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Abstract
We investigate the kinetics of self-assembly by means of Brownian dynamics simulation based
on a idealized fluid model (two ‘sticky’ spots on a sphere) in which the particles are known to
form into dynamic polymer chains at equilibrium. To illustrate the slow evolution of the
properties of these self-assembling fluids to their equilibrium assembled state values at long
times, we perform Brownian dynamics simulations over a range of quench depths from the high
temperature unassembled state to the low temperature assembled state. We investigate the time
dependence of the average chain length (cluster mass), the order parameter for the assembly
transition (fraction of particles in the chain state) and the potential energy of the fluid. The rate
constant governing the self-assembly ordering process depends both on kinetic-related factors
(the particle hydrodynamic radius and the fluid viscosity) and on thermodynamic energetic
variables governing the self-assembly transition (i.e., the entropy and enthalpy of assembly).
We provide evidence that an essentially parameter-free description of the polymerization
kinetics can be formulated for this model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is growing interest in exploiting self-assembly to create
functional nanostructures for material and biological science
applications [1–27]. Recently, there have been numerous
experimental studies [1–5, 14, 28–30] aimed at creating model
self-assembling systems, simulations that search for essential
physical features governing the form of self-assembly and the
dynamics of the assembly process [6–13, 31–35] and there are
ongoing efforts to develop improved analytic theories of self-
assembly that can provide a meaningful guide to experimental
and simulation investigations in this area [36–41].

Although there have been many studies of self-assembly,
our understanding of this phenomenon remains rudimentary
in comparison to thermodynamic transitions such as liquid
phase separation and crystallization. Particular progress
has been made in developing predictive molecular theories
of equilibrium polymerization (equilibrium self-assembly of
polymer chains) in the absence of solvent (or equivalently
in solution of associating species where solvent is treated
as a continuum) based on Wertheim theory [42–44] and
the predictions of the equilibrium properties of this class of

associating fluids has been strikingly confirmed by Monte
Carlo simulation [45]. The problem can be formulated
equivalently in terms of association–dissociation equilibria and
lattice model computations based on this framework have also
been validated for both chain assembly and phase separation
in the Stockmayer fluid [46]. Fundamental progress has also
been made based on the Wertheim theory [42–44] for particles
exhibiting multifunctional (patchy) interactions which are
necessary for describing branched equilibrium polymers and
the thermally reversible gelation in multifunctional associating
fluids. Wertheim theory has also provided insights into
the phase separation that occurs in these multifunctional
fluids, even in the absence of isotropic van der Waals
interactions [41, 47].

Despite the progress, the models are idealized and
there is the need for more theoretical development for even
these simplest models of self-assembly. The molecular
interaction models of self-assembly do not yet include many
effects that are prevalent in real fluids exhibiting equilibrium
polymerization, such as ring formation in unbranched chains,
loop formation in branched polymer structures, activation
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and inhibition of polymerization by chemical initiators
and inhibitors, thermal activation of polymerization and
photoactivation of polymerizing species. These constraints
can have a large impact on the thermodynamics properties of
polymers exhibiting equilibrium polymerization [36–39].

We also note that the recent advances in modeling the
equilibrium polymerization of linear and branched polymers in
freely-associating [37] particle systems (unconstrained by the
factors just mentioned) involve only the equilibrium properties
of these fluids and that rather little is firmly established about
the dynamics of even these simple associating fluids. The
present work directly addresses this problem and thereby
focuses directly on developing a molecular understanding of
the self-assembly of linear equilibrium polymer chains as a
direct extension of our previous work describing the basic
equilibrium properties of these model fluids.

There are notable previous efforts at modeling the
dynamics of chain self-assembly. Based on early analytic work
by Cates and co-workers [48, 49] on modeling equilibrium
chain polymerization using statistical arguments, Milchev and
Rouault [50–52] performed lattice bond-fluctuation Monte
Carlo simulations of equilibrium polymerization where both
equilibrium and dynamical properties were considered. These
works provide insights into the role of excluded volume
interactions in the self-assembly process and a check on
the scaling arguments by Cates and co-workers to describe
the effects of these interactions on polymerization properties.
Milchev and Rouault [50–52] also made pioneering numerical
studies of the growth of the average chain length following
a stepwise change in thermodynamic conditions to check the
mean field dynamical theory of Cates and co-workers [49].
These simulations confirmed the main features of Cates theory.
Simulations were formulated in terms of Monte Carlo move
rules for particle displacements and particle bonding and
breaking so that the rate parameters of these simulations
are not fully expressed in terms of molecular parameters.
In more recent work, Ryckaert et al [53] followed up on
Milchev’s simulations using off-lattice Brownian dynamics
and confirmed the same pattern of behavior found in the lattice
model calculations. These simulations also involved adjustable
rate parameters for the bonding–dissociation process. While
these former studies of the dynamics of self-assembly provide
much information about the thermodynamics and dynamics
of polymer self-assembly, they do not provide a predictive
molecular model framework and the direct validation of
the molecular model by simulation that we seek. We are
concerned with making predictions, without any free molecular
parameters, of the dynamic properties of equilibrium polymers
since we anticipate that such a description will provide a deeper
understanding of the self-assembly more broadly.

