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Relating thermodynamic quantities of convex-hard-body fluids to the body’s shape
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For a fluid of convex hard particles, characterized by a length scale σmin and an anisotropy parameter ε, we
develop a formalism allowing one to relate thermodynamic quantities to the body’s shape. In a first step, its
thermodynamics is reduced to that of spherical particles. The latter have a hard core of diameter σmin and a soft
shell with a thickness εσmin/2. Besides their hard core repulsion at σmin , they interact by effective entropic
forces which will be calculated. Based on this mapping, a second step provides a perturbative method for
the systematic calculation of thermodynamic quantities with the shape anisotropy ε as a smallness parameter.
In leading order in ε, the equation of state is derived as a functional of the particle’s shape. To illustrate
these findings, they are applied to a one- and two-dimensional fluid of ellipses and compared with results
from different analytical approaches and our computer simulations. The mapping to spherical particles also
implies that any phase transition of spherical particles, e.g., the liquid-hexatic transition, also exists for the
nonspherical ones, and shifts linearly with ε for weak shape anisotropy. This is supported by our Monte Carlo
simulation.
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I. INTRODUCTION

Many particles in nature, e.g., molecules, are anisotropic.
To elaborate on their thermodynamic behavior, one also has
to take into account their orientational degrees of freedom
(DOF). In this context, fluids of anisotropic colloidal par-
ticles have been intensively studied. They are modeled by
convex hard bodies, mostly hard ellipsoids. Compared to a
fluid of spherical particles, new phases occur. The influence
of the shape anisotropy on the phase behavior was studied
in a seminal paper by Onsager [1]. Using the standard virial
expansion (see, e.g., Ref. [2]) for a three-dimensional (3D)
fluid of hard cylinders and treating the different orientations
of a particle as a mixture of particles with different orien-
tations, Onsager proved that for large enough elongation of
the cylinders and high enough particle density, a phase exists
where, on average, the cylinders are aligned, although their
translational order is still liquidlike. Since then, such liquid
crystals have been widely investigated (see, e.g., Refs. [3,4]).
Due to strong experimental progress in preparing specially
designed hard particles, the study of their assembly has also
gained a lot of interest in material science [5]. The shape of

*Contact author: thomas.franosch@uibk.ac.at
†Contact author: demichel@roma1.infn.it
‡Contact author: rschill@uni-mainz.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

hard bodies does not only influence the existence and the type
of phases, but also their thermodynamic properties in general.
In contrast to point particles, their excluded-volume interac-
tions are determined completely by their shape. Consequently,
one of the important questions is: How does the thermody-
namic behavior of hard nonspherical particles depend on their
shape?

The additional orientational DOF makes theoretical inves-
tigations of fluids of nonspherical hard particles much more
involved, particularly for particles of a complex shape. There-
fore, computer simulations have predominantly been used to
calculate their thermodynamic (see, e.g., Refs. [6–13]), as
well as glassy properties (see, e.g., Refs. [14–17]). But a
variety of analytical approaches also exist. Many of them
are extentions of methods applied to fluids of spherical parti-
cles. Systematic approaches are virial expansions [13,18–32]
and perturbation theory [33,34]. A low-order truncation of
the virial expansion (e.g., virial coefficients Bl = 0 for l !
4) describes the Monte Carlo (MC) results for the pres-
sure p(n, T ) only satisfactorily for rather low densities n.
A different approach uses y = η/(1 − η) as an expansion
parameter [35], where η is the packing fraction. A low-
order truncation of such a y expansion fits the Monte Carlo
data rather well, even up to higher densities (see, e.g.,
Ref. [36]). In a perturbative approach, the pair potential or its
Boltzmann factor is decomposed into an isotropic and
anisotropic part. The latter is chosen as a perturbation of the
isotropic reference fluid. A particular reference system is a
fluid of hard spheres with diameters σ0. For this case, the
question arises: How to choose an optimal value for σ0? A
frequently used criterion is the vanishing of the first-order
term in the series expansion of the Helmholtz free energy F
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(see, e.g., Refs. [37,38]). Other criteria were considered as
well (see, e.g., Ref. [39]). We will come back to this point in
Sec. II B. Scaled-particle theory [40] extended to nonspheri-
cal particles [41–43]) and density-functional theory [44–47]
involve approximations which cannot easily be controlled.
Onsager’s approach [1] is a version of such a functional
theory.

A rather different approach leading to sphericalization is
the following one. As for fluids of spherical particles, sev-
eral thermodynamic quantities of nonspherical particles such
as the equation of state (EOS) can be expressed completely
by the orientational-dependent pair potential and its pair-
distribution function (see, e.g., Ref. [42]). Approximating the
latter for a subclass of pair potentials of the form v(r12/dc)
with an orientational-dependent function dc by g(2)(r12/dc)
[48,49], the translational and orientational DOF decouple.
Hard-body interactions belong to this subclass. For two hard
bodies, dc is their closest distance depending on the orien-
tations, which will be discussed in Sec. II A. Consequently,
thermodynamic quantities of a D-dimensional hard-body fluid
become approximated by those of a fluid of hard spheres
of diameter [〈(dc)D〉o]1/D, obtained by averaging over the
orientational DOF. Finally, using a few low-order virial co-
efficients from analytical and numerical calculations, several
attempts have led to improved equations of state (see, e.g.,
Refs. [13,43,50–52]). For further details on analytical meth-
ods, simulation techniques, and thermodynamic properties of
convex hard body fluids, the reader is also referred to Refs.
[53,54]. These investigations have not provided relations be-
tween thermodynamic quantities and the body’s shape. An
exception is the remarkable result for the second reduced
virial coefficient B∗

2 for arbitrary convex hard bodies: It de-
pends only on geometric measures (Minkowski functionals)
[55,56] such as the volume Vp, surface Sp, and the mean cur-
vature Rp of the convex body [19–21,29–32,57]. This implies
that B∗

2 takes the same value for all shapes with identical
geometric measures. Note this result holds for B∗

2 only.
Therefore, it is our major goal to investigate how far

thermodynamic quantities of hard nonspherical particles can
be related to their shape. This will be achieved by a com-
pletely unique approach. By eliminating all orientational
DOF, we prove in a first step, that the thermodynamics of a
D-dimensional fluid of convex hard nonspherical particles can
be obtained from a corresponding fluid of spherical particles.
Note this fluid of spherical particles will be not a reference
fluid in the sense discussed above. This already has an inter-
esting implication: Any phase transition of a fluid of spherical
particles also exists for hard nonspherical convex particles, at
least for small shape anisotropies. Since 2D fluids of spherical
particles exhibit two-step melting with a liquid-hexatic and a
hexatic-solid phase transition [58], our mapping implies that
for small shape anisotropy, these transitions should exist for a
fluid of convex hard nonspherical bodies as well. Based on the
mapping to spherical particles, in a second step, the Helmholtz
free energy will be calculated perturbatively with the shape
anisotropy as perturbation. Combined with a perturbative so-
lution of the contact conditions, this will provide a relation
between the EOS and the particle’s shape.

The outline of our paper is as follows. In Sec. II, we de-
scribe the model fluid and present the theoretical framework.

FIG. 1. Construction for an arbitrary 2D convex hard body, B,
(blue domain) of the smaller (Smin) and larger circle (Smax) with
radius σmin/2 and σmax/2, respectively. The center of B is chosen
as the origin of the body-fixed frame and the z′ axis points to the
tangential contact of B and Smax. The shape of the hard body is
parametrized by s(ϑ ) where ϑ is the angle between s(ϑ ) and the
z′ axis (see also main text).

This section also contains the mapping to a fluid of spherical
particles and the series expansion of the free energy. A key
quantity entering the thermodynamic quantities is the contact
function for two convex hard bodies. How its perturbative
calculation can be performed by using the body’s shape as
an input will be discussed in Sec. III. The dependence of the
equation of state on the particle’s shape will be obtained in
Sec. IV up to first order in the shape anisotropy, valid for any
convex body and any dimension D. This allows us to derive
the equation of state for a fluid of hard ellipses in D = 1 and D
= 2, as well as for a 3D fluid of hard ellipsoids of revolution.
In addition, a comparison with results from other analytical
methods and from our Monte Carlo simulation will be per-
formed for hard ellipses in D = 1 and D = 2. Finally, Sec. V
contains a summary and some concluding remarks. In order
not to overload the main text with technical manipulations,
details are presented in Appendices.

II. MODEL FLUID AND THEORETICAL FRAMEWORK

A. The model

We investigate a fluid of N identical convex hard non-
spherical particles in a D-dimensional box of volume V. Then
n = N/V is its number density. To quantify their nonspherical
shape, we proceed as follows. The hard body is denoted by
B. Two characteristic length scales, σmin and σmax, can be
introduced. We denote by σmin the maximum diameter of a
D-dimensional sphere, Smin, which can be inscribed into B,
and by σmax the minimum diameter of a sphere, Smax, with the
center coinciding with the center of Smin such that B can be
inscribed into Smax. For an illustration, see the 2D example in
Fig. 1. Note that there can be more than two contact points
with Smin and more than one with Smax. As the center of the
hard body, we choose the common center of Smin and Smax,
also taken as the origin of the body-fixed frame. For a generic
hard body, this center does not coincide with the body’s center
of mass. The z′ axis of the body-fixed frame can be chosen
such that, e.g., one of the tangential contact points with Smax
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is on the z′ axis. In the body-fixed frame, the surface of the
convex hard body can be represented by spherical coordi-
nates (s,ϑ,ϕ): s(ϑ,ϕ) = s(ϑ,ϕ)es(ϑ,ϕ), with es(ϑ,ϕ) the
corresponding unit vector. All information on the particle’s
shape is provided by the shape function s(ϑ,ϕ).

Choosing σmin as the fundamental length scale and
(σmax/σmin − 1) as anisotropy parameter, we can introduce a
dimensionless shape function s̃(ϑ,ϕ), with 0 " s̃(ϑ,ϕ) " 1,
by

2
σmin

s(ϑ,ϕ) − 1 = (X0 − 1) s̃(ϑ,ϕ), (1)

with the aspect ratio X0 = σmax/σmin. Hard bodies with zero
thickness or infinite extension in one or more dimensions will
not be considered, i.e., σmin > 0 and X0 " const < ∞. In the
following, we will study hard bodies characterized by a family
of shape functions:

s(ϑ,ϕ; ε) = σmin

2
[1 + ε s̃(ϑ,ϕ)]. (2)

Note that ε interpolates between the shape of the sphere,
Smin (for ε = 0), and the original hard body, B (for ε =
εmax = X0 − 1). In Sec. II C, we will elaborate on a perturba-
tive method for the calculation of thermodynamic quantities,
where ε plays the role of a smallness parameter.

Some comments are in order. First, there is an alternative
route leading to the shape family, Eq. (2). Instead of using an
arbitrary convex body as a starting point, one could choose a
sphere of radius σmin/2. Deforming this sphere linearly in ε by
ε (σmin/2)s̃(ϑ,ϕ) with 0 " s̃(ϑ,ϕ) " 1, generates the family
of Eq. (2). However, the condition of convexity introduces
constraints on s̃(ϑ,ϕ): The eigenvalues of the curvature tensor
of the surface obtained from s(ϑ,ϕ; ε)es(ϑ,ϕ) have to be
non-negative for all (ϑ,ϕ). Second, ellipsoids of revolution
(or ellipses) are completely determined by their aspect ratio
X0 and σmin = 2b, the length of their minor axis. Therefore,
their shape function will involve s̃(ϑ,ϕ; ε), depending also on
ε = X0 − 1, in contrast to generic hard bodies. Although the
class of ellipsoids of revolution (or ellipses) is nongeneric, it
plays an important role, since the vast majority of analytical
studies and computer simulations have been performed for
ellipsoids of revolution. There are also shapes of hard bodies
which depend on more parameters than merely X0. An exam-
ple is a triaxial ellipsoid, for which a second aspect ratio X1
exists. Such hard bodies, requiring more than one anisotropy
parameter, will not be considered here. Third, whereas the
thermodynamic properties will depend sensitively on ε, their
dependence on σmin appears only through the dimensionless
density n∗ = n(σmin)D. Therefore the dependence of s(ϑ,ϕ; ε)
on σmin is suppressed. Fourth, it is obvious that the shape
function s(ϑ,ϕ; ε) will depend on the choice of the origin
and orientation of the body-fixed frame. However, thermody-
namic quantities, e.g., the free energy F (T,V, N ) involve only
geometrical entities being independent on such a choice. In
addition, the reference fluid of the hard spheres Smin would
gain artificial orientational DOF by changing the reference
frame.

For simplicity, we restrict ourselves to 3D (2D) bodies
with a rotational (reflection) symmetry axis. However, our
analytical approach can also be applied to arbitrary convex

FIG. 2. Two hard ellipses (a and b are the lengths of the major
and minor semiaxis) at contact in the x-z plane with orientations
ui = (sin θi, cos θi )T , i = 1, 2 and center-to-center separation vector
dc(e12, u1, u2; ε)e12.

hard bodies. Due to the symmetry, the body’s center will lie
on the symmetry axis and the hard body is parametrized by
the family of Eq. (2) of shape functions which depends only
on the angle ϑ between that axis and the unit vector es(ϑ,ϕ).
No additional symmetry, such as a head-tail symmetry or
smoothness of s(ϑ ; ε) is assumed so far.

Assuming that (i) the z′ axis of the body-fixed frame is
along the body’s symmetry axis and (ii) the z′ axis in the
space-fixed frame points in the direction of the unit vector u,
then the surface of the 3D hard bodies is given by the set

S(u; ε) = {s ∈ R3| s = s(ϑ,ϕ, u; ε) := s(ϑ ; ε)R(u)es(ϑ,ϕ),

0 " ϑ " π , 0 " ϕ < 2π}, (3)

where R(u) ∈ SO(3,R) rotates the body-fixed z′ axis into the
direction of u.

The presence of a rotational symmetry axis allows one
to introduce two characteristic length scales, σ‖, the length
of the hard body parallel to the symmetry axis, and σ⊥, the
maximum length perpendicular to that axis. It is obvious that
σ‖ = σmax and σ⊥ = σmin or vice versa. Then X̃0 = σ‖/σ⊥ is
an alternative definition of an aspect ratio. For X0 = σmax/σmax
as defined above, it is always X0 ! 1, whereas X̃0 = X0 > 1
for prolate convex bodies and X̃0 = 1/X0 < 1 for oblate ones.
Note that, although we will use X0 in the following, the results
presented in this paper hold for prolate and oblate particles. It
is the shape function s(ϑ ; ε) in Eq. (3) which is different for
prolate and oblate hard particles (see, e.g., Eqs. (36) and (37)
for ellipsoids of revolution).

Consider now two bodies with centers separated by d =
de12 (|e12| = 1) and orientations ui, i = 1, 2 (see Fig. 2 for
two ellipses). Although their interaction energy is rather sim-
ple assuming values zero or infinity, the calculation of a
partition function requires the knowledge of a suitable overlap
function ψ (de12, u1, u2; ε). If the two convex bodies are in a
tangential contact, then ψ (de12, u1, u2; ε) = 0. If both bodies
overlap, the overlap function is negative, and if they do not
have a common point it is positive. An explicit analytical
expression for such a function is only known for ellipses [6].
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For arbitrary ellipsoids, an iterative scheme for its computa-
tion is presented in Ref. [59]. Note that, using the overlap
function from Ref. [6], an additional condition must be
satisfied for ellipses if they do not have a point in common
(see Appendix A).

