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We study, via Brownian dynamics simulation, the kinetics of formation of branched loop-less

structures for a mixture of particles with functionalities of two and three, the three-functional ones

providing the branching points in the resulting network. We show that for this system, by combining

the appropriate Smoluchowski rate equations, including condensation and fragmentation terms, with

the thermodynamic perturbation theory of Wertheim, it is possible to provide a parameter-free

description of the assembly process, even in the limit of irreversible aggregation (low T). Our work

provides evidence of a connection between physical and chemical gelation in low-valence particle

systems, properly relating aging (or curing) time with temperature.
1. Introduction

Irreversible aggregation is the process by which particles stick

together, driven by attraction energies u0 much larger than the

thermal energy kBT. The aggregate often results in a fractal

structure, whose dimension is controlled by the kinetics of the

process.1 Irreversible aggregation takes place not only in

colloidal systems but also in molecular ones, when molecules

with a finite functionality f react together, progressively forming

larger and larger clusters, ending in a spanning structure.2 In this

last case, the process is named chemical gelation (or condensa-

tion). During irreversible aggregation, bonds – once formed –

never break, and the final structure of the aggregates results from

a delicate balance between the cluster-size dependence of the

diffusion process and the probability of irreversible sticking.

Recently, due to its importance in biological, technological and

biomedical applications, the physics behind the formation of

equilibrium branched structures and networks, starting from

monomeric unassembled initial states, is receiving considerable

interest.3–9 In reversible aggregation, bond-breaking events are

possible and the equilibrium state is characterized by a distribu-

tion of clusters (which can even be of infinite size, i.e. percolating)

which continuously restructure themselves on a time scale

controlled by the bond lifetime. Theoretical studies are searching

for a general approach to describe both the thermodynamics and

the kinetic processes leading to self-assembly over the whole

range of densities and temperatures,10–12 attempting to extend to

equilibrium branched systems the work developed in recent

decades for the case of self-assembling equilibrium polymers and
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worm-like micelles.13–15 Numerical studies of the self-assembly of

patchy16 and functionalized particles are also contributing to the

quest for the essential features behind the formation of equilib-

rium branched structures and gels. Off-lattice models for ther-

moreversible gels have been recently introduced,17–21 confirming

that the formation of equilibrium branched (and percolating)

structures is favored by the limitation in the maximum number of

possible inter-particle bonds (which in analogy with the func-

tionality in chemical gels we also call f), i.e. by the limitation of

the valence, brought by directional interactions (e.g. dipolar22 or

quadrupolar23) or by localized patchiness. For particles exhibit-

ing a small number of independent patchy interactions, funda-

mental progress has been made based on the Wertheim theory.24–26

For small f values,9,19 the Wertheim theory predicts quite accu-

rately the T and r dependence of the equilibrium bond probability

and the region of gas–liquid instability in the T–r plane, confined

at very small densities.19

In a recent work, some of us have discussed the possibility of

connecting time in irreversible aggregation to temperature in

equilibrium clustering, based on the behavior of a specific model

of ellipsoidal particles interacting via localized interactions,

explicitly designed to model chemical gelation.27,28 Here we

study in detail the aggregation process of a binary mixture of bi-

and tri-functional colloidal spherical particles over a wide range

of densities. Differently from the previous case, the thermody-

namic equilibrium properties of this model can be calculated

analytically without fitting parameters,9 providing a test-case

for the ideas proposed in ref. 28. We further merge the

description of the aggregation kinetics modeled via Smo-

luchowski equations (incorporating breaking terms) with the

Wertheim equilibrium liquid approach to provide a parameter-

free description of the kinetics of cluster formation in the

presence of branching. Our work shows that for a realistic

model of functionalized (or patchy) particles, theoretical

predictions are able to describe with great accuracy the aggre-

gation process of limited-valence particles over a wide range of

densities and temperatures.
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II. Theory and simulations