The study of the dynamics of even the simplest self-
assembling systems entails a number of distinct dynamical
effects that need to be understood in order to exert effective
control over the self-assembly process. First, there is the
basic issue of characterizing the rate at which self-assembling
systems form or disintegrate by jumping the thermodynamic
conditions from thermodynamic conditions governing the
disordered (unassembled) and ordered (assembled) states, and

vice versa, respectively. Self-assembly does not normally
conform to a first or second order phase transition, but clearly
this transformation corresponds to a type of thermodynamic
transition in the broad sense. What is the kinetics of this
ordering process? The next level of questions concerns the
description of stress, dielectric and other relaxation processes
in these dynamically heterogeneous fluids. These questions are
clearly basic to understanding static and dynamic properties
of associating fluids. We anticipate that ideas that have been
developed in the dynamic critical phenomena of complex
fluids, such as the mode coupling theory of critical dynamics,
can be usefully adapted to this problem when large scale
structures are formed in the assembly process. Finally, at
an even higher complexity level, equilibrium polymers such
as actin and synthetic equilibrium polymers [54] can exhibit
wavefronts of self-assembly under non-equilibrium conditions
that are similar in character to the formation of crystallization
fronts in the sense that these waves develop progressively with
a constant velocity as a locally ordered region grows into
an unstable surroundings. The theoretical description of this
phenomenon, which underlies many biological processes such
as cell movement through actin polymerization, in terms of
molecular parameters clearly offers many challenges for future
research.

In the present work, we focus on the most basic problem
of this kind, characterization of the dynamics of self-assembly
under uniform thermodynamic conditions that are assumed
to exist following a temperature jump. In section 2, we
briefly describe our minimal molecular model of fluid which
exhibits reversible equilibrium polymerization upon cooling.
This model, which is the same as described by us in a previous
work focusing on the equilibrium properties of equilibrium
polymerization [45], basically involves hard spheres with two
sticky spots at their poles that cause the particles to chain
at low temperatures. Since we are interested in describing
the dynamics of these fluids here, we introduce Brownian
dynamics description of the fluid dynamics in section 3. This
modeling does not include intermolecular and intramolecular
hydrodynamics, so the chain dynamics in our fluid corresponds
to idealized Rouse chain dynamics. However, the modeling
does include self-friction effects associated with the chain
beads so that the dynamics depends on the fluid viscosity
through the bead friction coefficient (or equivalently through
the bare monomer diffusion coefficient). We then develop a
mean field Smoluchowski kinetic model of the chain assembly
dynamics in section 4 and validate molecular models of binary
particle association and dissociation rate constants in this
section. This combination of rate constants allows us to then
make predictions of the kinetics of the assembly process based
on our kinetic assembly model. We first consider the analytic
predictions for the evolution of the chain length distribution
following a temperature jump and the growth of the average
chain length l̄(t) in time t from the disordered to the fully
assembled state at equilibrium. We also consider the evolution
of the potential energy per particle E at equilibrium, especially
since this quantity provides a good measure of the approach
of the fluid to equilibrium in simulation studies. Finally, we
consider perhaps the most basic property of self-assembling
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systems from an experimental viewpoint, the time dependence
of the order parameter �(t) for the self-assembly transition,
which is defined as the fraction of particles in the assembled
particle (polymeric) state at time t . In the experimental
literature �(t) is normally termed as a progress curve since
this quantity, relative to its long time equilibrium value
�(t → ∞) ≡ �∗, describes the progressive development
of the self-assembly process [13, 55–57]. Experimentally,
�(t) is normally measured by spectroscopic means. We
find that rate constant governing the growth of �(t) in
fluids undergoing equilibrium polymerization, following a
homogeneous temperature quench, depends on both the solvent
viscosity through the friction coefficient of the polymer beads,
and the thermodynamic variables related to the depth of
the temperature quench (enthalpy and entropy of assembly),
which are fully specified in our terms of our molecular model
parameters.