The key quantity in our approach is the contact function
dc = dc(e12, u1, u2; ε). It is the distance when both bodies
with orientations u1, u2, and separation vector d e are exte-
riorly tangential (see Fig. 2 for two ellipses). It is determined
by the condition

ψ (d e12, u1, u2; ε) = 0. (4)

Due to the convexity, its solution, dc(e12, u1, u2; ε), is unique.
As will be seen below, the calculation of the effective multi-
body potential in the next subsection, and particularly the
calculation of the kth order terms of the perturbation series
for the free energy in Sec. II C requires the knowledge of
dc(e12, u1, u2; ε). Since the overlap function is only known
for hard ellipses, Eq. (4) cannot be used, in general, to deter-
mine dc(e12, u1, u2; ε). However, it can be calculated directly
from the tangential contact conditions, involving s(ϑ,ϕ, u; ε)
and the normal vector at the point of contact of both hard
bodies (see Sec. III for more details). Since these entities
are completely determined by the shape function s(ϑ ; ε),
this also holds for dc(e12, u1, u2; ε). Although the contact
conditions are linear in dc(e12, u1, u2; ε), they are nonlinear
in s(ϑ ; ε). Therefore, the contact function dc will not be
linear in ε, despite the linearity of the shape function s in
Eq. (2). Nevertheless, since σmin " dc(e12, u1, u2; ε) " (1 +
ε)σmin for the shape family, Eq. (2), it can be represented as

dc(e12, u1, u2; ε) = σmin[1 + ε d̃c(e12, u1, u2; ε)], (5)

with 0 " d̃c(e12, u1, u2; ε) " 1, in close analogy to the shape
function in Eq. (2). In contrast to the latter, d̃c will de-
pend on ε, even for generic hard bodies, as pointed out
above. In Sec. III, we will demonstrate how the key quantity
dc(e12, u1, u2; ε) can be calculated for a given shape function
s(ϑ ; ε).

The main message from the discussion so far is that for all
orientations (u1, u2), the pair potential is infinite for r < σmin
and vanishes for r ! σmax. This suggests choosing (i) the
fluid of hard spheres of diameter σmin and center positions
ri, i = 1, . . . , N as a reference fluid and (ii) considering the
spherical shell σmin " |ri j | " σmax, ri j := ri − r j , as a pertur-
bation, in the sense of a measure. To perform a perturbative
approach for the free energy, we proceed in two steps. First,
for σmin " |ri j | " σmax we eliminate the orientational DOF
which reduces the original fluid of hard nonspherical particles
to a fluid of spheres with a hard core of diameter σmin inter-
acting via an effective isotropic potential Veff(r1, . . . , rN ). In
a second step, the free energy is calculated for such a fluid of
spherical particles.

B. Mapping to a fluid of spherical particles

In the present subsection, we will demonstrate how the
orientational DOF of a fluid of convex hard bodies can be
eliminated. We notice that this elimination and, accordingly,
the resulting mapping to spherical particles does not require
small anisotropy. Elimination of DOF has played an important

role in various fields of physics, e.g., in the renormalization-
group theory and in soft-condensed-matter theory. It leads
to effective interactions. A famous example is the Asakura-
Oosawa model [60,61], where the elimination of the smaller
particles of a binary, colloidal mixture generates attractive
interactions (depletion forces) between the larger ones.

As described in the previous subsection we consider a fluid
of N convex hard bodies (of revolution) with centers at ri and
orientations ui, i = 1, . . . , N interacting via the potential

V (r1u1, . . . , rN uN ; ε) =
∑

i< j

vHP(ri j, ui, u j ; ε). (6)

Here, vHP(ri j, ui, u j ; ε) is infinite if the center-to-center
distance ri j = |ri j | between two hard bodies is smaller
than the value of the contact function dc(ei j, ui, u j ; ε),
and zero otherwise, i.e., exp[−βvHP(ri jei j, ui, u j )] = *(ri j −
dc(ei j, ui, u j )). In the following, the ε dependence of the
various quantities will be made explicit only if necessary for
clarity.

To reduce the thermodynamics of this fluid to that of
spherical particles, we eliminate the orientational DOF. Ac-
cordingly, the averaging of the Boltzmann factor over the
orientational DOF leads to a coarse-grained excess free energy
defined by F (r1, . . . , rN ),

exp[−βF (r1, . . . , rN )] := 〈exp[−βV (r1u1, . . . , rN uN )]〉o,

(7)

with β = 1/kBT the inverse temperature and

〈(· · · )〉o =
[∫ ∏

i

dui

+D

]

(· · · ) (8)

the orientational average over +D, the surface area of a D-
dimensional unit sphere.

The basic idea of our approach is to choose the fluid of
hard spheres of diameter σmin as a reference fluid (unperturbed
system) and to take the anisotropic shape quantified by the re-
duced shape function s̃(ϑ ) [cf. Eq. (1)] as the “perturbation”.
Then the potential of the reference fluid is provided by

V0(r1, . . . , rN ) =
∑

i< j

vHS(ri j ; σmin), (9)

where exp[−βvHS(ri j ; σmin)] = *(ri j − σmin). We define the
cluster function

f (i, j) = *(ri j − dc(ei j, ui, u j )) − *(ri j − σmin). (10)

Using Eqs. (6), (9), (10), and an identity in
Ref. [62] allows us to express the Boltzmann factor
exp[−βV (r1u1, . . . , rN uN )] =

∏
i< j *(ri j − dc(ei j, ui, u j ))

as follows:
∏

i< j

*(ri j − dc(ei j, ui, u j ))=
∏

i< j

*(ri j − σmin)
∏

i< j

[1 + f (i j)].

(11)

Then we obtain from Eqs. (7) and (11) for the effec-
tive interaction potential Veff(r1, . . . , rN ) := F (r1, . . . , rN ) −
V0(r1, . . . , rN ):

Veff(r1, . . . , rN ) = −kBT ln

〈
∏

i< j

[1 + f (i j)]

〉

o

. (12)
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This is an appropriate place to come back to the choice of
an optimal diameter σ0 for a hard-sphere reference fluid, as
discussed in Sec. I. It is obvious that one should use σmin ≡
minui,u j dc(ei j, ui, u j ) " σ0 " maxui,u j dc(ei j, ui, u j ) ≡ εσmin.
Replacing in Eqs. (9)–(11) σmin by σ0, the identity in Eq. (11)
does not hold anymore if σ0 > σmin. For instance, choosing
σmin < ri0 j0 < σ0 for a fixed pair (i0, j0) and ri j ! εσmin for
all other pairs, there exists a finite domain for the orientational
DOF, (ui0 , u j0 ), such that the left-hand side of Eq. (11) equals
unity. However, its rright-hand side vanishes because of the
factor *(ri0 j0 − σ0) = 0. The identity in Eq. (11) is the crucial
starting point for a mapping of the hard-body fluid to a fluid
of spherical particles. This demonstrates the particular role of
σmin.

Due to the elimination of the orientational DOF, the ef-
fective potential Veff(r1, . . . , rN ) is isotropic. Furthermore,
f (i j) is only nonzero in the shell σmin " ri j " (1 + ε)σmin.
Therefore, the effective potential is nonvanishing only for
interparticle distances of the spherical particles between σmin
and (1 + ε)σmin. If two particles are separated by a distance
within this shell, we say that there is bond between them, and
a collection of particles with k bonds where each particle has
at least one bond is called a k-cluster. If each particle has a
bond with at most another particle, i.e., there are only single
particles or two-clusters, the effective potential reduces to
Veff(r1, . . . , rN ) =

∑
i< j v

(2)
eff (ri j ) with the effective two-body

potential

v(2)
eff (r) = −kBT ln[1 + 〈 f (re12, u1, u2)〉o], (13)

which depends only on the distance r. Similarly, the higher
effective potentials, v(k)

eff (r) for k > 2, can be derived by recur-
sion from Eq. (12), applied to a cluster of k spherical particles
and the knowledge of v(m)

eff (r), 2 " m " k − 1.
The qualitative behavior of v(2)

eff (r) follows without its ex-
plicit calculation. For fixed r, 1 + 〈 f (re12, u1, u2)〉o is the
ratio of the volume in orientational space of (u1, u2) in which
two hard bodies do not overlap to its total volume (+D)2.
For r + σ+

min, orientational DOF become more and more
constrained and the ratio goes to zero, implying a logarithmic
divergence of v(2)

eff (ri j ). In the opposite limit, r + (εσmin)−,
the orientational DOF become more and more free such that
the ratio converges to unity, implying v(2)

eff (ri j ) + 0. Hence,
the effective two-body potential interpolates between the
hard-core regime r < σmin and the force-free one r > εσmin.
The qualitative behavior of v(k)

eff (r1, . . . , rk) for k > 2 can be
discussed similarly.

Figure 3 displays the two-body potential for a 2D fluid
of ellipses with semiaxes of length a and b and aspect ratio
X0 = (a/b) = 1 + ε ! 1. We use the scaled distance r̃(ε) :=
(r/2b − 1)/ε, which varies between 0 and 1 for σmin = 2b "
r " σmax = 2a. The effective two-body potential v(2)

eff (r) can-
not be calculated analytically for arbitrary aspect ratios. For
X0 = 1.1 and 3.0, the orientational average in Eq. (13) was
performed numerically by a standard hit-and-miss Monte
Carlo method: One hard ellipse with a fixed orientation is
placed with its center at the origin, then another one is in-
serted N (MC)

t times with its center randomly placed over a
circle of radius r and with a random orientation. r is changed
linearly in discrete steps. We count the number of times,

FIG. 3. Numerical results for v(2)
eff (r) and X0 = 1.1 (solid red line)

and 3.0 (solid blue line) for a 2D fluid of ellipses with semiaxes of
length a, b and aspect ratio X0 = a/b = 1 + ε as a function of the
scaled distance r̃(ε) = (r/2b − 1)/ε. Also shown are the semiana-
lytical results, Eqs. (A10) and (A11), for X0 + 1 (upper black solid
line) and Eqs. (A21)–(A23) for X0 + ∞ (lower black dotted line) as
well as the analytical asymptotic results, Eqs. (A16) and (A15), for
r + 2b+ and r + 2a−, respectively (corresponding to dashed lines).

Nnov, where the two hard ellipses do not overlap. Since for
given r, f (re12, u1, u2) equals 0, if both ellipses do not
overlap and −1, otherwise we obtain for the orientational
average 1 + 〈 f (re12, u1, u2)〉o ≈ N (MC)

nov /N (MC)
t . Using this in

expression (13) leads for N (MC)
t = 109 − 1010 to v(2)

eff (r)
shown as solid red and blue lines for X0 = 1.1 and 3.0,
respectively. The corresponding dashed lines represent the
asymptotically exact results, Eqs. (A16) and (A15), for
r̃(ε) + 0 and r̃(ε) + 1, respectively. Comparing the semi-
analytical results, Eqs. (A10) and (A11), for X0 + 1 (upper
black solid line) with the results of Eqs. (A21)–(A23) for
X0 + ∞ (lower black dotted line) shows that v(2)

eff (r) does
not depend sensitively on the aspect ratio X0. There is an-
other characteristic feature of v(2)

eff (r) which can be observed
in Fig. 3 for X0 = 1.1 and 3.0. In Appendix A [Eq. (A1)],
we have shown that the logarithmic term in Eq. (13) can
be rewritten as ln[|D(r; ε)|/π2], where |D(r; ε)| is the area
of the domain in the two-dimensional orientational space of
both ellipses in which for given distance r the ellipses do not
overlap (cf. Fig. 10). In Appendix A, we have also proven that
the derivative of |D(r; ε)| with respect to the scaled distance
r̃(ε) = (r/2b − 1)/ε diverges at r̃(ε) = 1/2, corresponding
to r = a + b (see [Eq. (A13)]). Because |D(r; ε)| is finite
at r̃ = 1/2, the derivative of ln[D(r; ε)|] and therefore the
derivative of the effective two-particle potential diverges at
r̃ = 1/2 as well. This divergence at r̃(ε) = 1/2 appears in
Fig. 3 only as a kink due to the numerical inaccuracy and
discreteness of the variable r̃.

The reduction to a fluid of spherical particles with a hard
core of diameter σmin and a soft shell of thickness εσmin/2
has two implications. First, since the domain of the nonzero
effective potential shrinks to zero for ε + 0, i.e., the “per-
turbation” of the reference fluid of spherical hard spheres
of diameter σmin goes to zero, we can already predict that
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FIG. 4. Illustration of a cluster configuration of a two-
dimensional fluid of spherical particles. It consists of several k
clusters with k = 2, 3, and 4. For k > 2, various types exist with a
different number of bonds (number of overlaps). Their hard core of
diameter σmin is shown in dark blue and the light blue circle with
a diameter σmax marks the range above which the excluded volume
interactions vanish. Clusters occur if spherical shells (shown in light
blue) overlap. Their interaction energy is given be the effective po-
tential Veff(r1, . . . , rN ).

a phase transition point of a fluid of convex nonspherical
hard bodies will change linearly with ε = (σmax/σmin − 1),
provided the shape anisotropy is small and the transition point
is analytic in ε. For instance, the isotropic-hexatic, the hexatic-
solid phase transition of a 2D fluid of hard ellipses and the
isotropic-plastic crystal phase transition of ellipses in 2D and
ellipsoids of revolution in 3D should shift linearly with ε.
Second, the calculation of thermodynamic quantities for the
original fluid of convex nonspherical hard bodies is reduced to
the calculation of (i) the free energy of the reference fluid and
(ii) contributions of the cluster configurations (two-clusters,
three-clusters, etc.) as illustrated in Fig. 4. The energy of such
a cluster configuration follows from the effective potential,
Eq. (12). Summing over all such cluster configurations yields
the configurational part of the canonical partition function
of the original fluid. This second step will be performed in
the following subsection. Finally, we stress that the present
perturbative approach to eliminate the orientational DOF can
also be extended to liquids of rigid molecules with a smooth
pair potential.

C. Free energy

The Helmholtz free energy

F (T,V, N ; ε) = Fid(T,V, N ) + Fex(T,V, N ; ε) (14)

of a D-dimensional fluid of N hard nonspherical particles in a
volume V with number density n=N/V consists of the ideal
gas contribution Fid(T,V, N ) = NkBT ln[n(,t )Dµo] and the
excess free energy

Fex(T,V, N ; ε) = −kBT ln Zex(T,V, N ; ε). (15)

Here, ,t =
√

2π h̄2/mkBT is the thermal wavelength of the
translational DOF and µo is the corresponding contribution
from the orientational DOF, involving the moments of inertia
of the hard body. The excess free energy, Eq. (15), follows
from the excess canonical partition function

Zex = Zex(T,V, N ; ε)

=
∫ [

N∏

i=1

dui

+D

dri

V

]

exp[−βV (r1u1, . . . , rN uN )].