The aggregation kinetics have often been formally modeled in

terms of Smoluchowski rate equations, including condensation

and fragmentation terms, where the relative weight of diffusion

and binding enters via the expression of the bonding rate

constants.29–31 The equations provide the time evolution of the

number Nk(t) of clusters of size k observed at time t, assuming an

expression for the rate constant of bonding ki,j
bond and breaking

ki,j
break for all the different cluster sizes i and j. For a one-

component system of particles of functionality f (the generaliza-

tion to a binary mixture of particles with different functionalities

is straightforward and it is omitted for clarity’s sake – it is enough

to replace f in the results with the system’s average functionality
�f ), assuming equal reactivity of all sites, the evolution of Nk is

given by

dNk

dt
¼ 1

2

X
iþj¼k

�
k

i;j
bond

V
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i;j
breakNiþj

�

�
XN
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NkNj � k

k;j
breakNkþj
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where V is the volume, ki,j
bond is the rate of forming a cluster of size

i + j joining two clusters of size i and j, ki,j
break is the rate of breaking

a cluster of size i + j into two clusters of size i and j. The expressions

for ki,j
bond and ki,j

break incorporate the physics of the aggregation

process. Under the strong assumptions that the bond-formation

contribution to the rate is dominant compared to that of diffusion,

and that particles with functionality f form loop-less clusters, it is

possible to provide explicit expression for ki,j
bond and ki,j

break and to

solve eqn (1) analytically. It is important to stress that these two

assumptions are not trivial at all and somehow depend on the

microscopic dynamics and on the range of the site–site interac-

tion. Indeed, only when the site–site interaction is short-ranged,

the probability that two sites on distinct clusters feel each other, in

the absence of any activation barrier, is particularly small. As

a consequence the time requested to form a bond between two

nearby clusters can be significantly longer than the time requested

for two clusters of any size to diffuse over distances comparable to

the inter-cluster distances, and the size dependence of the diffusion

coefficient can be removed in the expressions for ki,j
bond and ki,j

break.

Regarding the absence of bond-loops in the aggregates, we note

that both the fact that a small fraction of particle orientations

allows the particles to bond and the fact that the average func-

tionality is very small are important elements favoring the

formation of loop-less aggregates.9,32 Specificity in the bond

interaction and limited valence are thus crucial for the validity of

the above assumptions, according to which ki,j
bond is proportional

to the number of distinct ways a cluster of size i can bond a cluster

of size j, and ki,j
break is proportional to the number of distinct ways

a cluster can break into two clusters of size i and j, the coefficients

of proportionality ksite
bond and ksite

break being respectively the rate

constants of forming and breaking a single bond.29 Specifically,

one has

ki,j
bond ¼ ksite

bond sisj

where si h (f � 2)i + 2 is the number of unreacted sites on

a cluster of size i, and
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break
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where

ui ¼
ð fi � iÞ!

ð fi � 2i þ 2Þ! i!
:

The solution of eqn (1), with initial conditions Nk(0) ¼ Ndk1

(i.e., N monomers at time t ¼ 0) and the Flory post-gel

assumption, first provided by van Dongen and Ernst,29 is

NkðtÞ ¼ N
f ½1� pðtÞ�2

pðtÞ

h
pðtÞ½1� pðtÞ� f�2

ik

uk (2)

where p(t) – the time-dependent bond probability (number of

formed bonds over the maximum possible number of bonds) –

satisfies

dp

d
�
tk site

break

� ¼ �p

"
1� r f

k site
bond

k site
break

ð1� pÞ2

p

#
(3)

with r ¼ N/V the particle number density.

Equilibrium (i.e., dp/dt ¼ 0) imposes a relation between the

bonding and breaking coefficients ksite
bond and ksite

break controlled by

the equilibrium (t / N) value of p, peq

r f
k site

bond

k site
break

¼ peq�
1� peq

�2
(4)

The solution of eqn (3) with p(0) ¼ 0 and p(N) ¼ peq is

pðtÞ ¼ peq

1� e�Gt

1� p 2
eqe�Gt

(5)

with G ¼ rfksite
bond(1 � peq)2/peq or, by virtue of eqn (4), G ¼ ksite

break.