2. The two-patchy sites model

The studied model for bifunctional monomers is the same
introduced in [45]. Each monomer is modeled as an hard-
sphere (HS) particles (of diameter σ , the unit of length) whose
surface is decorated by M = 2 identical sites oppositely
located. Sites on different particles interact via a square-well
potential (of depth −u0 and well-width δ), so that the resulting
interaction V (1, 2) between particles 1 and 2 is,

V (1, 2) = VHS(r12) +
∑

i=1,2

∑

j=1,2

VW (ri j
12
) (1)

where VHS is the hard-sphere potential, VW (x) is a square-well
interaction and r12 and ri j

12
are respectively the vectors joining

the particle–particle centers and the site–site (on different
particles) locations. Temperature is measured in units of the
potential depth (i.e. Boltzmann constant kB = 1). The choice

of well-width δ = 0.5(
√

5 − 2
√

3−1) σ ≈ 0.119 σ guarantees
that each site is engaged at most in one bond. Hence, each
particle can form only up to two bonds and, correspondingly,
the lowest energy per particle (‘sticking energy’) is simply the
bead contact value of the potential, −u0.

3. Brownian dynamics simulations

We have performed Brownian dynamics simulations (using the
algorithm described in the appendix) for a system of N = 104

particles in a volume V . The Brownian dynamic code—which
neglects hydrodynamic interactions—requires as input, beside
the temperature, the diffusion coefficient of the monomer D1,
or equivalently the viscosity of the solvent η. The relation
between D1 and η is given by D1 = kB T

3πση
. In this paper we

will report time in scaled units t̂ = t/to with to = σ 2/6D1, so
that t̂ = 1 indicates the time it takes an isolated monomer to
diffuse over a distance equal to the particle size. All quantities
with an ˆ refer to scaled time units. A conversion to physical
time requires the actual temperature and the solvent viscosity,
according to t = πσ 3η

2kBT t̂ .

Figure 1. Phase diagram of the studied model. Curves indicate
characteristic transition lines for self-assembly, as indicated in the
inset. These lines include the ‘polymerization transition line’ where
Cv has a maximum, the self-assembly ‘onset line’ (� = 0.1) where
appreciable polymerization first initiates, and the ‘saturation curve’
(� = 0.9) where the self-assembly transition is essentially
‘finished’ [36, 61]. Filled circles indicate thermodynamic states
investigated by simulation along a constant ρ = 0.001 path (circles)
and along a constant l̄ = 8 path (squares).

We have studied the equilibration process after a
temperature jump from the high temperature unassembled
state to the low temperature assembled state. Two sets of
simulations were performed. The first set is composed by
a sequence of different state points (T, ρ), such that the
equilibrium final state is characterized by an identical average
polymerization length l̄ = 8. The second set is composed by
the same monomer number density ρ = 10−3, but different
temperatures. Figure 1 shows the relative location of all
studied state points in the (ρ–T ) phase diagram of the model
(from [45]). In the case of equilibrium polymers, the relevant
lines are provided by the location of the specific heat maximum
Cmax

V (along which the fluctuations in the number of bonds
are maxima) and by lines of iso-extent of polymerization
�. Such a quantity, which measures the fraction of material
in polymeric state, plays the role of the order parameter of
the polymerization transition [36, 37, 58–60]. The studied
points cross the polymerization transition line. We also note
that, due to computational requirements, all studied points are
characterized by average chain lengths smaller or comparable
to the persistence length of the present model. Entanglement
effects are not relevant to the present study.

As a result of the large system size studied, average
quantities are affected by less than 3% relative error. Chain
length distributions Nl(t), whose signal covers up to six
orders of magnitude are affected by an error proportional to
1/

√
l Nl (t), which progressively increases on decreasing l.

4. Equilibration

A possible modeling of the equilibration process is provided
by the Smoluchowski equation [62], specialized to the case
of linear chains of independent bonds [49, 63]. The equation
provides the time evolution of the chain length distribution
Nl(t) (number of chains of length l observed at time t), in
the chemical limit [64], i.e. provided that the rate constant for
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bonding kbonding and breaking kbreaking are independent on the
chain length. In the chemical limit, the diffusive part of the
rate constant (which could be a function of the chain length),
is negligible as compared to the bonding part, which is indeed
l independent [64]. The evolution of Nl is given by

dNl

dt
= −kbreaking(l − 1)Nl + 2kbreaking

∞∑

j=l+1

N j

+ 1

2

kbonding

V

l−1∑

j=1

N j Nl− j − Nl
kbonding

V

∞∑

j=1

N j . (2)

The four contributions to dNl
dt can be respectively identified

with the breaking of a cluster of size Nl , the breaking of
a cluster of size larger than l in two pieces, one of which
has length l, the joining of two clusters to form a chain of
length l and the joining of a cluster of size l with a different
chain. Equation (2) assumes that the bonding and breaking
rates are independent on the cluster size (note that kbreaking has
the dimension of inverse of time, while kbonding is a volume
divided by time). The two rate constant kbonding and kbreaking are
not independent, since they must guarantee that the equilibrium
distribution arises from the long time limit solution of the
equation.

