-NVT simulation at various reduced temperatures
T∗ = [0.10, 0.15] for each starting configuration. We first note that
for all temperatures investigated, the initially nematic phases are
never stable and the system always becomes isotropic, whereas the
columnar configurations are stable at low temperatures. Figure 8

FIG. 8. Nematic (green crosses) and hexagonal (red squares) order parameters
of patchy SDPs at ϕ = x0.357. The radial distribution function is shown for the
columnar phase at the temperature T∗ = 0.100, T∗ = 0.106 and T∗ = 0.110.

shows the nematic and columnar order parameters for two start-
ing configurations, one nematic and the other one columnar. In this
figure, we also show the pair distribution functions of the columnar
case on the plane orthogonal to the nematic axis; note the decrease
in hexagonal ordering as the temperature increases.

A. Comparison with experiments
Here, we compare simulation results with experimental find-

ings on dTTP/dATP mononucleotides.15 We expressed system con-
centration c of computer simulations in mg/ml, where the conver-
sion from volume fraction ϕ to concentration c in mg/ml can be
obtained as follows:

c =
NmN

V
, (4)

where N represents the number of semi-disks within the simula-
tion box’s volume V and mN denotes the molecular mass of a single
nucleotide, measured in Daltons (Da). For dTTP and dATP fila-
ments, the molecular masses are mN = 482.2 Da and mN = 491.2 Da,
respectively. Since the experimental results refer to a mixture of
dTTP and dATP filaments, we consider for the conversion the
average molecular masses of the two species, i.e., mN = 486.7 Da.
Figure 9, shows the experimental findings of dATP/dTTP fila-
ments15 together with MC simulation results of patchy SDPs. Above
a concentration of about 600 mg/ml, simulations exhibit a phase
transition from I to Col, whereas at lower concentrations, the system
is isotropic for all temperatures investigated.

This phase behavior well matches experimental observations
even in the shape of the thermal stability of the Col phase. To check
the stability of these results with respect to alternative choices of
pairing energy, we carried out simulations for c = 670 mg/ml at
T∗ = 0.1 and 0.104 (the largest ones at which a stable Col phase is
found) with stacking energy 10 times larger than pairing energy (i.e.,
Up = Us/10, where Up is the pairing energy), finding that the Col
phase indeed remains stable.

The absence of a nematic phase in the phase diagram of patchy
SDPs can be rationalized through Wertheim-like theory developed
in Ref. 10. If we consider self-assembling bifunctional HCs of length
L and diameter D, they will form a polydisperse set of polymers
(e.g., see Ref. 11). We start noting that in our present case, the
self-assembled structure composed of patchy SDPs can be regarded
as a set of 12 disks formed each by two paired patchy SDPs,
where the stacking free energy of two disks is equal to that of two
patchy HCPs.

According to the theory, the average number M of HCs belong-
ing to a polymer at a given concentration and temperature in the
isotropic phase is

M(ϕ, T) =
1
2
(1 +

√

1 + 4ϕekIϕη(ϕ)+βΔFb), (5)

where kI is a geometric factor that does not depend on HC length
L, η(ϕ) = 1

4
4−3ϕ
(1−ϕ)2 is the Parsons–Lee factor, and ΔFb is the stacking

free energy. If we replace each HC with a set of Nsd disks of diameter
D and length L/Nsd, since the stacking free energy between two disks
is still ΔFb (since both stacking energy and bonding entropy are the
same), we can expect M to be unchanged. Anyway, the average con-
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FIG. 9. Phase diagram of dTTP/dATP. The square and round symbols refer to the experimental results, while the triangular symbols refer to the results obtained from the
simulations. The orange area indicates where the columnar phase is present.

tour length in the system is now L
Nsd M , while in the previous case,

it was L
M . Hence, the average contour length of polymers becomes

Nsd times shorter. This theoretical result implies that at a given
temperature, the I–N transition of patchy SDPs shifts to higher con-
centrations, thus making it hindered by the columnar phase, whose
phase boundaries would not change much since they are mostly
driven by packing rather than elongation.

IV. CONCLUSIONS
Our study is aimed at investigating the interplay between

pairing and stacking interactions in driving the self-assembly and
phase behavior of DNA mononucleotides in concentrated aqueous
solutions. In our extremely coarse-grained model, dNTPs are repre-
sented as SDPs decorated with attractive patches designed to mimic
both base pairing and stacking interactions. With this approach,
we obtained a phase diagram that, when properly scaled on the
energy axis, well matches the experimental observations. In particu-
lar, the phase diagram of SDPs exhibits the liquid crystal columnar
phase but not the nematic phase, possibly because of the insufficient
contour length of the aggregates. Our study enlightens the coopera-
tive role of pairing and stacking interactions and enables providing
quantitative estimates of them.