(16)

Now we will perform a cluster expansion Fex(T,V, N ; ε) =∑∞
k=0 Fk (T,V, N ; ε) of the excess free energy with ε as the

smallness parameter. Due to the mapping of the hard-body
fluid to a fluid of spherical particles, the terms Fk (T,V, N ; ε)
(k ! 0) acquire a clear physical interpretation. The zeroth
order term, F0(T,V, N ), is the excess free energy of the
reference fluid consisting of hard spheres of diameter σmin,
and Fk (T,V, N ; ε) for k ! 1 is the contribution of all cluster
configurations with k bonds, i.e., k overlapping soft shells (cf.
Fig. 4). Note that this physical picture does no longer involves
the orientational DOF. It demonstrates that it is the thickness
of the soft shell of the spherical particles which becomes
the perturbation of the reference fluid and not an anisotropic
potential as in, e.g., Refs. [33,34,37]. Making use of Eq. (11)
and suppressing the ε dependence, Eq. (16) assumes the
form

Zex = Z (0)
ex

〈〈
∏

i< j

[1 + f (i j)]

〉

o

〉

t

, (17)

with the excess partition function

Z (0)
ex =

∫ [
N∏

i=1

dri

V

]

exp[−βV0(r1, . . . , rN )] (18)

of the reference fluid and the average with respect to the
canonical ensemble of the reference fluid:

〈(· · · )〉t = 1

Z (0)
ex

∫ [
N∏

i=1

dri

V

]

exp[−βV0(r1, . . . , rN ) (· · · ).

(19)

Substituting Zex from Eq. (17) into Eq. (15), the cluster expan-
sion of Fex(T,V, N ) reads

Fex(T,V, N ) =
∞∑

k=0

Fk (T,V, N ), (20)

with

F0(T,V, N ) = −kBT ln Z (0)
ex (T,V, N ), (21)

the excess free energy of the reference fluid and the cluster
contributions Fk (T,V, N ), k ! 1 of order O(εk ). Note, ε is the
anisotropy parameter introduced in Eq. (2). For ellipses and
ellipsoids of revolution, ε = X0 − 1 with X0 the aspect ratio.
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Explicitly, Fk for k = 1 and 2 are provided by

F1(T,V, N ) = −kBT
∑

i< j

〈〈 f (i j)〉o〉t , (22)

F2(T,V, N ) ≡ F 3
2 (T,V, N ) + F 2−2

2 (T,V, N )

=−3kBT

{
∑

i< j<k

[〈〈 f (i j) f ( jk)〉o〉t − 〈〈 f (i j)〉o〉t 〈〈 f ( jk)〉o〉t ] +
∑

i< j<k<l

[〈〈 f (i j) f (kl )〉o〉t − 〈〈 f (i j)〉o〉t 〈〈 f (kl )〉o〉t ]

}

.

(23)

Also, terms such as
∑

i< j (〈〈 f (i j)〉o〉t )
2

and
∑

i< j<k〈〈 f (i j)〉o〉t 〈〈 f ( jk) f ( ji)〉o〉t occur. They are of order N0 and do not contribute
in the thermodynamic limit.

The contributions in Eqs. (22) and (23) possess physical interpretations. The first correction, F1, is the contribution of
independent two-clusters. The first line of Eq. (23), denoted by F 3

2 , arises from three-clusters with two bonds (see Fig. 4) and its
second line is the contribution, F 2−2

2 , of pairs of two-clusters. These pairs are correlated due to the hard-sphere interaction in the
reference fluid.

Note that although the form of the results, Eqs. (22) and (23), resemble the standard virial expansion, our approch is
qualitatively different. First, the averages 〈(. . .)〉t over the translational DOF are performed for the reference fluid which is
correlated. Second, in the standard virial series, the first and second lines in Eq. (23) do not exist since they correspond to a
reducible cluster.

Making use of Eqs. (5) and (10), one can express averages of products of the cluster functions by products of d̃c(e, u1, u2; ε)
averaged over the orientational DOF and n-particle distribution functions g(n)(r1, . . . , rn). Using the results from Appendix B,
introducing the dimensionless density n∗ = nσ D

min and the average over the bond orientations (ei j ):

(· · · ) =
∫

+D

∏

i< j

dei j

+D
(· · · ), (24)

we find in leading order in ε the contribution of a two-cluster

F1(T,V, N ) = 1
2 NkBT [+Dn∗g(2)(σmin)〈d̃c(e12, u1, u2; 0)〉o]ε + O(ε2), (25)

and that of a pair of two-clusters

F 2−2
2 (T,V, N ) = − 1

8 NkBT [+Dn∗g(2)(σmin)〈d̃c(e12, u1, u2; 0)〉o]2[+Dn ξ (e12, e34, e13)D]ε2 + O(ε3), (26)

where ξ (e12, e34, e13) is the correlation length of a correlation function g(4)(σmin, σmin, r13; e12, e34, e13) [cf. Eq. (B17)]. Hence,
ξ (e12, e34, e13) is a measure of the correlation between the bond orientations e12 and e34 of a pair of two-clusters with bond-length
σmin separated by r13 = r13e13. Note that g(4)(σmin, σmin, r13; e12, e34, e13) resembles the correlation function of the local hexatic
order parameter .(ri), i = 1, 3 at r1 and r3 [58]. For the contribution of a three-cluster with two bonds, we find

F 3
2 (T,V, N ) = − 1

2 NkBT (+Dn∗)2{g(3)(σmin, σmin; e12 · e23)〈d̃c(e12, u1, u2; 0)d̃c(e23, u2, u3; 0)〉o

− [g(2)(σmin)〈d̃c(e12, u1, u2; 0)〉o]2} ε2 + O(ε3). (27)

Let us comment on the general structure of Fk (T,V, N ; ε),
where the dependence on ε is made explicit. It is given
by a power series:

∑∞
l=0 F (l )

k (T,V, N ) εk+l . Its lead-
ing order term, F (0)

k (T,V, N ), consists of products in-
volving 〈d̃c(e12, u1, u2; 0)d̃c(e23, u2, u3; 0) . . .)〉o and the m-
particle distribution functions g(m)(r1, r2, r3, . . .) (k " m "
2k). These products are averaged over the bond orientations
(e12, e23, . . .). The higher-order corrections, F (l )

k (T,V, N ),
for l > 0 involve derivatives /ν d̃c(ei j, ui, u j ; ε)//εν |ε=0 and
/µg(m)(r1, r2, . . . )// (n∗)µ. An explicit example is given
in Appendix B for k = 1 and l = 1. Using the se-
ries exansion *[(ri j − σmin) − 1] = *(ri j − σmin) − δ(ri j −
σmin)1 + δ′(ri j − σmin)12/2 + O(13) (see also Ref. [37])
with 1 = (εσmin)d̃c(ei j, ui, u j ; ε) as a perturbation, one also
obtains Fk (T,V, N ; ε).

To summarize this section, the calculation of the free
energy of the fluid of hard nonspherical particles has been
reduced to the calculation of (i) the m-particle distribution
function g(m) of the reference fluid of hard spheres (or disks
in case of a 2D fluid) of diameter σmin and (ii) orientational
averages of products of the dimensionless contact function
d̃c(ei j, ui, u j ; ε). The dependence on the density n∗ comes
only from g(m) and its derivatives with respect to n∗. The
contact function is a purely geometrical quantity, completely
independent on the thermodynamic variables (T,V, N ). Even
if the overlap functions was known, the analytical calculation
of d̃c(ei j, ui, u j ; ε) would not be feasable. On the other hand,
the two-body quantity d̃c(ei j, ui, u j ; ε) is determined by the
shape function s(ϑ ; ε), a one-body entity. In the next section,
we will present a perturbative method allowing us to ex-
press the contact function by the shape function. Using these
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results, the perturbative expansion of the free energy with
εd̃c(ei j, ui, u j ; ε) as a “perturbation” turns into an expansion
with respect to the shape anisotropy εs̃(ϑ ) [Eq. (2)].

III. CONTACT FUNCTION: SHAPE DEPENDENCE

In this section, it is necessary to make the dependence of
the various quantities on the shape anisotropy ε explicit.

As shown in Sec. II C, the calculation of the free en-
ergy, and therefore of thermodynamic quantities, requires
knowledge of the reduced contact function d̃c(e12, u1, u2; ε)
[Eq. (5)]. The calculation of this function by solving Eq. (4)
for two convex hard nonspherical bodies is a highly in-
tricate mathematical problem which has attracted a lot of
attention over decades (see, e.g., Refs. [6,59,63,64]). Al-
though an analytical closed expression for an overlap function
ψ (de12, u1, u2; ε) exists for a pair of hard ellipses, an analyti-
cal solution of ψ (de12, u1, u2; ε) = 0 is possible, in principle.
The square of d̃c(e12, u1, u2; ε) is one of the four roots of a
quartic equation. Since these roots are more involved, it may
not be easy to figure out which of these roots is the physically
correct one. More important, the overlap function for ellipses
is the only analytically known example. Therefore, it is highly
desirable to elaborate on a quite different approach than in the
past. This becomes possible using the contact conditions for
two convex hard bodies with a smooth surface which directly
involve the shape function s(ϑ,ϕ; ε). Although this can be
done for arbitrary hard bodies, we will restrict ourselves again
to bodies with at least one rotational axis such that the shape
function itself does not depend on the azimuth angle ϕ.

The derivation of the contact conditions uses elementary
tools of differential geometry of curved surfaces embedded in
3D space or curved lines in 2D space. This first step is straight-
forward and will be described for bodies in 3D. The solution
of the contact conditions yields the contact point parametrized
by the angles (ϑ (e12, u1, u2; ε),ϕ(e12, u1, u2; ε)) and the con-
tact function dc(e12, u1, u2; ε) for given orientations u1, u2,
and direction e12 of the center-to-center vector. Of course,
the equations for the contact conditions cannot be solved, in
general. But, in a second step, we will develop a perturbative
method which will allow us to solve these equations iter-
atively, even for the generic family of Eq. (2) of convex
hard bodies. For the second step (resembling the standard
perturbation theory in quantum mechanics), we will describe
the essential conceptual steps only. Details can be found in
Appendix C.

A. Contact conditions

As stressed in Sec. II A, the contact conditions for convex
hard bodies of revolution are completely determined by the
shape function s(ϑ ; ε) characterizing the set S(u; ε) [Eq. (3)].
Abbreviating ω = (ϑ,ϕ), a point on the surface of the body
with orientation u is provided by

s(ω, u; ε) = s(ϑ ; ε)R(u)es(ω), (28)

with es(ω) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ )T . The unit vec-
tor es(ω) together with eϑ (ω) = /es(ω)//ϑ and eϕ (ω) =
(/es(ω)//ϕ)/ sin ϑ build a local orthonormal basis.

If two such convex hard bodies with orientations ui, i =
1, 2 and a center-to-center separation vector d12 = d e12 are
in an exterior tangential contact, their two centers and the
contact point form a triangle. Its side vectors are provided by
s(ωi, ui; ε), i = 1, 2, and dc(e12, u1, u2; ε)e12. Therefore, the
first contact condition reads

s(ω1, u1; ε) = dc(e12, u1, u2; ε) e12 + s(ω2, u2; ε). (29)

Due to the tangential contact, the tangential planes of both
hard bodies at the contact point are identical, however, with
normal vectors n(ωi, ui; ε) pointing in opposite directions.
Accordingly, the second contact condition becomes

n(ω1, u1; ε) = − n(ω2, u2; ε). (30)

The normal vector n(ωi, ui; ε) = tϑ (ωi, ui; ε) × tϕ (ωi, ui; ε)
at the surface point s(ωi, ui; ε) is the cross product
of the orthonormal tangential vectors tϑ (ωi, ui; ε) =
(/s//ϑ )/|/s//ϑ |(ωi, ui; ε) and tϕ (ωi, ui; ε) = (/s/
/ϕ)/|/s//ϕ|(ωi, ui; ε). As shown in Appendix C, it is
determined by

n(ωi, ui; ε) = R(ui )
−/s//ϑi(ϑi; ε)eϑ (ωi ) + s(ϑi; ε)es(ωi )√

(/s//ϑi(ϑi; ε))2 + (s(ϑi; ε))2
.

(31)

Given the shape function s(ϑ ; ε) and (e12, u1, u2), the solu-
tion of Eqs. (29) and (30) together with Eqs. (28) and (31)
yields the polar angles ωi(e12, u1, u2; ε) (corresponding to the
contact point) and the contact function dc(e12, u1, u2; ε) as a
functional of s(ϑ ; ε). Due to the overall rotational invariance
of the system, these three functions will only depend on the
scalars e12 · u1, e12 · u2 and u1 · u2.

B. Perturbative solution

As already stressed above, Eqs. (29) and (30) cannot be
solved analytically, in general. For spherical bodies of diame-
ter σmin, their solution is obvious. With respect to the origin
of the first sphere, the contact point is at (σmin/2)e12 such
that dc(e12, u1, u2; ε = 0) = σmin. The latter is independent
on (e12, u1, u2). Deforming the spherical shape smoothly, as
described by the family of shapes in Eq. (2), the contact point
and the contact distance dc will change smoothly. Therefore,
we elaborate on a perturbative approach using the strength of
deformation, ε, as a smallness parameter. Note the smooth-
ness concerns only the dependence of s on ε but not yet
its dependence on ϑ . This motivates a Taylor expansion of
ωi(e12, u1, u2; ε) and dc(e12, u1, u2; ε) with respect to ε. Sup-
pressing the dependence on (e12, u1, u2), we use

ωi(ε) =
∞∑

ν=0

ω(ν)
i εν, ω(ν)

i =
(
ϑ (ν)

i ,ϕ(ν)
i

)
, (32)

and

dc(ε) = σmin

[

1 +
∞∑

ν=1

d̃νε
ν

]

; (33)

compare Eq. (5). Including ellipsoids of revolution and el-
lipses with aspect ratio X0 = 1 + ε, we also introduce the
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Taylor expansion of s(ϑ ; ε),

s(ϑ ; ε) = σmin

2

[

1 +
∞∑

ν=1

s̃ν (ϑ ) εν

]

; (34)

compare Eq. (2). For the generic family of Eq. (2) of shapes,
this reduces to s̃ν (ϑ ) ≡ s̃(ϑ )δν,1 as discussed in Sec. II A.
Note for ε = 0, Eqs. (34) and (33) reduce to the body’s radius
σmin/2 and contact function dc(ε = 0) = σmin of hard spheres
of diameter σmin, respectively.

To perform the perturbative analysis, we have to replace ωi
in Eqs. (29) and (30) by ωi(ε). Then, using series Eqs. (32)–
(34), both sides of Eqs. (29) and (30) are expanded with
respect to ε. Comparing the coefficients of terms of order εµ

on both sides leads to relations between (ω(0)
i ,ω(1)

i ,ω(2)
i , . . . ),

(d̃1, d̃2, d̃3, . . . ), (s̃1, s̃2, s̃3, . . . ) and the derivatives of s̃µ(ϑ )
for µ ! 1. For generic bodies of revolution, only s̃(ϑ ) and
its derivatives occur. This procedure has been elaborated in
Appendix C up to the first. order in ε. The zeroth order
yields ω(0)

i (e12, u1, u2) and the first order determines, besides
ω(1)

i (e12, u1, u2), the linear order contribution d̃1(e12, u1, u2)
of the contact function. Only the latter enters the thermody-
namic quantities. It is provided by

d̃1(e12, u1, u2) = 1
2 [s̃1(arccos(e12 · u1))

+ s̃1(arccos(− e12 · u2))]. (35)

For an ellipse, s̃ν (ϑ ) can be calculated by substituting
x(ϑ ; ε) = s(ϑ ; ε) sin ϑ and z(ϑ ; ε) = s(ϑ ; ε) cos ϑ into the
quadratic equation (x/b)2 + (z/a)2 = 1 and using Eq. (34)
with σmin = 2b (the length of the minor axis) and X0 = a/b =
1 + ε. For ellipsoids of revolution, one proceeds similarly. We
find for ellipses and prolate ellipsoids

s̃1(ϑ ) = cos2 ϑ (36)

and

s̃1(ϑ ) = 1 − cos2 ϑ (37)

for oblate ellipsoids. Then, Eq. (35) yields, e.g., for ellipses
and prolate ellipsoids with Eq. (36):

d̃1(e12, u1, u2) = 1
2 [(e12 · u1)2 + (e12 · u2)2]. (38)

Solving ψ (de12, u1, u2; ε) = 0 with the overlap function
for ellipses [Eqs. (A2)–(A4)], one finds dc(e12, u1, u2; ε) =
2b[1 + εd̃1(e12, u1, u2) + O(ε2)] with d̃1(e12, u1, u2) identi-
cal to the result of Eq. (38), derived from Eq. (35) for general
shapes.