4.1. Binary particle association constant

The study of the aggregation dynamics at short times provides
a method to evaluate unambiguously kbonding. Indeed, starting
from an unassembled state, only monomers are present at time
t = 0 and hence Ni (t = 0) = Nδi,1. At short times,
equation (2) simplifies to the simple equations involving the
bonding rate,

dN1

dt
= −kbonding

V
N1 N1 (3)

dN2

dt
= 1

2

kbonding

V
N1 N1 = −1

2

dN1

dt
. (4)

The potential energy E of the system measures the number
of bonds. At short times, the number of bonds is identical to
the number of dimers. Hence E = −u0 N2 and (since N1 ≈ N
at short time)

d
(

E
Nu0

)

dt
= −1

2
kbondingρ (5)

which, at short time gives

E(t)

Nu0
= −1

2
kbondingρt . (6)

Hence, from a study of the initial behavior of the potential
energy it is possible to extract the density and temperature
dependence of the bonding rate kbonding.

Figure 2(a) shows the time dependence of 2E(t)
Nu0ρt versus t̂ .

As predicted by equation (6), the quantity 2E(t)
Nu0ρt = −kbonding

shows a constant plateau whose value provides an estimate for
kbonding. A similar behavior is observed also in the group of
simulations at constant ρ, as shown in figure 2(b). Both set
of data are consistent with a value of k̂bonding ≈ 0.06 ± 0.02,
independent on T and ρ.

100 101 102

t^

2 
E

(t
)/

N
 u

0
ρ 

t̂ T=0.05
T=0.055
T=0.06
T=0.065
T=0.07
T=0.075
T=0.08
T=0.09
T=0.10

100 101 102 103 104

t^

2 
E

(t
)/

N
 u

0
ρ 

t̂

ρ= 0.31626  T= 0.082 
ρ= 0.10000  T= 0.073 
ρ= 0.03162  T= 0.067 
ρ= 0.01000  T= 0.062 
ρ= 0.00316  T= 0.058 
ρ= 0.00100  T= 0.054 
ρ= 0.00031  T= 0.051 

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

-0.15

-0.1

-0.05

(a)

(b)

Figure 2. Behavior of the potential energy at short time: data are
reported following equation (6), so that the value of kbonding can be
read by the graph. In (a), the simulations refer to different ρ and T
values, such that the final equilibrium state is characterized by l̄ = 8.
In (b) the simulations refer to different T values, but at ρ = 0.001.
Note that data refer to the time interval in which the energy per
particle goes from zero to −0.05u0. The zig-zag short time behavior
is an artifact of the discrete bonding normalized by a continuous
variable (time).

We note that the Smoluchowski Brownian dimer
formation rate constant is kBrownian

bonding = 8kT
3η

[62]. Since D1 =
kT

3πση
, measuring time in the same scaled unit as above gives

k̂Brownian
bonding = 8πσ 3

6 ≈ 4.19. The bonding constant for the
patch model we have used is thus about 70 time smaller
than the one of the corresponding spherical model, a figure
consistent with expectations based on the general expression
for Brownian association rates in the presence of orientational
constraints [65].

4.2. Binary particle dissociation constant

The study of the full evolution of the system following a T -
jump provides a method for estimating kbreaking. It also allows
for a test of the theoretical description.

In equilibrium (i.e. dNl/dt = 0), the chain length
distribution Nl (number of chains of length l) is given by,

Nl = N

l̄2

(
1 − 1

l̄

)l−1

(7)
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normalized in such a way that

∞∑

l=1

l Nl = N (8)

where l̄ indicates the ρ and T dependent equilibrium average
chain length.