In the limit of absence of breaking processes (ksite
break / 0 or

equivalently peq / 1) – irreversible aggregation – the time-

dependent solution Nk(t), expressed in terms of p is still given by

eqn (2), while the time evolution of p, eqn (5), with the initial

condition p(0) ¼ 0 reduces to

pðtÞ ¼ f rk site
bondt

1þ f rk site
bondt

(6)

The analytic solution (eqn (2)) of the Smoluchowski equations

is particularly interesting, since the time dependence of Nk(t) is

entirely contained in p(t) – therefore, the cluster size distribution

only depends on the value of the bond probability. At each time t

during the equilibration process, in which p(t) progressively

increases from zero to peq, the cluster size distribution is pre-

dicted to be identical to that observed in equilibrium when the

temperature T is such that the equilibrium bond probability

peq(T) assumes the value p(t). This means that the aging

dynamics takes place along a sequence of equilibrium states and

the progression of time can be properly seen as a progressive

thermalization of the system toward equilibrium. This is still

valid also in the case of a quench performed to such a low T that

breaking processes become impossible and irreversible aggrega-

tion takes place at all times.

To test these predictions, we perform Brownian dynamics

simulations33 of a binary mixture of 2835 particles with
This journal is ª The Royal Society of Chemistry 2009



functionality f ¼ 2 and 165 particles with f ¼ 3 (average func-

tionality �f ¼ 2.055) at several r and T values, a model whose

equilibrium properties have been well characterized recently.9

Particles are hard spheres of diameter s ¼ 1 whose surface is

decorated by two or three interacting sites. Sites on different

particles interact via a square-well potential of depth u0 ¼ 1 and

interaction range d¼ 0.119s. The high-T limit of this model is the

hard-sphere fluid. On cooling, particles bond to each other,

forming polydisperse clusters which then percolate and assemble,

on further cooling, into a network of long-living bonds. Due to

the negligible presence of rings of bonds, the distribution of

cluster sizes in equilibrium is quite accurately described by the

Flory–Stockmayer statistics,9 i.e., by eqn (2) with p(t) substituted

with peq. The phase diagram of the system includes a region of

thermodynamic instability at small densities, due to the onset of

gas–liquid separation, and a percolation line defined by the value

peq¼ 0.9256.9 We study the evolution of the system at constant r,

after a T-jump (taking place at t ¼ 0) starting from a high-T

unbonded configuration. We average over ten independent

realizations to decrease the statistic error. Temperature is

measured in units of u0 (Boltzmann constant kB ¼ 1), while time

is measured in reduced units, such that t ¼ 1 corresponds to the

time requested to diffuse a particle diameter (so as to eliminate

any trivial dependence on the T-dependence of the bare diffusion

coefficient or, equivalently, of the solvent viscosity). Since the

site–site interaction potential is of a square-well form, there is no

ambiguity on the number of bonds in the system (proportional to

the potential energy) and hence it is straightforward to evaluate

from the simulation data the time dependence of the bond

probability p(t), to be compared with the theoretical predictions.

The equilibrium properties of this model are well described by

the parameter-free Wertheim theory.9 Here we exploit the equi-

librium condition expressed in eqn (4) to provide a connection

between the kinetic approach of Smoluchowski and the theory-

of-liquid approach based on the thermodynamic perturbation

theory of Wertheim and develop a parameter-free description of

the kinetics of the assembly process. Indeed, the Wertheim theory

provides a parameter-free expression for peq(T,r) and hence for

the rhs of eqn (4), as
Fig. 1 (a) Evolution of the bond probability – for the case r ¼ 0.0382 – at

irreversible aggregation case T ¼ 0.01. Lines are solutions of the Smoluchows

ksite
break � exp(– bu0). (b) Evolution of the bond probability following a quen

Smoluchowsky equations for the reversible aggregation. The fitting constan

dependence in ksite
break.
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�2
¼ r f DWðrÞ

�
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�
(7)

where DW(r) can be calculated analytically as integral of the

Mayer function weighted by the hard-sphere reference radial

distribution function (as discussed in detail – for the present

model – in ref. 34). In terms of s and d one finds (indicating with

f ¼ ps3r/6 the packing fraction),

DW ¼
pd4ð15sþ 4dÞ=30s2

ð1� fÞ3
�
�

1� 5

2

�
3s2 þ 8dsþ 3d2

�
sð15sþ 4dÞ f

� 3

2

�
12dsþ 5d2

�
sð15sþ 4dÞ f2

�
(8)