The general result of Eq. (35) demonstrates that the contact
function for generic hard bodies of revolution in leading order
in the anisotropy parameter ε is completely determined by the
dimensionless shape function s̃(ϑ ) since s̃1(ϑ ) ≡ s̃(ϑ ). The
coefficients d̃ν , ν > 1 will also involve derivatives of s̃(ϑ ).
Since the derivative’s order increases with ν, an increasing
degree of smoothness of the shape function is required. The
dependence of the first-order coefficient [Eq. (35)] on the
orientations (u1, u2) is additive. The coefficients for ν > 1,
however, will also depend on (u1 · u2), i.e., on the interaction
between both orientations. Although our focus is not on the
isotropic-nematic phase transition, this may imply that the

study of nematic order requires taking into account higher-
order terms in the series expansions, Eqs. (32), (33), and also
(34), for the case of ellipses or ellipsoids of revolution.

IV. EQUATION OF STATE

To illustrate the application of the cluster expansion pre-
sented in Sec. II, we derive the EOS to leading order in the
shape anisotropy ε. We will make the dependence on ε and on
the dimensionless density n∗ explicit.

A. Equation of state: General shapes, ellipses, and ellipsoids

The result in Eq. (35) allows us to calculate the
leading-order contribution of F1. First, we elaborate on
the case of a generic hard body of revolution. Since
then s̃1 = s̃ and d̃c(e12, u1, u2; 0) ≡ d̃1(e12, u1, u2), we obtain
from Eq. (35) and 〈s̃(arccos(e12 · u1))〉o = 〈s̃(arccos(−e12 ·
u2))〉o〈d̃c(e12, u1, u2; 0)〉o = 〈s̃(arccos(e12 · u1))〉o. Substitut-
ing into Eq. (25) leads to

F1(T,V, N ; ε) = NkBT
+D

2
n∗g(2)(σmin; n∗)

× 〈s̃(arccos(e12 · u1))〉o ε + O(ε2). (39)

We remind the reader here and below that n∗ = n(σmin)D is the
dimensionless density of the reference fluid. Using Eq. (21),
the excess pressure p0 = −/F0//V |T,N of the D-dimensional
reference fluid is provided by [2]

p0(T, n) = nkBT
+D

2D
n∗g(2)(σmin; n∗). (40)

Using these results, we obtain for the EOS in the form of the
compressibility factor Z (T, n∗; ε) = p(T, n; ε)/nkBT :

Z (n∗; ε) = 1 + +D

2D
n∗

{
g(2)(σmin; n∗) + D〈s̃(ϑ (e12 · u1))〉o

× d
dn∗ [n∗g(2)(σmin; n∗)] ε + O(ε2)

}
. (41)

The compressibility factor, Z (n∗; ε), should not be confused
with the partition function. Equation (40) reveals that the term
involving the derivative with respect to n∗ is related to the
isothermal compressibility of the reference system.

Hence, we succeeded in determining the EOS of a D-
dimensional fluid of hard nonspherical particles of revolution
as a functional of its shape function, up to the first order in the
shape anisotropy ε.

We now turn to ellipsoids of revolution and ellipses. Equa-
tions (36) and (37) imply 〈s̃1( arccos(e12 · u1))〉o = aκ/3 with
aprolate = 1 and aoblate = 2. Then we obtain from Eq. (41) and
D = 3 up to order ε:

Zellipsoid(n∗; ε) = 1 + 2π

3
n∗

{
g(2)(σmin; n∗)

+ aκ

d
dn∗ [n∗g(2)(σmin; n∗)] ε + O(ε2)

}
.

(42)
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For a 2D fluid of ellipses, it follows with 〈s̃1( arccos(e12 ·
u1))〉o = 1/2

Zellipse
2D (n∗; ε) = 1 + π

2
n∗

{
g(2)(σmin; n∗))

+ d
dn∗ [n∗g(2)(σmin; n∗)] ε + O(ε2)

}
. (43)

Approximating Zellipse
2D (n∗; ε) by neglecting O(ε2) will be

called the first-order approximation (first O) in the following.
Our method is also directly transferable to a 1D fluid of

ellipses with centers on the x axis and orientational DOF in the
x-z-plane, which was studied using the transfer-matrix method
[65]. This model has the great advantage that the reference
fluid is the Tonks gas of hard rods of length σmin for which the
EOS [66] and the pair-distribution function [67] are known
analytically. The calculation of the corresponding compress-
ibility factor requires some caution, since the solid angle of
the translational DOF, +1 = 2, differs from the solid angle,
+2 = 2π , of the orientational DOF. Taking into account that
+D in Eqs. (39) and (40) is the solid angle of the translational
DOF, it follows that

Zellipse
1D (n∗; ε) = 1

1 − n∗ + 1
2

n∗

(1 − n∗)2
ε + O(ε2). (44)

Neglecting O(ε2) will again be called first O. The first term
is the compressibility factor of the Tonks gas. It is the sum
of the contribution nkBT of the 1D ideal gas and the excess
pressure p0 = nkBT n∗/(1 − n∗) of the Tonks gas. The ex-
cess pressure p0 follows from Eq. (40) using D = 1, +1 = 2,
and g(2)(σmin; n∗) = 1/(1 − n∗) [67]. The second term follows
from Eq. (41), again using +1 = 2, g(2)(σmin; n∗) = 1/(1 −
n∗), and 〈s̃( arccos(e12 · u1))〉o = 1/2 for ellipses.

B. Equation of state: Equal-volume sphericalization

In Sec. II C, we presented a theoretical framework in which
the excess free energy, Fex(T,V, N ; ε), of the convex-hard-
body fluid can be obtained by a cluster expansion using a fluid
of hard spheres of diameter σmin as the unperturbed system
and the anisotropy parameter ε as the smallness parameter. For
cluster configurations consisting of a single and a pair of two-
clusters, we have calculated their leading-order contributions
to the excess free energy.

As discussed in the Introduction, “sphericalization” is a
frequently used approximation for hard-body fluids, i.e., their
thermodynamic quantities are approximated by those of a
fluid of hard spheres with an effective diameter. In this
subsection, it will be shown that the mapping in Sec. II B
together with our perturbative approach in Sec. II C leads
for the same number density to a sphericalization, for which
the hard sphere’s volume is identical to that of the hard
bodies. This follows from the observation that a subclass of
an infinite number of particular cluster configurations can
be summed up. This sum is contained in the excess free
energy F hs

ex (T,V, N ; σ (ε)) of a fluid of hard spheres of an
effective diameter σ (ε) and the same number density n. The
equal-volume condition Vp(ε) ≡ V hs

p (ε) = (+D/D)(σ (ε)/2)D

determines σ (ε). In particular, Vp(ε) is a functional of the

shape function:

Vp(ε) = 1
D

∫

+D

des (s(ϑ ; ε))D = +D

D
〈(s(ϑ ; ε))D〉o. (45)

Here we used the orientational average, Eq. (8), for a single
particle. Substituting s(ϑ ; ε) from Eq. (2), we obtain

Vp(ε) =Vp(0)[1 + D〈s̃(ϑ )〉o ε + O(ε2)], (46)

with Vp(0) = (+D/D)(σmin/2)D, the volume of the hard
spheres of the reference fluid. Then, Vp(ε) = V hs

p (ε) leads to

σ (ε) = σmin

[
Vp(ε)
Vp(0)

]1/D

= σmin[1 + 〈s̃(ϑ )〉o ε + O(ε2) ]. (47)

The excess free energy, F hs
ex (T,V, N ; σ (ε)), is identical

to the excess free energy F0(T,V, N (ε)) of the reference
fluid with an effective number density n(ε) = N (ε)/V =
nVp(ε)/Vp(0) = n[1 + D〈s̃(ϑ )〉o ε + O(ε2)]. The cluster
expansion, Eq. (20), of the excess free energy of the
hard-body fluid reads Fex(T,V, N ; ε) = F0(T,V, N ) +
F1(T,V, N ; ε) + O(ε2), where the leading-order term,
Eq. (25), of F1(T,V, N ; ε) is the contribution of a single
two-cluster. To make progress, we show that the sum
F0(T,V, N ) + F1(T,V, N ; ε) can be simplified. This is
achieved by using (i) F0(T,V, N (ε)) =: N f0(T, n(ε)),
(ii) −/F0//V |T,N = kBT n2/ f0(T, n)//n|T = p0 = nkBT
(+D/2D)n∗g(2)(σmin; n∗), and (iii) 〈d̃c(e12, u1, u2; 0)〉o =
〈s̃(arccos(e12 · u1))〉o ≡ 〈s̃(ϑ )〉o [follows from Eq. (35)] and
expansion up to O(ε). Because Fk (T,V, N ; ε) = O(εk ) for all
k, we obtain from Eq. (20) and perform the steps above:

Fex(T,V, N ; ε) = F hs
ex (T,V, N ; σ (ε)) + O(ε2). (48)

Now it is crucial to note that also the leading-order
term O(εk ) of all cluster configurations contributing to
Fk (T,V, N ; ε), k ! 2 and consisting of a k-tuple of two-
clusters is contained in the corresponding leading-order term
O(εk ) of F hs

ex (T,V, N ; σ (ε)). This can be “proven” as follows.
The cluster expansion discussed in Sec. II C can also be ap-
plied to the fluid of hard spheres of effective diameter σ (ε),
again using the fluid of hard spheres of diameter σmin as a
reference fluid. In the cluster function, f (i j) [cf. Eq. (10)],
one only has to replace the contact distance dc(e12, u1, u2; ε)
for two convex hard bodies by σ (ε), the contact function
of two hard spheres of diameter σ (ε). Let us denote this
cluster function by f hs(i j). Of course, it does not depend on
(e12, u1, u2). Comparison of Eqs. (33) and (47) shows that
this replacement corresponds in linear order in ε to replacing
d̃c(e12, u1, u2; 0) ≡ d̃1(e12, u1, u2) by 〈s̃(ϑ )〉o.

The orientational DOF of the fluid of convex hard
bodies contribute in leading order O(εk ) a factor
[〈d̃c(e12, u1, u2; 0)〉o]k to the free energy of cluster
configurations of k-tuple of two-clusters [see, e.g., Eq. (26)
for k = 2 and Appendix B]. For the cluster expansion of
F hs

ex (T,V, N ; σ (ε)), these k-tuple of two-clusters yield in
leading order the factor [〈s̃(ϑ )〉o]k . For generic hard bodies,
Eq. (35) implies 〈d̃c(e12, u1, u2; 0)〉o = 〈s̃(ϑ (0)

1 (e12, u1, u2))〉o.
The latter is identical to 〈s̃(ϑ )〉o, i.e., the factor stemming
from the orientational DOF is identical for the f and f hs
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expansions. This also holds for the remaining factor arising
from the translational DOF. This factor involves m-particle
distribution functions of the reference fluid which are
identical for both expansions since the reference fluid is the
same. Therefore, the leading-order contribution of the k-tuple
of two-clusters to Fex(T,V, N ; ε) and F hs

ex (T,V, N ; σ (ε)) is
identical.

The remaining cluster configurations, also contributing to
the leading-order term of Fk (T,V, N ; ε), contain, in addition,
three-clusters, four-clusters, etc. Again, the translational
DOF contribute in the f and f hs expansions the same terms.
However, this is not true for the orientational DOF. In the f
expansion, the orientational DOF contribute a factor 〈d̃c(e12,
u1, u2; 0)d̃c(e23, u2, u3; 0) · · · 〉o [see, e.g., Eq. (27)] whereas
the factor 〈s̃(ϑ ; 0)〉o〈s̃(ϑ ; 0)〉o · · · appears in the f hs

expansion. Both factors are different. Equating these factors
corresponds to a mean-field-like approximation: 〈d̃c(e12, u1,
u2; 0)d̃c(e23, u2, u3; 0) . . .〉o ≈ 〈d̃c(e12, u1, u2; 0)〉o〈d̃c(e12,
u1, u2; 0)〉o . . .. This mean-field-like approximation
corresponds to replacing the original convex hard body by
a hard sphere with the same volume. Yet, three-clusters,
four-clusters, etc. become more important for larger
anisotropy parameters. Therefore, for ε small enough,
F hs

ex (T,V, N ; σ (ε)) is likely a more accurate approximation
of Fex(T,V, N ; ε) than F0(T,V, N ) + F1(T,V, N ; ε) up to the
linear order of Eq. (39). Equation (48) together with the ideal
gas contribution yields for the compressibility factor of the
convex-hard-body fluid

Z (n∗; ε) = Zhs(n; σ (ε)) + O(ε2), (49)

with

Zhs(n; σ (ε)) = 1 + +D

2D
nσ (ε)Dg(2)(σ (ε); n), (50)

the compressibilty factor of a hard-sphere fluid with the same
number density, n, as of the hard-body fluid and an effective
diameter σ (ε). Due to the discussion above, Zhs(n; σ (ε)) is
probably a better approximation of Z (n∗; ε) than the system-
atic expansion up to O(ε) on the right-hand side of Eq. (41),
if the anisotropy parameter is not too large. In the following,
the approximation Z (n∗; ε) ≈ Zhs(n; σ (ε)), with σ (ε) from
the first line of Eq. (47), will be called the equal-volume
sphericalization (EVS).

C. Comparison with the virial expansion

Since our approach resembles the standard virial ex-
pansion, we compare both approaches. The standard virial
expansion for the compressibility factor of a fluid of nonspher-
ical particles described by the family of Eq. (2) of generic
shapes (characterized by the anisotropy parameter ε) reads

Z (n∗; ε) = 1 +
∞∑

l=2

Bl (ε)
(
n∗/σ D

min

)l−1
, (51)

and for the excess pressure, Eq. (40), of the reference fluid of
hard spheres of diameter σmin:

p0(T, n) = kBT n
∞∑

l=2

Bl (0) nl−1. (52)

Equations (40) and (52) lead to the virial series of the pair-
distribution function (of the reference fluid) at contact

g(2)(σmin; n∗) = 2D
+D (σmin)D

∞∑

l=2

Bl (0)
(
n∗/σ D

min

)l−2
. (53)

Substitution of g(2)(σmin; n∗) from Eq. (53) and its derivative
with respect to n∗ into Eq. (41) and comparing with Eq. (51)
allows us to express the virial coefficients for an arbitrary
convex-hard-body fluid by the corresponding coefficients for
the reference fluid of hard spheres:

Bl (ε) = [1 + D(l − 1)〈s̃(arccos(e12 · u1); 0)〉o ε

+ O(ε2)] Bl (0) (54)

for all l . Note that because we include ellipses and ellipsoids
of revolution, s̃(ϑ ; ε) also depends on ε [see corresponding
comment below Eq. (2)].