Substituting the known Nl equilibrium distribution in
equation (2), one finds

kbonding

2kbreaking
= l̄(l̄ − 1)

ρ
. (9)

The T and ρ dependence of l̄ is very well predicted by
the Wertheim theory (see equation 11 of [45]). Substituting the
predicted value for l̄, gives

kbondingρ

2kbreaking
= exp {−β(	Ub − T 	Sb)} (10)

where 	Ub and 	Sb are the energy and entropy change in
the bond process. The Wertheim theory provides precise
expressions for 	Ub and 	Sb. Specifically, when eβu0 � 1 (a
very minor approximation since aggregation requires T 	 u0

to be effective)
	Ub = −u0 (11)

	Sb/kB = ln

[
8πρ

∫ σ+δ

σ

gHS(r)S(r)r 2 dr

]
. (12)

where [45]

S(r) = (δ + σ − r)2(2δ − σ + r)

6σ 2r
(13)

is the fraction of solid angle available to bonding when two
particles are located at relative center-to-center distance r and
gHS(r) is the hard-sphere radial distribution function. At
small densities, gHS(r) ≈ 1 and Vb ≡ 4π

∫ σ+δ

σ
S(r)r 2 dr =

0.000 332, so that

	Sb/kB = ln [2ρVb] = ln

[
2N

Vb

V

]
. (14)

Thus, the change in entropy is essentially provided by the
logarithm of the ratio between the bonding volume Vb and the
volume per site V/2N . Within the same approximations, the
equilibrium relation between kbonding and kbreaking becomes

kbreaking = kbonding

4Vbeβu0
. (15)

The existence of a relation between kbonding, kbreaking and l̄ ,
can be exploited to find the scaling properties of the evolution
of the cluster size distribution. Indeed, dividing equation (2)
by kbreaking gives,

dNl

d(kbreakingt)
= −(l − 1)Nl + 2

∞∑

j=l+1

N j

+ l̄(l̄ − 1)

N

l−1∑

j=1

N j Nl− j − 2Nl
l̄(l̄ − 1)

N

∞∑

j=1

N j . (16)
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Figure 3. Reduced time representation of the evolution of the
potential energy per particle. The reduced time τ̂ has been chosen so
that E/N(τ̂ ) = −0.3 u0. Simulations refer to different ρ and T
values, such that the final equilibrium state is characterized by l̄ = 8.

The evolution of the distribution function is thus only
a function of the equilibrium final average length and of
kbreakingt :

dNl

d(kbreakingt)
= f (l̄, kbreakingt). (17)

This suggests that all the equilibration curves for all cases in
which the final equilibrium l̄ is identical should collapse on
one single master curve and the scaling time τ ≡ 1

kbreaking
would

provide an evaluation of the breaking constant. This is indeed
what we find in figure 3.

5. Time dependence of l̄, � and E

5.1. Evolution of the average length

The time dependence of the cluster size distribution can be
obtained in a closed form solving equation (2), similarly
to treatment by Cates and Candau for the continuous l
case. Assuming that the chain length distribution retains the
equilibrium shape, but with a t dependence average length l̄(t),
i.e.,

Nl (t) = N

l̄(t)2

(
1 − 1

l̄(t)

)l−1

, (18)

after little algebra one finds

dl̄(t)

dkbreakingt
= l̄(l̄ − 1) − l̄(t)(l̄(t) − 1) (19)

which has the solution (for the case in which the
polymerization increases upon time):

l̄(t) = 1 + (2l̄ − 1) tanh[ kbreaking t
2 (2l̄ − 1) + φ]

2

tanh[φ] = 2l̄(0) − 1

2l̄ − 1
.

(20)

Equation (20) implies that the growth rate for the
equilibration dynamics is [ kbreaking

2 (2l̄ − 1)]−1, which reduces to
the Candau–Cates [49] expression for large l̄ values.
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Figure 4. Evolution of the chain length distribution (symbols) at
T = 0.062 75 and ρ = 0.01 for different times. Lines are exponential
lines to guide the eye. The distributions are calculated over one
configuration of the system along its equilibration trajectory.

The solution in equation (20) describes quenches to state
points characterized by an average chain length larger than
the initial one. It is remarkable that the equilibration process
predicted by the equation (2) predicts an evolution of the chain
length distribution which maintains the equilibrium shape.
Only the value of the average chain length changes with
time. This property is not true for other types of equilibrium
polymerization where the chains form and shrink from their
ends [66].

A universal representation of the time dependence of
l̄(t) is provided by a simple algebraic manipulation of
equation (20), which can be written as

2l̄(t) − 1

2l̄ − 1
= tanh

[
kbreakingt

2
(2l̄ − 1) + φ

]
. (21)

An experimental study of the quantity 2l(t)−1
2l̄−1

should reveal

the typical tanh shape. For large l̄ , φ → 0 and
2l(t)−1

2l̄−1
≈ l(t)/l̄ becomes an universal function of kbreakingtl̄ .

It is also interesting to observe that, for deep quenches,
using equation (10), (i.e., for large exp[βu0]), kbreaking ≈
kbondingρ exp [β(	Ub − T 	Sb)]/2. Since kbonding has no T or
ρ dependence in it, the reduced time provides information of
the bond free energy change.