This gives us the opportunity to predict the T and r dependence

of the ratio between ksite
bond and ksite

break as

k site
bond

k site
break

¼ DWðrÞ
�
ebu0 � 1

�
(9)

and, hence, except for a constant (which fixes the time scale and

depends on the chosen particle dynamics) to provide a parameter-

free description of the evolution of the entire aggregation process.

III. Results

Fig. 1 shows the time dependence of p following the T quench,

starting from absence of bonds and approaching peq. Fig. 1(a)

refers to the case of different values of T for the same r, while

Fig. 1(b) refers to the case of different initial densities brought to

the same final T. The simulation data are compared with the

theoretical expressions, by only fitting the time-scale factor

ksite
break, shown in the two insets. In both cases, eqn (5) provides an

excellent description of the entire kinetic process. Since the

breaking process is local and breaking requires only a potential

energy fluctuation of the order of the well depth, ksite
break does not

depend on r but it depends on T as ksite
break � exp(�bu0). Data

shown in the insets of Fig. 1 fully confirm this expectation. Since

aggregation takes place when bu0 [ 1, (indeed T < 0.1 in the

investigated temperature region), the previous data and eqn (9)
three different temperatures (T ¼ 0.09, T ¼ 0.08, T ¼ 0.065) and for an

ky equations. The fitting constant is reported in the inset, suggesting that

ch to T ¼ 0.06 at several different densities. Lines are solutions of the

t is reported in the inset, suggesting that there is no significant density
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Fig. 2 Evolution of the bond probability p(t) in an irreversible aggre-

gation process (quench to T¼ 0.01) for several different starting densities

r as a function of the variable �f rDWt h x. The overlap of all set of data

on the master curve p ¼ ax
1þax

(see eqn (6)) confirms that ksite
bond(r) is indeed

proportional to the Wertheim DW (the proportionality constant is

a z 120). The dashed line indicates the percolation threshold p¼ 0.9256.

The inset shows the density dependence of DW (eqn (8)).
suggest that ksite
bond� DW(r), i.e. does not depend on T and its only

density dependence arises from DW.

Fig. 2 shows the time evolution of p(t) following a quench to

a very small temperature, T ¼ 0.01 – equivalent to an evolution

process where bond-breaking events (� exp(�bu0)) are not

encountered – i.e. the case of irreversible aggregation (chemical

gelation) described by eqn (6). Data at different densities collapse

on a master curve when reported as a function of �f rDWt, as

predicted on the basis of eqns (6) and (9). Interestingly, the

solution given by eqn (6) properly describes the evolution of the

bonding probability even after the gel point, when a spanning

cluster is present in the system.

A detailed analysis of the configurations allows us to test also

the relevant theoretical prediction that the structure of the system

during equilibration follows a sequence of equilibrium states.

Fig. 3 shows the cluster size distribution Nk and the static

structure factor Sq
35 of the system in equilibrium at four distinct

values of T and fixed r, and the corresponding quantities eval-

uated at selected times during the equilibration process. The
Fig. 3 Comparison between equilibrium (full lines) and aging (symbols) struc

0.09, T¼ 0.08 and T¼ 0.07. The aging data refer to different equilibration pro

is composed only by monomers, to several different final temperatures indica

chosen in such a way that p(tw) ¼ peq(T). (Left) Cluster size distributions Nk. D

the different sets. (Right) Static structure factor Sq. Data have been progress

2574 | Soft Matter, 2009, 5, 2571–2575
specific time value tw is chosen in such a way that p(tw) ¼ peq(T).