The reduced virial coefficients are defined by B∗
l (ε) =

Bl (ε)/[Vp(ε)]l−1, with Vp(ε) from Eq. (46). Since 〈s̃(ϑ ; 0)〉o =
〈s̃(ϑ (e12 · u1); 0)〉o, Eq. (54) implies that the linear term in ε
of Bl (ε)/[Vp(ε)]l−1 vanishes. Accordingly, we obtain

B∗
l (ε) = [1 + O(ε2)] B∗

l (0) (55)

for all l . Note that the term of O(ε) of B∗
l (ε) vanishes for

all convex hard bodies, including shapes which are contin-
uous but not smooth. For l = 2, this is consistent with the
expansion of the general result for B∗

2(ε) for ellipses [31]
and for ellipsoids of revolution [22]. But it is also consis-
tent with the result that B∗

2(ε) becomes minimal for a hard
sphere among all convex hard particles [56]. Analytical re-
sults for B∗

l (ε) and l ! 3 do not seem to exist. The result in
Eq. (55) is obvious. The reduced virial coefficients B∗

l (ε) =
/ l−1Z (n∗; ε)//η(ε)l−1/(l − 1)! are essentially the derivatives
of the compressibility factor with respect to the packing
fraction η(ε) = n(+D/D)(σ (ε)/2)D. Then Eq. (49) implies
Eq. (55).

D. Comparison with the Monte Carlo results

For a fluid of hard ellipses, we will compare our analytical
results, Eqs. (43), (44), and (49) [neglecting O(ε)2] for the
compressibility factor with the result from our MC simulation
and scaled particle theory. In the following, a and b denote
the length of the major and minor semiaxes, respectively, and
X0 = 1 + ε = a/b is the aspect ratio of the ellipses with ε the
anisotropy parameter.

The MC simulation for the 1D and 2D fluid of ellipses
was performed at constant pressure, p, and temperature, T ,
for N = 100 and N = 2610 ellipses, respectively. Periodic
boundary conditions were chosen. In total, 2 × 108 MC steps
were performed for the 1D fluid and 108 MC steps for the 2D
one. The initial equilibration part was discarded by inspecting
the behavior of the density. As an overlap criterion, we used
the one proposed by Perram and Wertheim [59]. The pres-
sure was changed such that the corresponding dimensionless
number densities n∗ = (N/L)(2b) and n∗ = (N/A)(2b)2 for
the 1D fluid of length L and the 2D one of area A, respec-
tively, vary between n∗

min ≈ 0.010 and n∗
max ≈ 0.8. For the 2D

fluid and X0 < 1.5, n∗
max is still below the transition density

n∗
i−p(X0) of the phase transition from the isotropic liquid to the
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first O

FIG. 5. Density dependence of the compressibility factor
Z (n∗; ε) of the 1D fluid of ellipses for aspect ratios X0 = 1 + ε =
1.1, 1.2, and 1.5. The degree of the shape anisotropy is illustrated
by the corresponding blue ellipses. Shown is the analytical result
(first O) from Eq. (44) [neglecting O(ε2)] and the Monte Carlo (MC)
result.

plastic crystalline phase. A nematic phase occurs only above
n∗

i−p(X0), provided X0 ! 2.5 [11]. Note, our 2D system is not
large enough to exhibit the two-step melting process with the
hexatic phase in between.

First, the comparison is performed for the 1D fluid where
the centers of the ellipses can only move along the x axis and
rotate in the x − z plane. For this model, there are no results
from scaled-particle theory. A comparison with Zhs(n; σ (ε))
from Eq. (50) is also not possible, since the analytical result
in Eq. (49) requires that the spatial dimension of the convex
hard body and that of the fluid are identical. Figure 5 compares
Zellipse

1D (n∗; ε) [Eq. (44)] with the corresponding MC result for
aspect ratios X0 = 1 + ε = 1.1, 1.2, and 1.5. To observe the
direct influence of the orientational DOF, we have plotted in
Fig. 6 the relative compressibility factor, [Z (n∗; ε)/Z (n∗; 0) −
1], which measures the deviation of Z (n∗; ε) from the com-
pressibilty factor Z (n∗; 0) of the reference fluid of hard rods
of length σmin = 2b. Figure 5 demonstrates good agreement.
Particularly for ε = 0.1, the agreement is very good, even up
to n∗ = 0.85, which is already close to n∗

cp = 1, the maximum
density for closest packing. Of course, for the smallest value
ε = 0.1, the compressibility factor Z (n∗; 0.1) does not differ
much from Z (n∗; 0). Accordingly, it is more conclusive to
compare the relative compressibility factors in Fig. 6. We still
observe very good agreement for ε = 0.1 up to n∗ = 0.85.
Even for ε = 0.5, both results agree rather satisfactorily up
to n∗ ≈ 0.6.

Now we turn to the 2D fluid of ellipses. The compari-
son of the MC result with Zellipse

2D (n∗; ε) [Eq. (43)] requires
the knowledge of the pair-distribution function of the ref-
erence fluid at contact, g(2)(σmin; n∗), and the derivative of

first O

FIG. 6. The relative compressibility factor [Z (n∗; ε)/Z (n∗; 0) −
1] of the 1D fluid of ellipses as a function of n∗ for aspect ratio
X0 = 1 + ε = 1.1, 1.2, and 1.5. Shown is the analytical result from
Eq. (44) (first O) and the Monte Carlo (MC) result.

n∗g(2)(σmin; n∗) with respect to n∗. The former follows di-
rectly from the pressure [cf. Eq. (40)] and the latter from the
compressibility. In contrast to the 1D fluid, both quantities are
not known analytically. These quantities could be obtained
by the MC simulation. Since the simulation was performed
at constant pressure, p, the corresponding density n∗(p; X0)
for X0 > 1 will differ from the density n∗(p; X0 = 1) of the
reference fluid. To avoid this problem, we have chosen the
EOS derived in Ref. [68] for a 2D fluid of hard disks and
n∗ " n∗

max = 0.880. This EOS is very precise. For instance,
at the maximum density n∗ = 0.860 of our MC simulation of
the reference fluid, its compressibility factor differs from the
simulational result by 0.25%. Using the compressibility fac-
tor Zdisks

SP (n∗) = 1/(1 − πn∗/4)2 [69] for the hard-disk fluid
from scaled-particle theory, it deviates from the MC result by
1.65%. The EOS of Ref. [68] allows us to explicitly calculate
the first-order result from Eq. (43) and of the equal volume
sphericalization with Zhs(n; σ (ε)) from Eq. (50).

Besides the EVS, Z (n∗; ε) ≈ Zhs(n; σ (ε)) [Eq. (49)], the
comparison also encompasses the result from scaled-particle
theory for a 2D fluid of convex hard bodies [57]:

ZSP(η) = 1
1 − η

+ γ
η

(1 − η)2
. (56)

Here, η = NAp/A = nAp is the packing fraction and

γ = (Sp)2

4πAp
(57)

the shape parameter. These two parameters depend on Ap
and Sp, the area and the perimeter, respectively, of an
arbitrary two-dimensional convex hard body. For ellipses,
Ap(X0) = πb2X0 and Sp(X0) = 4bE (e(X0))X0. The eccentric-
ity is defined by e(X0) =

√
1 − X −2

0 , and E (e) is the complete
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first O

FIG. 7. Density dependence of the compressibility factor
Z (n∗; ε) of the 2D fluid of ellipses for aspect ratios X0 = 1 + ε =
1.1, 1.2, and 1.5. Shown are our analytical results (first O) (EVS)
[Eqs. (43) and (49)] and from scaled-particle theory (SP) [Eq. (56)]
as well as the Monte Carlo (MC) result.

elliptical integral of the second kind [70]. For hard disks, it is
γ = 1 and η = πn∗/4. Then, Eq. (56) reduces to Zdisks

SP (n∗)
from above.

Figures 7 and 8, respectively, present the density de-
pendence of the compressibility factor, Z (n∗; ε), and of the
relative compressibility factor, [Z (n∗; ε)/Z (n∗; 0) − 1], for the
various analytical results and the results from the MC simu-

first O

FIG. 8. Density dependence of the relative compressibility factor
[Z (n∗; ε)/Z (n∗; 0) − 1] of the 2D fluid of ellipses for aspect ratios
X0 = 1 + ε = 1.1, 1.2, and 1.5. Shown are our analytical results
(first O) (EVS) [Eqs. (43) and (49)] and from scaled-particle theory
(SP) [Eq. (56)] as well as the Monte Carlo MC) result.

lation. The relative compressibility factor is a direct measure
of the shape anisotropy. It is zero for all densities if the shape
anisotropy vanishes. We note that the graph (SP) in Fig. 8 for
scaled-particle theory displays ZSP(πn∗X0/4)/Z (n∗, 0) and
not ZSP(πn∗X0/4)/ZSP(πn∗/4). Since EVS involves the com-
pressibility factor of a fluid of hard disks of diameter σ (ε) =
2b

√
1 + ε [follows from the first line of Eq. (47)] and den-

sity n, n∗ is limited to n∗ " 0.860/(1 + ε). Consequently, the
maximum range for the EVS results in Figs. 7 and 8 become
reduced by the factor 1/X0. To illustrate the influence of the
body’s anisotropy, we plot these quantities versus n∗ and not
versus the packing fraction (area fraction), η(X0) = πn∗X0/4,
which itself depends on X0 = 1 + ε. Both figures demonstrate
good agreement between our first-O result [Eq. (43)], and the
result (MC) from the MC simulation. However, this agreement
becomes more and more restricted to a smaller range of n∗ if
ε increases. But, both figures also show that the EVS repre-
sents significant improvement compared to the first-O result.
Figure 7 reveals that the MC points are well described by
both the SP result from scaled-particle theory and the EVS
result. However, the more sensitive quantity in Fig. 8 demon-
strates the strength of the equal-volume sphericalization and
its superiority with respect to scaled-particle theory, at least
for smaller shape anisotropies.

As discussed in Sec. I, further approximate versions for the
EOS exist in the literature. For instance, the EOS in Ref. [52]
is an improvement of ZSP(η). Although these various EOSs
describe the compressibility factor rather well up to higher
densities even for larger aspect ratios, most of them (including
scaled-particle theory) have some shortcomings, in contrast
to EVS. First, expanding the corresponding compressibility
factor with respect to ε reveals that the zeroth- and first-order
term differ from the exact result, Eq. (43). Consequently,
for fixed density n∗, those EOSs do not yield precise results
if the anisotropy becomes weaker and weaker. This is why
the quality of scaled-particle theory is not satisfactory for
small shape anisotropies, as demonstrated by Fig. 8. The
EOSs derived in Refs. [13,37,38,48,49] do not suffer from
this deficiency. However, for finite ε and for the same number
density, the sphericalization of the hard-body fluid is different.
The volume of the spheres of their reference fluid, either
(+D/D)[〈dc〉o]D [37,38] or (+D/D)〈(dc)D〉o [48,49], differs
from Vp = (+D/D)〈sD〉o [Eq. (45) ], the volume of the hard
body. This is true because the orientational average of, e.g.,
the Dth power of the contact function dc is not identical to
that average of the Dth power of the shape function s. The sec-
ond drawback concerns the divergence of the compressibility
factor, e.g., for the 2D fluid of ellipses at ηcp(ε) = π/2

√
3,

the maximum value for the packing fraction, which does not
depend on the aspect ratio [71]. This implies that Zhs(n; σ (ε))
diverges at the correct value n∗

cp(ε) = 2/
√

3(1 + ε), whereas
the other EOSs involving 1/(1 − η) (except for Eq. (11) of
Ref. [13]) diverge at the higher value n∗

div(ε) = 4/π (1 + ε),
being unphysical.

Finally, we check the prediction that all transition points of
any phase transition of a fluid of hard spheres should change
linearly with the aspect ratio. This will be performed for
the isotropic-plastic transition of a 2D fluid of ellipses. The
corresponding transition for X0 = 1 is the transition of the
fluid of hard disks from the isotropic liquid to a triangular
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FIG. 9. Transition density n∗
i−p for the isotropic-plastic transition

of the 2D fluid of ellipses as a function of X0. The linear fit was
obtained by a least-squares fit of the first six Monte Carlo (MC)
points. The Bézier-method was applied to illustrate the domain of
the plastic-crystalline phase, including the coexistence regime (light-
blue domain).

lattice. To observe the hexatic phase and the two-step melting,
the number of particles in the simulation must be significantly
larger than N = 2610 [72]. To determine the transition point
n∗

i−p(X0) of the transition from the isotropic liquid to the
plastic crystal, we used .6 = (1/N )

∑N
k=1〈exp[6iφkl ]〉 as an

order parameter. φkl describes the orientation of the nearest-
neighbor bond (k, l ) with respect to a fixed axis and 〈(· · · )〉 is
the average over all neigbors l of k. These neighbors were
obtained from a Delaunay triangulation. The pressure was
increased by small steps until the order parameter exhibits
a jump. The density corresponding to the occurrence of this
jump was taken as the transition density which is displayed
in Fig. 9. Since this transition is discontinuous (first-order
transition), n∗

i−p(X0) is the freezing line. The melting line
and, accordingly, the coexistence region was also determined.
Since the main purpose has only been to check our prediction
of a linear dependence of n∗

i−p(X0) on X0 for small enough
anisotropy, and since our MC-data scatter, the melting line
and the coexistence region are not shown. The straight line
in Fig. 9 supports our prediction of a linear shift of n∗

i−p(X0)
for small values of X0-1. There is little doubt that the corre-
sponding densities for the isotropic-hexatic and hexatic-solid
transition will shift linearly with X0, as well. We also applied
the Bézier method to illustrate the domain of the plastic-
crystalline phase from the MC points. This domain is shown
in light blue. Its boundary is the freezing line of the transition
from the isotropic phase to the plastic-crystalline one.

V. SUMMARY AND CONCLUSIONS

The main goal of this paper was to provide in two steps
a relatonship between thermodynamic quantities of a D-
dimensional fluid of convex hard bodies and the body’s shape.
First we proved that the thermodynamics of a D-dimensional
fluid of convex hard particles is equivalent to that of a D-
dimensional fluid of spherical particles with a hard core of
diameter σmin and a soft shell with a thickness, εσmin/2. Here,
σmin is the unique diameter of the largest sphere which can
be inscribed into the hard body (see Fig. 1) and ε ! 0 is
a measure of the shape anisotropy. Besides their hard-core

repulsion at σmin, the spherical particles interact by entropic
k-body forces, k ! 2, if their soft shells overlap, forming
clusters as illustrated in Fig. 4. Note, this equivalence holds
for arbitrarily large ε. For weak shape anisotropy the ef-
fective potential can be considered as a perturbation to the
reference fluid of the hard spheres of diameter σmin. This has
two implications. First, any phase transition of hard-sphere
fluids should also exist for fluids of weakly nonspherical hard
bodies. In particular, in 2D the two-step melting scenario
[58] consisting of the isotropic-hexatic and the hexatic-solid
transition should survive. Second, any phase-transition point
should shift linearly with ε. Our Monte Carlo results for the
isotropic-plastic phase transition of a 2D fluid of ellipses are
consistent with these predictions (see Fig. 9). Using much
larger systems (as in Ref. [72]), there is little doubt that the
two-step melting scenario will be observed with transition
points shifting linearly with ε.