Figure 4 shows the chain length distribution for
several times after the T -quench. The distribution evolves
continuously toward the equilibrium l̄ value retaining the
exponential shape at all intermediate time. This suggests that
the hypothesis behind equation (2) is satisfied.

Figure 5 shows the time evolution of the average length
calculated from the simulation data with the theoretical
predictions, using kbreaking as the only fitting parameter.
The equilibrium value l̄ is indeed theoretically known from
Wertheim theory and depends on the density and T of the
system. Both sets of simulations are well described by
equation (20).

We also note that, for very deep quenches, when
breaking effects are negligible (or equivalently when l̄ � 1),
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Figure 5. Evolution of the average chain length (symbols) and
theoretical predictions (lines) for all studied simulations. In (a)
simulations refer to different ρ and T values, such that the final
equilibrium state is characterized by l̄ = 8. In (b) ρ = 0.001. The
inset in (b) shows the linear growth law for the case ρ = 0.001 and
T = 0.05.

equation (20) predicts as limiting behavior

l̄(t) = 1 + kbondingρt

2
, (22)

i.e. a linear growth of the chain length. This behavior is indeed
observed in the deepest studied quench (inset of figure 5(b)).

In section 4.1 we have shown that in the present model
k̂bonding ≈ 0.06 (see figure 2). It is thus possible to predict
kbreaking using equation (15) and compare the predictions with
the results of the fitting. Such a comparison is reported
in figure 6. The agreement is rather striking, considering
the complete absence of any fitting parameter. From the
value of kbonding, a quantity which can easily be accessed
experimentally or numerically from early stage measurements
of the aggregation process, it is possible to predict rather
precisely the entire time dependence of the equilibration
process. This suggest that, as for the equilibrium properties,
the reversible aggregation kinetics of bifunctional units can
be described by a combination of the equilibrium Wertheim
theory and bonding and breaking rate constants deduced from
Smoluchowki theory.

5.2. Potential energy

The time dependence of the potential energy is related to the
time dependence of the average length l̄(t). Indeed, as shown
in [45], −E(t)/Nu0 = 1 − l̄(t)−1. The comparison between
the numerical data and the theory (with the same kbreaking values
as in figure 5) is shown in figure 7. As for l̄(t), the time

6
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Figure 6. Temperature dependence of k̂breaking as extracted from the
fit of the time dependence of the potential energy to equation (20)
and as predicted theoretically. Symbols refer (i) to simulations with
different ρ and T values, such that the final equilibrium state is
characterized by l̄ = 8 and (ii) to simulation at fixed ρ = 0.001.
The thick line is the theoretical prediction.

(a)

(b)

Figure 7. Evolution of the potential energy per particle (symbols)
and theoretical predictions (lines) for all studied simulations. In (a),
simulations refer to different ρ and T values, such that the final
equilibrium state is characterized by l̄ = 8. In (b), ρ = 0.001.

dependence of the energy is well described by the analytic
theory.

5.3. Extent of polymerization

Experimentalists often consider a quantity called progress
curves in their characterization of the self-assembly of
polymer chains. This is defined as the time dependent
extent of polymerization �(t), which is normally measured
spectroscopically. �(t) is defined as the fraction of particles

(a)

(b)

Figure 8. Time dependence of the extent of reaction for the studied
model for (a) simulations with different ρ and T values, such that the
final equilibrium state is characterized by l̄ = 8 and (b) for
simulation at fixed ρ = 0.001. The thick lines are the theoretical
prediction. Note that the polymerization transition temperature for
the ρ = 0.001 case is T = 0.072.

connected in chains (chain length larger than one), i.e.,

�(t) =
∑∞

l=2 l Nl (t)∑∞
l=1 l Nl (t)

= 1 − N1(t)

N
= 1 − l̄(t)−2 (23)

where we have used equation (18). � plays the role of order
parameter for the polymerization transition. Since 1√

1−�(t)
=

l̄(t), the time dependence of �(t) is analytically determined by
equation (20),

�(t) = 1 −
[

2

1 + (2l̄ − 1) tanh[ kbreaking t
2 (2l̄ − 1) − φ]

]2

.

(24)
Despite the time dependence of the extent of reaction is

simply a transformation of the time dependence of l̄(t), it is
instructive to show (in figure 8) the behavior of the numerical
curves for � and compare them with equation (24), for the two
set of simulations. The curves approach a constant value at
large times, coincident with 1 − l̄−2. In the set of simulations
where l̄ = 8, the curves are identical and can be collapsed by
scaling the time by k−1

breaking.
An universal representation of the progress curve

(identical to the one of l̄(t)) for chain polymerization can be
obtained from the previous expression by noting that

2√
1−�(t)

− 1
2√
1−�̄

− 1
= tanh

[
kbreakingt

2
(2l̄ − 1) − φ

]
, (25)
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where we have defined �̄ as the equilibrium polymerization
(infinite time value of �(t)). An experimental representation
of the extent of polymerization in this form versus time should
show the typical tanh shape. As for the case of l̄(t), for large l̄ ,
φ → 0 and curves for different systems collapse on the same
universal curve if time is scaled by [kbreakingl̄]−1.