In all cases, the equilibrium structure and connectivity of the

system is perfectly reproduced during the equilibration process,

confirming that in this system the equilibration process proceeds

via a progressive thermalization of the configurations, in agree-

ment with the theoretical predictions.
IV. Discussion and conclusions

The present study demonstrates that, for the case of aggregation

processes in which bond-loops (in finite size clusters) can be

neglected, a complete theoretical description of the kinetics of

self-assembly can be obtained via a combined use of the Smo-

luchowski and of the Wertheim approaches. The formation of

a branched network proceeds via a sequence of equilibrium steps,

even in the deep quench limit, where the model behaves as in

a irreversible (or chemical) gelation process. Hence, equilibrium

properties of ‘‘physical’’ gels in which bond-loops can be

neglected present strong analogies with the evolution and final

configurations of ‘‘chemical’’ gels.

It is important to discuss the reasons behind the possibility of

properly mapping equilibrium and aging properties, with the aim

of assessing the conditions of validity of such a mapping. Indeed,

the irreversible aggregation process of spherically interacting

particles does not take place along a sequence of equilibrium

steps, as clearly revealed by the fractal structure of the aggregates

resulting from diffusion-limited or reaction-limited aggregation

processes.1 Recently, evidence has been provided that, for

colloidal particles interacting via depletion interactions, the

aggregation process is driven by a phase separation36 and that the

structure of the system is not homogeneous. The mapping dis-

cussed in this article holds only in the limit of loop-less aggre-

gating clusters, and provided diffusion does not play a relevant

role in the rate constants. This imposes a condition on the

average valence of the particles, since it has been shown that the

absence of loops is enhanced by the small valence. The reason for

this, which has been investigated in the context of equilibrium

properties,9,32 can be found in the different entropic cost of

closing a loop of bonds, which becomes larger and larger on

increasing the length of the bifunctional chains connecting the

three-functional branching points. In particular it is shown32 that
tural properties for r¼ 0.0038. The equilibrium data refer to T¼ 0.1, T¼
cesses, always starting from the high temperature T¼ 1 where the system

ted in the labels. Data refer to different times following the quench, tw,

ata have been multiplied progressively by a factor 10 to avoid overlap of

ively shifted by +1.
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systems with average functionality �f ( 2.8 (as it is the case in this

article) have a negligible number of loops and fulfil rather well

the mean-field predictions. For higher valence systems the

number of loops becomes non-negligible and deviations from the

mean-field results are observed. The other important condition

for the validity of the mapping is the possibility of neglecting the

diffusional component in the aggregation and fragmentation

rates, i.e. the so-called chemical limit of the aggregation

process.37 Here the chemical limit is set not by the presence of an

activation energy for bonding (as in the case of most aggregation

processes where the barrier arises from electrostatic repulsion)

but again by an entropic barrier for bonding, set by the difficulty

in interacting with the right orientation to form a bond. For this

to happen the range of the attraction between sites must be small

enough so that the time it takes two colloids to diffuse and reach

a bonding-compatible relative distance is negligible compared to

the time requested to collide with the correct orientation for

bonding. In this case, the entropic search of the correct orien-

tation for bonding is controlling the bonding rate constant. Once

more, the validity of the chemical limit is enhanced by the small

valence, which makes it harder to properly orient the colliding

clusters for bond formation. Interestingly enough, in the present

system such a condition remains valid even close to percolation

and beyond. This apparently puzzling phenomenon can be

tentatively rationalized by noting that the increased differences

into diffusional times is contrasted by the progressive decrease in

the number of unreacted sites, which determines an increase also

in the time for successful bond formation.

The proposed mapping between equilibrium and aging prop-

erties in small valence systems makes it possible to convert aging

(curing) time with an effective temperature and envisage the

evolution of a chemical gel as a progressive cooling of the cor-

responding physical model, i.e., as a progressive path in the phase

diagram of the physical model. An interesting case is that offered

by the possibility that during the formation of a chemical gel the

corresponding thermodynamic path crosses the gas–liquid

coexistence, resulting in an inhomogeneous arrested structure.

The stability and structural properties of the final state of the

chemical gels will be in this case connected to the thermodynamic

properties and the phase diagram of the corresponding physical

model. Small limited-valence colloidal systems38 are thus excel-

lent candidates for testing the analogies between equilibrium and

aging properties and the connection between gel stability and

colloidal gas–liquid phase separation.
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