The equivalence of the hard-body fluid to a fluid of spher-
ical particles may also be useful from a practical point of
view. Computer simulations of fluids involving orientational
degrees of freedom are rather expensive. Therefore, the map-
ping could be used to instead simulate the fluid of spherical
particles, e.g., with the effective two-body interactions (see
Fig. 3). For a 2D fluid, this would be interesting since it
was shown that the isotropic-hexatic phase transition crosses
over from a discontinuous (first-order) to a continuous phase
transition if the pair potential becomes soft enough [73]. In
this context, one could check whether the spherical particles
with a hard core and a soft shell are soft enough or not.

In a second step, the mapping to cluster configura-
tions of spherical particles has allowed us to perform a
systematic expansion for, e.g., the Helmholtz free energy
F (T,V, N ; σmin, ε). Its zeroth order, F0(T,V, N ; σmin), is the
free energy of the reference fluid of hard spheres of diameter
σmin and the overlap of the soft shells is the perturbation (see
Fig. 4). Each term Fk (T,V, N ; σmin, ε), k ! 1 of the expansion
has a physical interpretation in terms of cluster configura-
tions. It involves the orientational average of k-fold products
of the reduced contact function d̃c(e12, u1, u2; ε) [Eq. (5)].
This function is not accessible analytically, even for ellipses.
Therefore, we have exploited the fact that d̃c(e12, u1, u2; ε) is
completely determined by the reduced shape function s̃(ϑ ; ε)
[cf. Eq. (2)] and its derivatives. Elaborating on a perturbative
method to solve the contact conditions [Eqs. (29) and (30)]
for convex hard bodies turns the original perturbation series of
F (T,V, N ; σmin, ε) with εd̃c(e12, u1, u2; ε) as the perturbation
into a series where the shape anisotropy εs̃(ϑ ; ε), has become
the perturbation. This result allows one to express thermody-
namic quantities as a functional of the shape function itself.
As an illustration, we have calculated in Sec. IV A the EOS as
a functional of s̃(ϑ ; ε) up to linear order in ε.

The applicability and validity of our theoretical framework
has been checked for a 1D and 2D fluid of ellipses with
aspect ratio X0 = 1 + ε by comparing our first-order results
[Eqs. (44) and (43)] for the compressibility factor Z (n∗; ε)
and the relative quantity [Z (n∗; ε)/Z (n∗; 0) − 1], with results
from our MC simulation. For the 1D fluid, Figs. 5 and 6
show very good agreement with the MC results, even up to
high densities n∗ = nσmin ≈ 0.9 for ε = 0.1. For smallness
parameter ε = 0.5 (which is not much smaller than unity),
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there is still good agreement up to n∗ ≈ 0.65. For the 2D
fluid, Figs. 7 and 8 demonstrate similar good agreement,
however, compared to the 1D fluid, for a smaller range of the
density.

The EVS represents significant improvement if the shape
anisotropy is not too high (cf. Fig. 8). It approximates the
original hard-body fluid by a fluid of hard spheres with the
same number density, n, and a volume identical to the hard
body’s volume. The quality of EVS is supported analytically
by the observation that a partial summation of an infinite
number of cluster configurations yields part of the free energy
of a fluid of hard spheres with properties described above. In
contrast to other sphericalizations (see, e.g., Refs. [37–39,48–
52]), it is the most natural and simplest one since it involves
only the hard body’s volume, which is accessible, in contrast
to, e.g., the orientational average of the contact function occur-
ring in Refs. [37,38]. Interestingly, the quality of EVS is also
supported by the MD simulation of a fluid of hard ellipsoids:
Even for larger aspect ratios, X0 = 2 and 3, the isotropic part
of the pair-correlation function at short distances is well ap-
proximated at the same number density by the pair-correlation
function of a fluid of hard spheres having the same volume as
an ellipsoid [74].

To conclude, our theoretical framework may stimulate fur-
ther studies of fluids of convex hard particles to determine
further influences of the shape anisotropy on the behavior
of fluids of nonspherical particles. It would be interesting
going beyond first order in ε which will involve derivatives
of the shape function. This would also allow one to study the
challenging inverse problem: Can one reconstruct the body’s
shape from the dependence of the EOS on number density,
n, and anisotropy parameter ε? The cluster expansion could
also be applied to calculate structural quantities such as the
pair-distribution function g(2)(r12, u1, u2). Finally, exploiting
the cluster description, also valid for large shape anisotropies,
one could study the isotropic-nematic phase formation. For
instance, for prolate ellipsoids in 3D, a three-cluster with
strongly overlapping soft shells corresponds to three aligned
ellipsoids, forming a nematic nucleus.
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APPENDIX A: CALCULATION OF THE EFFECTIVE
TWO-BODY POTENTIAL FOR ELLIPSES

In this Appendix, we calculate the effective two-body
potential v(2)

eff (r; ε) for two ellipses with aspect ratio X0 =
a/b = 1 + ε (ε ! 0) and a center-to-center distance r.
Here, a and b are the lengths of the major and minor
semiaxes respectively. As Eq. (13) shows, its calculation
requires the orientational average 〈 f (re12, u1, u2)〉o of the
cluster function. Because v(2)

eff (r; ε) vanishes for r < σmin =
2b and r > σmax = 2a, we can restrict ourselves to the
range 2b " r " 2a. In this range, it follows from Eq. (10)
[1 + 〈 f (re12, u1, u2)〉o] = 〈*(r − dc(e12, u1, u2; ε))〉o. Here,
the Heaviside function *(x) equals zero for x < 0 and
is unity for x ! 0. Since 〈*(r − dc(e12, u1, u2; ε))〉o =
〈*(ψ (re12, u1, u2; ε))〉o, we obtain from Eq. (13)

v(2)
eff (r; ε) = −kBT ln[|D(r; ε)|/π2], for 2b " r " 2a,

(A1)

where |D(r; ε)| is the area of the domain D(r; ε)
in the space of (u1, u2) with a boundary following
from ψ (re12, u1, u2; ε) = 0. Accordingly, the calculation of
v(2)

eff (r; ε) requires the overlap function [6]:

ψ (re12, u1, u2; ε)

= 4[g1(re12, u1, u2; ε)2 − 3g2(re12, u1, u2; ε)]

× [g2(re12, u1, u2; ε)2 − 3g1(re12, u1, u2; ε)]

− [9 − g1(re12, u1, u2; ε)g2(re12, u1, u2; ε)]2, (A2)

with

gα (re12, u1, u2; ε) = 1 + G(u1, u2; ε)

− r2
[(

e12 · uα

a

)2

+
(

e12 · u′
α

b

)2]
,

(A3)

where u′
α is a unit vector perpendicular to uα and

G(u1, u2; ε) = 2 +
(

a
b

− b
a

)2

[1 − (u1 · u2)2]. (A4)

ψ (re12, u1, u2; ε) is negative when both ellipsoids overlap; it
becomes zero when they are in tangential contact. The ellipses
do not overlap if ψ (re12, u1, u2; ε) is positive and, in addition,
at least one of the functions gα (re12, u1, u2; ε) is negative [6].

By rotational invariance, we can fix e12 = (1, 0)T and
parametrize uα = (sin θα, cos θα )T in terms of the angles θα

between the major axes and the z axis, such that the variables
(re12, u1, u2) are replaced by (r, θ1, θ2). Due to the head-tail
symmetry, (θ1, θ2) ∈ [0,π ]2. Then the area |D(r; ε)| is pro-
vided by

|D(r; ε)| =
∫ π

0
dθ1

∫ π

0
dθ2 *[ψ (r, θ1, θ2; ε)]. (A5)

The qualitative shape of the domain D(r; ε) is displayed in
Fig. 10 for different regimes of r and X0 = 1 + ε = 2.0. Note
that ψ (r, θ1, θ2; ε), and therefore D(r; ε) too is invariant un-
der reflection at both diagonals, i.e., (θ1, θ2) /+ (θ2, θ1) and
(θ1, θ2) /+ (π − θ2,π − θ1). Using Eq. (A4), it is easy to
see that G(θ1, θ2; ε) = 2 + O(ε2). Neglecting for small shape
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FIG. 10. Domain D(r; ε) for two ellipses with aspect ratio a/b =
1 + ε = 2.0. The numbers in the domains are the values for r. The
white regions at the four corners correspond to r/b = 2.1 > 2. The
region expands to include the light-blue region for r/b = 2.5. For
r/b = a/b + 1 = 3.0, the domain touches the axis. For r/b = 3.9 <

2a/b = 4.0, the domain consists of the entire square except for the
small ellipselike region in the center.

anisotropy, the term of order O(ε2), the domain D(r; ε) gains
an additional reflection symmetry θ1 /+ π − θ1 and/or θ2 /+
π − θ2.

The integrations in Eq. (A5) cannot be preformed analyti-
cally, in general. But they can be carried out approximately for
the full regime 2b " r " 2a if the shape anisotropy is small,
ε 0 1. Their complete calculation for arbitrary X0 becomes
possible for separations r ∈ [2b, 2a] close to the boundaries
of the interval. For these three cases, we shall show below
that

gα (r, θ1, θ2; ε) = −1 + 1α (r, θ1, θ2; ε), (A6)

such that the correction becomes small, |1α (r, θ1, θ2; ε)| 0
1. Substituting this result into Eq. (A2) yields for the
overlap function ψ (r, θ1, θ2; ε) = −96 [11(r, θ1, θ2; ε) +
12(r, θ1, θ2; ε)] + O(12

α ). Accordingly, to leading order in
1α (r, θ1, θ2; ε) the boundary of the domain D(r; ε) follows
from

11(r, θ1, θ2; ε) + 12(r, θ1, θ2; ε) = 0. (A7)

What remains is the calculation of 1α (r, θ1, θ2; ε) for the
various limiting cases.

1. Case I: Small shape anisotropy

First, we consider ε := X0 − 1 0 1 and 2b " r " 2a. In-
troducing the reduced distance r̃(ε) = (r/2b − 1)/ε ∈ [0, 1]
and taking into account G(θ1, θ2; ε) − 2 = O(ε2), we ob-
tain from Eqs. (A3), (A4), and (A6) that 1α (r, θ1, θ2; ε) =
−8ε[r̃(ε) − sin2 θα] + O(ε2), i.e., in leading order in ε the

condition, Eq. (A7), for the boundary of D(r; ε) becomes

r̃(ε) − 1
2 [sin2 θ1 + sin2 θ2] = 0, (A8)

which has the additional reflection symmetry as discussed
above. Therefore, Eq. (A5) reduces to

|D(r; ε)| = 4
∫ π/2

0
dθ1

∫ π/2

0
dθ2 *[ψ (r, θ1, θ2; ε)]. (A9)

Equation (A8) implies that the calculation of the integrals in
Eq. (A9) require us to distinguish between 0 " r̃(ε) " 1/2
and 1/2 " r̃(ε) " 1, which corresponds to b " r " (a + b)
and (a + b) " r " a, respectively (see also Fig. 10).

a. Left interval: 0 " r̃(ε) " 1/2

In this case, the condition in Eq. (A8) implies 0 " θ1 "
arcsin[

√
2r̃(ε)] and 0 " θ2 " arcsin[

√
2r̃(ε) − sin2 θ1]. This

leads to

|D(r; ε)| = 4
∫ arcsin[

√
2r̃(ε)]

0
dθ1 arcsin[

√
2r̃(ε) − sin2 θ1].

(A10)

b. Right interval: 1/2 " r̃(ε) " 1

From Eq. (A8), it follows that 0 " θ2 "
arcsin[

√
2r̃(ε) − sin2 θ1], if arcsin[

√
2r̃(ε) − 1] " θ1 " π/2,

and 0 " θ2 " π/2 if 0 " θ1 " arcsin[
√

2r̃(ε) − 1]. Then it
follows:

|D(r; ε)| = 2π arcsin[
√

2r̃(ε) − 1]

+ 4
∫ π/2

arcsin[
√

2r̃(ε)−1]
dθ1 arcsin[

√
2r̃(ε) − sin2 θ1].

(A11)

Note that the dependence of |D(r; ε)| on the aspect ratio, i.e.,
on ε, arises only through the reduced distance r̃(ε), a feature
which holds for v(2)

eff (r; ε) as well.
The special value r̃(ε) = 1/2 corresponds to r = (a + b)

which is the minimal center-to-center distance of the ellipses
if their major semi-axes are orthogonal to each other. For this
case |D(r; ε)| can be calculated analytically. From either of
the Eqs. (A10) and (A11), it follows

|D(r = a + b; ε)| = π2

2
. (A12)

This result is obvious because for r̃(ε) = 1/2, Eq. (A8) im-
plies θ2 = π/2 ± θ1 for 0 " θ1 " π/2 and θ2 = π/2 ± (π −
θ1) for π/2 " θ1 " π . Accordingly, D(r; ε) is a square with
edge length π/

√
2 and its area equals (π2/2). Note that in-

creasing the shape anisotropy more and more deforms this
square to boundary 3 in Fig. 10. Furthermore, it follows from
Eqs. (A10) and (A11) that |D(r; ε)| is singular at r = a + b:

lim
r̃+(1/2)±

(d|D(r; ε)|/dr̃)(r) = +∞, (A13)

where r̃ + (1/2)± corresponds to r + (a + b)±. Note this
result has been proven for X0 + 1 only. Whether this diver-
gence at r = a + b exists for all X0 is not clear. However, the
property that the excluded domain [the complement of D(r; ε)
within the square] touches for r = a + b and all X0 the sides
of the square (see Fig. 10) implies that |D(r; ε)| is singular
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at r = a + b. The numerical results in Fig. 3 support that
v(2)

eff (r; ε) and therefore |D(r; ε)| too is singular at r̃ = 1/2,
corresponding to r = a + b. However, whether both slopes
diverge for all ε is not clear.

Substituting the results, Eqs. (A10) and (A11), for |D(r; ε)|
into Eq. (A1) and calculating the integral in Eqs. (A10)
and (A11) numerically yields the effective two-body potential
for X0 + 1 shown in Fig. 3.

2. Case II: Close to furthest distance

Independent of the aspect ratio X0, the range of (θ1, θ2)
where the ellipses overlap becomes more and more restricted
to a neighborhood (π/2,π/2) if r approaches 2a from be-
low (see Fig. 10). Substituting θ1 = π/2 − η1, θ2 = π/2 − η2
into gα (r, θ1, θ2; ε) [Eq. (A3)] and expanding up to the lead-
ing order in η1 and η2, the function gα (r, θ1, θ2; ε) assumes
the form of Eq. (A6) and in leading order in δa := 1 −
r/2a we find 1α (r, η1, η2; ε) = [(X 2

0 − 1)/X0]2(η1 − η2)2 −
4(X 2

0 − 1)η2
α + 8δa. Then the condition in Eq. (A7) becomes

A(δa)
(
η2

1 + η2
2

)
+ 2B(δa)η1η2 = 1, (A14)

with coefficients A(δa) = (X 4
0 − 1)/8X 2

0 δa and B(δa) =
(X 2

0 − 1)2/8X 2
0 δa. This is an equation for an ellipse tilted

by an angle π/4 with semiaxes 1/
√

A(δa) ± B(δa). Its area
is given by A(δa) = π/

√
A(δa)2 − B(δa)2. Since |D(r; ε)| =

π2 − A(δa), we find to leading order in δa:

|D(r; ε)| = π2 − 4π
X0

X 2
0 − 1

δa. (A15)

Note that there is no divergence of |D(r; ε)| at X0 = 1 since
from r " 2a it follows δa " (X0 − 1) and, consequently, small
but fixed δa forces X0 − 1 to remain finite.