6. Conclusions

This paper describes a numerical study of the dynamic theory
of equilibrium polymer in the absence of constraints on the
polymerization process (e.g., chemical and thermal activation),
expanding on pioneering MC studies by Milchev and
Rouault [50–52]. We perform Brownian dynamics simulations,
to generate a realistic dynamics of the chains in solution and
to be able to compare the dimer association rate constant
with theoretical predictions. The choice of a simple model
which can be solved analytically within the Wertheim theory
makes it possible to provide an almost full description of the
equilibration dynamics without introducing any fit parameter.
Indeed, the entire evolution of the system can be predicted
based on knowledge of the monomer density, the temperature
and the dimer Brownian association constant kbonding. This
quantity can in principle be evaluated independently (being a
property of the model) and it would be informative to evaluate
the dependence of the association constant on the number and
geometry of the particle patches [65, 67], a topic also relevant
for protein–protein association [68–70].

We focus on the time evolution of the average chain
length and two related quantities, the potential energy and the
equilibrium polymerization order parameter �(t) (or progress
curve) governing self-assembly growth, following a T -jump.
We find that the rate of polymerization ordering following
a jump from the disordered to ordered thermodynamic by
lowering the temperate involves two competing factors, a
factor related to the solution viscosity (via the modulation of
the bonding constant kbonding) and thermodynamic factor that
progressively increases as the temperature is lowered below the
polymerization transition (via l̄). This trend is typical of many
order–disorder transitions

According to the Smoluchowski equations describing the
evolution of the system after a T -jump (equation (2)), the
equilibration process proceeds via a sequence of transient
configurations, each of them characterized by an exponential
chain length distribution, allowing for a precise association of
the equilibration time with a fictive temperature. Equilibrium
polymerization could be thus considered as a model system
for testing recent theoretical developments on the violation
of the fluctuation-dissipation theorem [71] in aging systems.
The potential energy landscape [72] is particularly simple
for this model, which should aid in comprehending the
aging phenomenon. It also suggests that chemical step
polymerization for bifunctional compounds, which could be
considered as a t → 0 quench, also proceeds via a sequence
of exponential distribution of chain lengths. It would be
particularly interesting to explore if the evolution of the system
proceeds via a sequence of equilibrium configurations also
in the case of multifunctional assembling particles, at least

in the limit in which loops are missing [41]. We also note
that for the case of living polymerization (which is distinct
from the equilibrium polymerization case discussed here) it
has been suggested [66] that the evolution of the chain length
distribution following a temperature jump is characterized by
an evolving non-exponential distribution of chain lengths. The
‘living’ polymers apparently preferentially ‘eat their young’,
resulting in a long-lived peak in the mass distribution.

Our study provides a framework for estimating the
rate of self-assembling ordering, in real assembling systems
exhibiting equilibrium polymerization in terms of molecular
parameters. Of course, independent estimates of the bonding
free energy (equation (10)) are required also for such
estimates of self-assembly dynamics. One major difficulty
is the assumption of treating the background solvent as a
continuum fluid devoid of atomic characteristics. In general
the solvent, and even small concentrations of additives,
especially polymer species will modify the enthalpic and
entropic parameters governing self-assembly. Experimental
studies seem to indicate that the changes in the entropy and
enthalply of assembly tend to be correlated (enthalpy–entropy
compensation [73–75]) and a general study of such effects
could be profitable. Up to now, there is no way to predict
the fundamental equilibrium association constants governing
self-assembly from molecular information. This difficulty is
especially severe in the case of aqueous solutions of associating
species since water itself is a complex associating fluid. It
is then crucial to begin studying how self-assembly becomes
modified when the solvent itself is an associating fluid. This
is a complicated problem, but one which can be attacked
by MD and MC simulation methods. We expect that the
framework that we have developed in this paper will be useful
for interpreting simulations of this kind and a starting point
of for the development of physically more realistic analytic
theories that take into account effects on self-assembly that
arise from this process occurring in a condensed liquid state
in the presence of molecules distinct from the assembling
particles of interest.