Overall, our approach provides a very affordable and efficient
computational tool for studying the self-assembly of DNA mononu-
cleotides in which the interaction parameters are easily changed.
This approach, based on MC simulations of hard polyhedra, can
be straightforwardly modified to mimic, within the same extremely
coarse-grained approximation, the assembly of macromolecules of

different shapes, including proteins, peptides, and nucleic acids with
different association modes, such as G-quadruplexes.36
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APPENDIX A: STACKING FREE ENERGY

Here, we discuss the calculation of the stacking free energy of
HCPs decorated with four patches so that it is identical to the one
previously used for bifunctional HCs.11

The stacking free energy is defined as

βΔFb = ln [2
Δ
vd
], (A1)

where

Δ =
1
4
⟨∫

Vb

[e−βV(r12 ,Ω1 ,Ω2) − 1]dr12⟩, (A2)

with r denoting the vector connecting the centers of mass of
particles 1 and 2, Ωi representing the orientation of the ith par-
ticle, and ⟨⋅ ⋅ ⋅⟩ indicating the average taken over all directions, vd
stands for the volume of the considered object, while Vb represents
the bonding volume. For the calculation of Δ through an hit-and-
miss MC, we use the same procedure described in Ref. 12, where
one inserts with random positions and orientations two particles N
times into a box of volume V . In the case of attractive patches, it
simplifies, and for one patch per base, one has

Δ1 =
VN1

4N
(eβu0 − 1), (A3)

where u0 is the bonding energy and N1 is the number of times that
the two particles are bonded. For two patches per base, one has

Δ2 =
V

4N
(N1(eβu′0 − 1) +N2(e2βu′0 − 1)), (A4)

where u′0 is the bonding energy and N1 and N2 represent the occur-
rences of particles forming one or two bonds, respectively. Given u0,
one can find u′0 such that ΔFb(Δ1) = ΔFb(Δ2).

APPENDIX B: PERSISTENCE LENGTH

The persistence length is a fundamental parameter in polymer
physics that quantifies the stiffness of a polymer chain. It represents
the length over which the direction of the polymer chain remains
correlated. The correlation function C(k) is defined as

C(k) = ⟨cos θi,i+k⟩ = ⟨u⃗i ⋅ u⃗i+k⟩, (B1)

where u⃗i are unit vectors connecting each pair i of semi-disks along
the filament, separated by k semi-disks. This function is typically
expected to decay exponentially with the characteristic persistence
length parameter, lp,

C(k) = ⟨cos θi,i+k⟩ = e−k/lp. (B2)

If the polymer under consideration has a high persistence length and
therefore the angle θ between two contiguous monomers is close to

zero, an approximation can be made in Eq. (B2). Considering a short
section of the filament, s≪ lp, we have

⟨cos θ(k)⟩ ≈ 1 −
k
lp

. (B3)

Since the angle θ is small, cos(θ(s)) ≈ 1 − θ2
(s)/2, leading to

⟨θ2
(s)⟩ ≈

2s
lp
→ lp ≈

2s
⟨θ2
(s)⟩

. (B4)

Therefore, the persistence length can be calculated by measur-
ing the angle between first-neighboring monomers. This method
offers a significant advantage over exponential fitting as it eliminates
the need to simulate filaments close to the persistence length. We
validated this approximation by comparing the results with those
obtained using the exponential fit method, finding that for filaments
with lp ≥ 15, the error is less than 1%.

The size and position of the stacking and pairing patches can be
tuned to match the persistence and contour length of the CLAs with
that of real DNA duplexes (DNADs). Experimentally, DNADs have
a persistence length of ∼50 nm or 150 base pairs of DNA,37 while
the length of a DNAD composed of 12 base pairs is about 4 nm. To
estimate the persistence length in the case of CLAs of SDPs, the first
neighbor method is used along with Eq. (B4). Initially, we studied
how the persistence length varies with the position of the stacking
patch. The position of this patch is indicated by k, where k ⋅ Rsd
indicates the distance of the patch from the center of the SDP. Con-
sequently, if k = 0, the patch will be at the center of the SDP, while if
k = 1, the patch will be on its rim. The graph of the persistence length
as a function of k is shown in Fig. 10. Being rsd = D/2, the stacking
patch is positioned at k = 0.35rsd, which is the minimum distance
required to prevent filament branching.

Hence, the size of the stacking patch was used as a parameter to
achieve the desired persistence length, as shown in Fig. 11. By choos-
ing a stacking patch radius of 0.14 nm, a persistence length of ∼150
base pairs is achieved.

FIG. 10. Persistence length lp in units of base pairs as a function of the position
k of the stacking patch relative to the center of the SDP. The radii of stacking and
pairing patches radii are 0.11 and 0.05 nm, respectively.
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FIG. 11. Persistence length lp in units of base pairs as a function of the radius of
the stacking patch. The pairing patches radius is equal to 0.05 nm.

Then, we calculate the total length of a strand composed of 12
base pairs. Experimentally, a DNA strand of 12 base pairs measures
∼4 nm in length. The strand length is examined as a function of the
SDP height. Given the constraint of the maximum stacking patch
dimension and the necessity of a stacking patch radius of 0.14 nm
to achieve a lp value of 150 bases, SDPs with a height of h = 0.2 nm
are selected to ensure proper strand flexibility. This method results
in a strand length of ∼4.4 nm, which is reasonably close to the
experimental value of 4 nm.
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