3. Case III: Close to closest distance

The case where the two ellipses approach their closest
distance is similar to the previous one. For an arbitrary
but finite aspect ratio, X0, the range of the angles (θ1, θ2)
becomes more and more restricted to small neighbor-
hoods of (0, 0), (0,π ), (π , 0), and (π ,π ); see Fig. 10.
The periodic continuation of D(r; ε) in the direction of
θ1 and θ2 allows us to determine 1α (r, θ1, θ2; ε) by ex-
panding gα (r, θ1, θ2; ε) [Eq. (A3)] up to leading order in
θ1, θ2. This expansion is of the form of Eq. (A6), and in
leading order in δb := r/2b − 1 we find 1α (r, θ1, θ2; ε) =
[(X 2

0 − 1)/X0]2(θ1 − θ2)2 + 4[(X 2
0 − 1)/X 2

0 ]θ2
α − 8δb. Substi-

tuting into the condition of Eq. (A7) yields again Eq. (A14) for
an ellipse with A(δb) and −B(δb). Therefore, |D(r; ε)| is given
by its area A(δb) = π/

√
A(δb)2 − B(δb)2. Then it follows in

leading order in δb:

|D(r; ε)| = 4π
X0

X 2
0 − 1

δb. (A16)

Substituting |D(r; ε)| from Eqs. (A15) and (A16) into
Eq. (A1) and expressing δa and δb by r̃(ε), one obtains the
asymptotic results shown in Fig. 3. In order that the right-hand
side of Eq. (A16) for large X0 is small, the following must
apply δb 0 1/X0. Note that the limits δb + 0, i.e., r + 2b
and X0 + ∞ do not commute. Therefore, the limit X0 + ∞

for fixed δb has to be discussed separately, which will be done
in the next subsection.

4. Case IV: Large shape anisotropy

In contrast to the three cases studied above, the depen-
dence of the overlap function on θ1 and θ2 does not separate
for X0 + ∞. Nevertheless, the condition ψ (re12, u1, u2; ε) =
0 simplifies significantly. Keeping the length a of the
major semiaxis finite, choosing r = 2ar̃(ε), where 0 "
r̃(ε) " 1, and taking the limit b + 0 we obtain from
Eqs. (A3) and (A4): gα (re12, u1, u2; ε) = (X0)2[sin2(θ1 −
θ2) − 4r̃(ε)2 cos2 θα] + O(1) for X0 + ∞. Substituting into
Eq. (A2), it follows that

ψ (re12, u1, u2; ε) = (X0)8{[sin2(θ1 − θ2) − 4r̃(ε)2 cos2 θ1]

× [sin2(θ1 − θ2) − 4r̃(ε)2 cos2 θ2]

+ O((1/X0)2)}. (A17)

Therefore, for X0 + ∞ the boundary of D(r) follows from

| sin(θ1 − θ2)| = 2r̃(ε) | cos θ1|
| sin(θ1 − θ2)| = 2r̃(ε) | cos θ2| (A18)

for 0 " θi " π , i = 1, 2. Due to the invariance of D(r) under
(θ1, θ2) + (θ2, θ1) and (θ1, θ2) + (π − θ2,π − θ1), it suf-
fices to discuss 0 " θ1 " π/2 only.

Fixing a and taking the limit b + 0, the calculation of
D(r; ε) reduces to that of D(r̃), which is the accessible do-
main in the orientational space (u1, u2) of two infinitely thin
hard rods (needles) of unit length and center-to-center dis-
tance r̃. It is straightforward to determine the boundaries of
D(r̃). This shows, in particular, that the first line of Eq. (A18)
is the contact condition for the case where the lower end of
needle 2 touches needle 1. Similarly, its second line is the
contact condition if the upper end of needle 1 touches needle
2. Note that 0 " θ1 " π/2 and 0 " θ2 " π imply that only
these two types of contacts can occur.

The discussion of the two-needle system shows the exis-
tence of three characteristic angles of needle 1 (see Fig. 11):

θ (1)(r̃) = arcsin(r̃),

θ (2)(r̃) = arcsin(2r̃),

θ (3)(r̃) = arccos(1/2r̃). (A19)

These characteristic angles imply the existence of three differ-
ent regimes for r̃: (i) 0 " r̃ " 1/2, (ii) 1/2 " r̃ " 1/

√
2, and

(iii) 1/
√

2 " r̃ " 1. Note θ (1)(r̃) is defined for all r̃, θ (2)(r̃) for
r̃ " 1/2, and θ (3)(r̃) for r̃ ! 1/2, only. In regimes (i)–(iii) we
determine the subdomains contributing to D(r) which involve

θ<
2 (θ1) = θ1 + arcsin(2r̃ cos θ1),

θ>
2 (θ1) = θ1 + π − arcsin(2r̃ cos θ1), (A20)

where arcsin(x) is the branch in the interval [−π/2,π/2].
Note θ<

2 (θ1) and θ>
2 (θ1) are solutions of the first line of

Eq. (A18).

a. Left interval: 0 " r̃ " 1/2

In the lower square 0 " θ1 " π/2, 0 " θ2 " π/2, there
is the subdomain θ1 " θ2 " θ<

2 (θ1) for 0 " θ1 " π/2 and its
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(a)

(b)

(c)

FIG. 11. Illustration of the characteristic angles θ (i), i = 1, 2, 3
of needle 1 in the three distinguished contact configurations (a)–
(c) of needles 1 and 2 of unit length. The red open circles mark the
point of contact and r̃ is the distance between the needle’s centers
(blue dots). Configurations (b) and (c) involve a right angle.

mirror image at the diagonal θ2 = θ1. In the upper square 0 "
θ1 " π/2, π/2 " θ2 " π , we have the subdomain θ>

2 (θ1) "
θ2 " π − θ1 for 0 " θ1 " θ (1)(r̃) and its mirror image at the
diagonal θ2 = π − θ1. Use of Eq. (A20) and accounting for
the identical contribution following for π/2 " θ1 " π , we
find

|D(r; ε)| = 4
∫ π/2

0
dθ1 arcsin(2r̃ cos θ1)

+ 4
∫ θ (1) (r̃)

0
dθ1 arcsin(2r̃ cos θ1) − 4(θ (1)(r̃))2.

(A21)

b. Intermediate interval: 1/2 " r̃ " 1/
√

2

The complete lower square 0 " θ1 " π/2, 0 " θ2 "
π/2 is a subdomain of D(r). In the upper square 0 "
θ1 " π/2, π/2 " θ2 " π , we have the subdomain consist-
ing of θ<

2 (θ1) " θ2 " θ>
2 (θ1) for θ (3)(r̃) " θ1 " θ (1)(r̃) and

θ<
2 (θ1) " θ2 " π − θ1 for θ (1)(r̃) " θ1 " π/2, as well as of

its miror image at the diagonal θ2 = π − θ1. Then we obtain

|D(r; ε)|=π2 + 8
∫ θ (1) (r̃)

θ (3) (r̃)
dθ1 arcsin(2r̃ cos θ1) + 4

∫ π/2

θ (1) (r̃)
dθ1

× arcsin(2r̃ cos θ1)−(π − 2θ (1)(r̃))2. (A22)

c. Right interval: 1/
√

2 " r̃ " 1

Again, the complete lower square 0 " θ1 " π/2, 0 " θ2 "
π/2 is a subdomain of D(r). In the upper square 0 " θ1 "
π/2, π/2 " θ2 " π , we have the subdomain consisting of
θ<

2 (θ1) " θ2 " π − θ1 for θ (1)(r̃) " θ1 " π/2 and its miror
image at the diagonal θ2 = π − θ1. This yields

|D(r; ε)| = π2 + 4
∫ π/2

θ (1) (r̃)
dθ1 arcsin(2r̃ cos θ1)

− (π − 2θ (1)(r̃))2. (A23)

Substitution of Eqs. (A21)–(A23) into Eq. (A1) and calcu-
lating the integrals numerically leads to the graph shown in
Fig. 3 for X0 + ∞.

APPENDIX B: CALCULATION OF THE LEADING
CORRECTIONS TO THE FREE ENERGY

The goal of this appendix is to provide formal expressions
for the leading contributions for certain terms arising in the
thermodynamic perturbation series. We will show that to lead-
ing order, the cluster integrals in Eqs. (22) and (23) of the
main text can be expressed in terms of the m-particle densities
of the reference fluid evaluated at closest contact and angular
averages of products of a dimensionless contact function.

To calculate the contributions Fk (T,V, N ) to the ex-
cess free energy, we have to calculate the averages in
Eqs. (22) and (23) of the main text. These averages are
of the form

∑
i1<i2<···<im〈〈h(i1, i2, . . . , im)〉o〉t , where h(. . .)

is a product of cluster functions. Here, the orientational
average

〈(. . .)〉o =
∫ [

m∏

µ=1

duµ

+D

]

(. . .) (B1)

is performed over all orientational degrees of freedom, and
+D is the surface area of a D-dimensional unit sphere.

In contrast, the translational average is with respect
to the reference fluid of hard spheres of diameter σmin.
Formally, it can be obtained using the m-particle density
ρ (m)(r1, . . . , rm) ≡ nmg(m)(r1, . . . , rm) [2]. Using the invari-
ance of the interaction energy under particle permutations, it
follows with the decomposition into translational and orienta-
tional DOF, i = (it , io) = (ri, ui ),

∑

i1<i2<···<im

〈〈h(i1, i2, . . . , im)〉o〉t

=
(

N
m

)
〈〈h(1, . . . , m)〉o〉t

= nm

m!

∫ [
m∏

µ=1

drµ

]

〈h(r1u1, . . . , rmum)〉og(m)(r1, . . . , rm),

(B2)
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where in the second identity we appoximated
(N

m

)
1 Nm/m!,

anticipating the thermodynamic limit. By translational invari-
ance, g(m) and h depend only on the relative distances of the
particles such that Eq. (B2) is proportional to the volume V.

The main observation is now that each bond f (i j) con-
strains the relative distance ri j = |ri − r j | to a small interval,
allowing for further analytical progress. Let us exemplify
the calculation for a bond f (1, 2) introduced in Sec. II [cf.
Eq. (10)]:

f (1, 2) = *(r12 − dc(e12, u1, u2; ε)) − *(r12 − σmin).
(B3)

The preceding identity reveals that the cluster function eval-
uates to −1 for r12 ∈ [σmin, dc(e12, u1, u2; ε)] and is zero
otherwise. To make further progress, we introduce the dimen-
sionless contact function d̃c = d̃c(e12, u1, u2; ε) by

dc(e12, u1, u2; ε) = σmin[1 + ε d̃c(e12, u1, u2; ε)]. (B4)

Note that d̃c ∈ [0, 1]. Its perturbative calculation of
d̃c(e12, u1, u2; ε) is presented in Appendix C.

The integral over the relative coordinate r12 = r1 − r2 can
be decomposed into an integral over the magnitude r12 = |r12|
and the direction e12 = r12/r12. Due to the presence of the
bond, the integral over the magnitude can be performed to
leading order

∫
dr12〈 f (1, 2) . . .〉og(m)(r1, . . . , rm) =

∫

+D

de12

〈∫ dc (e12,u1,u2;ε)

σmin

rD−1
12 dr12[ f (1, 2) . . .]

〉

o

g(m)(r1, r2, . . . , rm)

= −+Dσ D
minε

∫

+D

de12

+D
〈d̃c(e12, u1, u2; 0) . . .〉og(m)(r1, r2, . . . , rm) + O(ε2), (B5)

where in the last line r2 is fixed to r1 − σmine12.
For the general case, the following rule emerges to obtain the leading order in ε. After performing the integral over the

relative position ri j = ri − r j , each bond f (i j) yields a factor −+Dσ D
minε. Furthermore, the distance of the pair (i j) is fixed to

|ri − r j | = σmin. Lastly, an average over the direction over the direction ei j = (ri − r j )/σmin is performed. The average over the
directions of all bonds will be indicated by

(. . .) =
∫ [

∏

bonds (i j)

dei j

+D

]

(. . .). (B6)

1. First correction to the free energy

The leading correction to the free energy, F1(T,V, N ; ε), is obtained from Eq. (22), where we need to calculate∑
i< j〈〈 f (i, j)〉o〉t . Application of the rules introduced above leads to

∑

i< j

〈〈 f (i, j)〉o〉t =
(

N
2

)
〈〈 f (1, 2)〉o〉t

= −1
2

N[n∗+D g(2)(σmin)] 〈d̃c(e12, u1, u2; 0)〉o ε + O(ε2). (B7)

Here we introduced the dimensionless density n∗ = nσ D
min and used translational and rotational invariance to simplify the

pair-distribution function g(2)(|r1 − r2|) ≡ g(2)(r1, r2). Note that due to isotropy, 〈d̃c(e12, u1, u2; 0)〉o is already independent
of e12 such that the average (. . .) does not need to be performed. Substituting this result into Eq. (22) of the main text yields
F1(T,V, N ; ε) in Eq. (25).

We can improve Eq. (B7) to order O(ε2) by going back to the first line in Eq. (B5):

∫
dr12〈 f (1, 2)〉og(2)(r12) = −+D

〈∫ dc (e12,u1,u2;ε)

σmin

rD−1
12 dr12g(2)(r12)

〉

o

. (B8)

Upon series expansion of the integrand for distances r12 close to σmin,

rD−1
12 g(2)(r12) = σ D−1

min g(2)(σmin) + (r12 − σmin)
[
(D − 1)σ D−2

min g(2)(σmin) + σ D−1
min g(2)′(σmin)

]
+ O(r12 − σmin)2, (B9)

we find
∫

dr12〈 f (1, 2)〉og(2)(r12) = −ε +Dσ D
ming(2)(σmin)〈d̃c(e12, u1, u2; ε)〉o

− ε2

2
+Dσ D

min〈d̃c(e12, u1, u2; ε)2〉o[(D − 1)g(2)(σmin) + σming(2)′(σmin)] + O(ε3). (B10)
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Substitution of the series expansion d̃c(e12, u1, u2; ε) = d̃c(e12, u1, u2; 0) + εd̃ ′
c(e12, u1, u2; 0) + O(ε2) allows one to determine

F1(T,V, N ; ε) up to O(ε2). This demonstrates that the higher-order corrections of, e.g., F1(T,V, N ; ε), involve derivatives of the
contact function with respect to ε.

2. Second correction to the free energy

The next-leading contribution contribution, F2(T,V, N ), already involves two bonds and consists of two parts. The first line
of Eq. (23), denoted by F 3

2 (T,V, N ), involves two bonds sharing one label. For the first term, we find upon applying the rules
from above

∑

i< j<k

〈〈 f (i, j) f ( j, k)〉o〉t =
(

N
3

)
〈〈 f (1, 2) f (2, 3)〉o〉t

= 1
6

N (n∗+D)2〈d̃c(e12, u1, u2; 0)d̃c(e23, u2, u3; 0)〉og(3)(σmin, σmin; e12 · e23)ε2 + O(ε3), (B11)

where we used that translational invariance and isotropy implies that g(3)(r1, r2, r3) ≡ g(3)(r12, r23, e12 · e23) depends only on
the magnitudes of the relative distances r12 = |r1 − r2|, r23 = |r2 − r3| and the cosine of their relative angle, cos∠(r12, r23) =
e12 · e23.