There are other challenges to treating assembly in
fluids beyond the renormalization of the energetic parameters
governing assembly and which are missing in our model.
We need to consider the presence of inter and intramolecular
hydrodynamic interactions between the chain segments that
can dramatically alter the rate of chain diffusion and the
nature of stress relaxation in such fluids. This type of
problem is simply not tractable from an analytic standpoint,
but there are powerful simulation methods such lattice
Boltzmann [76] and dissipative particle dynamics [77] methods
that can address this difficult problem. We mention the
promising work of Dünweg and co-workers on the origin
of hydrodynamic screening in polymer (static rather than
dynamic) solutions [78] as a good example of the possibilities
of this approach. Finally, we must also acknowledge the
importance of topological (entanglement) interactions between
the chains that restrict their crossing in the limit of long chains.

In short term, it is important to establish how
multifunctionality of particle association influences the nature
of the particle self-assembly. Glotzer [10, 79] and
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van Workum and Douglas [13] have both found evidence
that self-assembly transition can become appreciably sharper
(thermodynamically) when the associative interactions become
multifunctional instead of bifunctional as in the present study.
Indeed, Glotzer and co-workers have argued that there is a
general tendency for the self-assembly transition to become a
first order phase transition. Van Workum [13] simply noted that
such transitions became significantly sharper with variation in
temperature and were thus harder to simulate at equilibrium.
If the transition is indeed first order, then it will be necessary
to model nucleation processes governing the emergence of
new phases in this type of self-assembly. Initiation of
growth in these systems normally involves structures that
are spherical droplet-like structures so that a reformulation
of classical nucleation theory would be required to describe
growth initiation in systems exhibiting polymerization with
multifunctional interactions [13]. Clearly, there are many
challenges ahead in modeling the thermodynamics and
dynamics of even the simplist self-assembling systems.
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Appendix

Our Brownian dynamics algorithm is an extension of the
algorithm recently developed for particles interacting with
hard-sphere and the square-well potentials [80] and adopted in
the recent studies of Brownian dynamic studies of interacting
colloids [81, 82]. The extension to non-spherical particles of
mass m requires a description of the rotational motion of the
particles. Assuming that the three moments of inertia, along
the principal axes of each particle, are all equal, i.e. Ix = Iy =
Iz = I and defining 
vi and 
ωi as the center-of-mass velocity
and the angular velocity of particle i respectively, the algorithm
is based on the iteration of the following steps:

(i) For every tn = nδt , with n integer number, for all particles
(i = 1 . . . N , where N is the total number of particles) we
specify the center-of-mass velocities 
vi ≡ (vx,i , vy,i , vz,i )

according to a Maxwellian distribution Pt (
vi ):

Pt (
vi ) =
( m

2πT

)3/2
e−m

v2
x,i +v2

y,i +v2
z,i

2T (26)

and then specify angular velocities 
ωi ≡ (ωx,i , ωy,i , ωz,i )

according to the distribution Pr (
ωi ), defined as follows:

Pr (
ωi ) =
(

I

2πT

)3/2

e−I
ω2

x,i +ω2
y,i +ω2

z,i
2T . (27)

In addition the component of the angular velocity along
the direction, we join the centers of the two sticky spots
of each particle, is set to 0, due to the symmetry of the
particles around such an axis.
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Figure 9. Mean square displacement of a monomer belonging to
polymers of length one, two, four and eighth. Dashed curves are the
expected theoretical values for the long time diffusion, 〈r 2〉 = 6DM t ,
where DM = D1/M .

(ii) We then evolve the system between tn and tn + δt
according to the laws of ballistic motion of rigid bodies
with mass m and moment of inertia I (performing event
driven molecular dynamics).

The time δt is related to the monomer translational
diffusion constant D1 by the relation D1 = kBT δt

2m . The
corresponding rotational diffusion coefficient is DR = kB T δt

2I .

We have used the sphere inertia moment I = mσ 2

10 and δt = 0.5

(in units of
√

mσ 2/u0).
To check that the Brownian dynamics code reproduces a

realistic dynamics, we performed a set of ‘control’ simulations
of isolated chains having length 1 (monomer), 2 (dimer),
4 (tetramer) and 8 (octamer)—at a very small T so that
no bond breaking events are observed during the simulation
time. Figure 9 shown the mean square displacement of an
arbitrary monomer belonging to clusters of different size. At
long time, where rotational processes are averaged out, the
slope of the mean square displacement versus time approaches
the diffusion coefficient of the chain center of mass. It is
seen that the algorithm correctly generates a diffusion process
which scales with the inverse of the size (mass) of the chains,
i.e. Rouse dynamics. Hence the center of mass diffusion DM

of a cluster of size M scales as D1/M .
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