The second term follows readily using Eq. (B7) with the result

∑

i< j<k

〈〈 f (i, j)〉o〉t 〈〈 f ( j, k)〉o〉t =
(

N
3

)
〈〈 f (1, 2)〉o〉t 〈〈 f (2, 3)〉o〉t

= 1
6

N[n∗+Dg(2)(σmin)]2〈d̃c(e12, u1, u2; 0)〉o 〈d̃c(e23, u2, u3; 0)〉o ε2 + O(ε3). (B12)

Collecting results, we arrive at

∑

i< j<k

[〈〈 f (i, j) f ( j, k)〉o〉t − 〈〈 f (i, j)〉o〉t 〈〈 f ( j, k)〉o〉t ] = 1
6

N[n∗+D g(2)(σmin)]2

× [〈d̃c(e12, u1, u2; 0)d̃c(e23, u2, u3; 0)〉o g(3)(σmin, σmin; e12 · e23)/[g(2)(σmin)]2

− 〈d̃c(e12, u1, u2; 0)〉o 〈d̃c(e23, u2, u3; 0)〉o] ε2 + O(ε3). (B13)

Substituting into the first line of Eq. (23) yields F 3
2 (T,V, N ) from Eq. (27).

The second line of Eq. (23), denoted by F 2
2 (T,V, N ), consists also of two terms. The calculation of the first term is performed

in close analogy to the first term of Eq. (23), yielding

∑

i< j<k<l

〈〈 f (i, j) f (k, l )〉o〉t =
(

N
4

)
〈〈 f (1, 2) f (3, 4)〉o〉t

= 1
24

Nn(n∗+D)2 〈d̃c(e12, u1, u2; 0)〉o 〈d̃c(e34, u3, u4; 0)〉o

∫
dr13g(4)(r1, r2, r3, r4) ε2 + O(ε3).

(B14)

Here only the relative separations r12 and r34 are constrained by the bonds, enforcing r12 = r34 = σmin, whereas an integral over
the relative distance r13 needs to be performed. We also observed that the orientational averages 〈. . .〉o over the two contact
functions factorize since they do not a share a label. Then, by isotropy, these two averages are already independent of e12,
respectively, e34 such that the orientational averages over the bonds (12), (34), (. . .) can be performed solely on the four-point
function g(4). From a formal point of view, this expression is of order O(N2) since the integral over the relative distance r13
yields a contribution of the order of the volume. This superextensive behavior is corrected by the second term in the second line
of Eq. (23),

∑

i< j<k<l

〈〈 f (i, j)〉o〉t 〈〈 f (k, l )〉o〉t =
(

N
4

)
〈〈 f (1, 2)〉o〉t 〈〈 f (3, 4)〉o〉t

≡ 1
24

nN[n∗+D g(2)(σmin)]2〈d̃c(e12, u1, u2; 0)〉o〈d̃c(e34, u3, u4; 0)〉o ε2
∫

dr13 + O(ε3),

(B15)
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where we wrote a factor N = nV = n
∫

dr13. The difference of the terms in Eqs. (B14) and (B15) is then expressed as
∑

i< j<k<l

[〈〈 f (i, j) f (k, l )〉o〉t − 〈〈 f (i, j)〉o〉t 〈〈 f (k, l )〉o〉t ] = 1
24

N[n∗+D g(2)(σmin)〈d̃c(e12, u1, u2; 0)〉o]2 (n+D)

×
∫ ∞

0
dr13(r13)D−1 [g(4)(σmin, σmin, r13; e12, e34, e13)/(g(2)(σmin))2 − 1] ε2 + O(ε3). (B16)

Here, we used translational and rotational invariance to express the four-point function as g(4)(r1, . . . , r4) ≡
g(4)(r12, r34, r13; e12, e34, e13). The latter quantity depends only on the relative distances r12, r34, r13 after averaging over the
bond directions (12), (34) which allows evaluating the integral over the relative separation r13 in polar coordinates. Note that the
integral is finite due to the subtraction term. The square-bracket term of its integrand is the connected four-particle distribution
function. Introducing the correlation length ξ (e12, e34, e13) defined by

ξ (e12, e34, e13)D = (g(2)(σmin))−2
∫ ∞

0
dr13 rD−1

13 [g(4)(σmin, σmin, r13; e12, e34, e13) − (g(2)(σmin))2] (B17)

and substituting the result (B16) into the second line of Eq. (23) yields F 2−2
2 (T,V, N ) from Eq. (26).

APPENDIX C: PERTURBATIVE CALCULATION
OF THE CONTACT FUNCTION

In this Appendix, we elaborate on a perturbative calcu-
lation of the contact function for small shape anisotropy ε.
This will be conducted for two three-dimensional convex
hard nonspherical bodies of revolution with center-to-center
separation vector d = de and orientations ui, i = 1, 2. In
contrast to the main text where the dependence on ε has
been partly suppressed, it will be made explicit. To keep this
appendix self-contained, we will also include the equations al-
ready presented in Sec. III of the main text.

In the space-fixed frame, the surface of such a body can be
parametrized by [see Sec. II]

S(u; ε) = {s| s = s(ω, u; ε) ≡ s(ϑ ; ε)R(u)es(ω),

0 " ϑ " π , 0 " ϕ < 2π , |es| = 1}, (C1)

where es(ϑ,ϕ) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ )T is the unit
vector pointing in the body-fixed frame to the surface point in
the direction ω = (ϑ,ϕ). The matrix R(u) rotates the body’s
symmetry axis from the z direction into the direction of the
unit vector u. The shape function s(ϑ ; ε) is positive and does
not depend on ϕ. Note: Since hard particles are included with
shapes completely determined by σmin and the aspect ratio
X0 = 1 + ε, s̃ also depends on ε (see discussion in Sec. II A).

Besides es(ω), we introduce eϑ (ω) := /es//ϑ =
(cos ϑ cos ϕ, cos ϑ sin ϕ,− sin ϑ )T and eϕ (ω) :=
(/es//ϕ)/ sin ϑ = (− sin ϕ, cos ϕ, 0)T , which form an
orthonormal basis. In the following, their derivatives are
also needed:

/eϑ//ϑ = −es, /eϑ//ϕ = eϕ cos ϑ,

/eϕ//ϑ = 0, /eϕ//ϕ = −es sin ϑ − eϑ cos ϑ . (C2)

To find the conditions for an exterior tangential con-
tact, we also need the normal vector n = tϑ × tϕ , which
is the cross product of the orthonormal tangential vec-
tors tϑ = (/s//ϑ )/|/s//ϑ | and tϕ = (/s//ϕ)/|/s//ϕ|. Using
s(ω, u; ε) in Eqs. (C1) and (C2), we obtain for the tangential

vectors

tϑ (ω, u; ε) = R(u)
s′(ϑ ; ε)es(ω) + s(ϑ ; ε)eϑ (ω)

√
(s′(ϑ ; ε))2 + (s(ϑ ; ε))2

,

tϕ (ω, u; ε) = R(u)eϕ (ω), (C3)

where s′ = /s//ϑ . Then, with es × eϕ = − eϑ and eϑ × eϕ =
es, we find for the normal vector

n(ω, u; ε) = R(u)
−s′(ϑ ; ε)eϑ (ω) + s(ϑ ; ε)es(ω)

√
(s′(ϑ ; ε))2 + (s(ϑ ; ε))2

. (C4)

Making use of these relations, the conditions for an exterior
tangential contact read

s(ω1, u1; ε) = dc(e12, u1, u2; ε) e12 + s(ω2, u2; ε), (C5a)

n(ω1, u1; ε) = − n(ω2, u2; ε). (C5b)

The solution of Eq. (C5a) yields ωi(e12, u1, u2; ε), i = 1, 2
for the point of contact and dc(e12, u1, u2; ε), the contact
function which is the most important quantity in our analysis.,
Even for ellipses, one of the simplest hard bodies, these equa-
tions cannot be solved analytically. Therefore, we elaborate
on a perturbative approach using ε as smallness parameter.
Accordingly, suppressing the dependence on (e12, u1, u2), we
use the series expansion

ωi(ε) =
∞∑

ν=0

ω(ν)
i εν, ω(ν)

i =
(
ϑ (ν)

i ,ϕ(ν)
i

)
, (C6)

and rewrite the shape and contact function

s(ϑ ; ε) = σmin

2
[1 + ε s̃(ϑ ; ε)], (C7a)

dc(ε) = σmin[1 + ε d̃c(ε)], (C7b)

and use the pertubative series

s̃(ϑ ; ε) =
∞∑

ν=1

s̃ν (ϑ ) εν−1, (C8)

and

d̃c(ε) =
∞∑

ν=1

d̃νε
ν−1. (C9)
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First, we replace ωi in s(ωi, . . . ) and n(ωi, . . . ) by ωi(ε) from Eq. (C6) and expand with respect to ε. Use of Eqs. (C2) leads to

s(ωi(ε); ε) = R(ui )
{
s
(
ϑ (0)

i ; ε)es
(
ω(0)

i

)
+

[
ϑ (1)

i

(
s′(ϑ (0)

i ; ε
)
es

(
ω(0)

i

)
+ s

(
ϑ (0)

i ; ε
)
eϑ

(
ω(0)

i

))

+ ϕ(1)
i sin ϑ (0)

i s
(
ϑ (0)

i ; ε
)
eϕ

(
ω(0)

i

)]
ε + O(ε2)

}
. (C10)

Taking into account s′(ϑi; ε) = O(ε) as well as s(ϑi; ε) > 0, we obtain for the normal vector

n(ωi(ε); ε) = R(ui )
{[

es
(
ω(0)

i

)
−

s′(ϑ (0)
i ; ε

)

s
(
ϑ (0)

i ; ε
) eϑ

(
ω(0)

i

)]
+

[
ϑ (1)

i eϑ

(
ω(0)

i

)
+ ϕ(1)

i sin ϑ (0)
i eϕ

(
ω(0)

i

)]
ε + O(ε2)

}
. (C11)

Second, using Eq. (C7a) and the series, Eq. (C8), we expand the right-hand sides of Eqs. (C10) and (C11) with respect to ε. This
yields

s(ωi(ε); ε) = σmin

2
R(ui )

{
es

(
ω(0)

i

)
+

[
s̃1

(
ϑ (0)

i

)
es

(
ω(0)

i

)
+ ϑ (1)

i eϑ

(
ω(0)

i

)
+ ϕ(1)

i sin ϑ (0)
i eϕ

(
ω(0)

i

)]
ε + O(ε2)

}
(C12)

and

n(ωi(ε); ε) = R(ui )
{
es

(
ω(0)

i

)
+

[(
− s̃′

1

(
ϑ (0)

i

)
+ ϑ (1)

i

)
eϑ

(
ω(0)

i

)
+ ϕ(1)

i sin ϑ (0)
i eϕ

(
ω(0)

i

)]
ε + O(ε2)

}
. (C13)

In the final step, we substitute Eqs. (C12), (C13), and (C7b) with d̃c(ε) from Eq. (C9) into Eq. (C5a). Comparison of the
coefficients of order εν yields for the zeroth order

R(u1)es
(
ω(0)

1

)
= 2e12 + R(u2)es

(
ω(0)

2

)
,

R(u1)es
(
ω(0)

1

)
= −R(u2)es

(
ω(0)

2

)
, (C14)

and for the first order

R(u1)
[
s̃1

(
ϑ (0)

1

)
es

(
ω(0)

1

)
+ ϑ (1)

1 eϑ

(
ω(0)

1

)
+ ϕ(1)

1 sin ϑ (0)
1 eϕ

(
ω(0)

1

)]
= 2d̃1e12 + R(u2)

[
s̃1

(
ϑ (0)

2

)
es

(
ω(0)

2

)
+ ϑ (1)

2 eϑ

(
ω(0)

2

)

+ ϕ(1)
2 sin ϑ (0)

2 eϕ

(
ω(0)

2

)]
, (C15)

as well as

R(u1)
[(

− s̃′
1

(
ϑ (0)

1

)
+ ϑ (1)

1

)
eϑ

(
ω(0)

1

)
+ ϕ(1)

1 sin ϑ (0)
1 eϕ

(
ω(0)

1

)]
= −R(u2)

[(
− s̃′

1

(
ϑ (0)

2

)
+ ϑ (1)

2

)
eϑ

(
ω(0)

2

)
+ ϕ(1)

2 sin ϑ (0)
2 eϕ

(
ω(0)

2

)]
.

(C16)

Equations (C14) imply

R(u1)es
(
ω(0)

1

)
= e12 = −R(u2)es

(
ω(0)

2

)
. (C17)

Multiplying Eq. (C15) by e12 and taking into account
that R(ui )eϑ (ω(0)

i ) and R(ui )eϕ (ω(0)
i ) are orthogonal to e12

[which follows from Eq. (C17) and the orthonormality of
(es(ω

(0)
i ), eϑ (ω(0)

i ), eϕ (ω(0)
i ))] yields

d̃1(e12, u1, u2)

= 1
2

[
s̃1

(
ϑ (0)

1 (e12, u1, u2)
)
+ s̃1

(
ϑ (0)

2 (e12, u1, u2)
)]

,

(C18)

the relation between the contact function and the shape func-
tion in first order. Here we reintroduced the dependence on
(e12, u1, u2).

For a complete solution of the first-order conditions,
Eqs. (C15) and (C16), one has to proceed as follows. Due
to Eq. (C17) R(u1)es(ω

(0)
1 ) and R(u2)es(ω

(0)
2 ) correspond to

two antipodal points on the unit sphere. Accordingly, the two
remaining orthonormal basis vectors at these two points are
related by

R(u1)eϕ

(
ω(0)

1

)
= −R(u2)eϕ

(
ω(0)

2

)
,

R(u1)eϑ

(
ω(0)

1

)
= R(u2)eϑ

(
ω(0)

2

)
. (C19)

Replacing e12 in Eq. (C15) by R(u1)es(ω
(0)
1 ) and making use

of Eq. (C19) leads to a linear combination of the orthonomal
basis vectors R(u1)em(ω(0)

1 ), m = s,ϑ,ϕ which equals zero.
The condition that its coefficients vanish, yields the result,
Eq. (C17), and conditions between (ϑ (0)

1 ,ϕ(0)
1 ) and (ϑ (0)

2 ,ϕ(0)
2 )

which, however, are not needed for our present purpose.
What remains to be determined is the relation between

ω(0)
i = (ϑ (0)

i ,ϕ(0)
i ) and (e12, u1, u2). This relation follows

from Eq. (C17) by using es(ω
(0)
i ) = ez cos ϑ (0)

i + eϕ (ω(0)
i ) ×

ez sin ϑ (0)
i and R(ui )ez = ui. Then, we find after multiplication

of both sides of Eq. (C17) with ui, i = 1, 2,

ϑ (0)
1 (e12, u1, u2) = arccos(e12 · u1),

ϑ (0)
2 (e12, u1, u2) = arccos(−e12 · u2). (C20)

Equations (C18) and (C20) lead to the final result

d̃1(e12, u1, u2)

= 1
2 [s̃1(arccos(e12 · u1)) + s̃1(arccos(− e12 · u2))],

(C21)

which is Eq. (35) of the main text.
From Eq. (C17) we also obtain es(ω

(0)
1/2) = ± R−1(u1/2)e12.

Multiplication of both sides with ex yields with (ex ·
es(ω

(0)
1/2)) = sin ϑ (0)

i cos ϕ(0)
i and sin ϑ (0)

i =
√

1 − (e12 · ui )2
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[which follows from Eq. (C20)]:

√
1 − (e12 · u1/2)2 cos ϕ(0)

1/2(e12, u1, u2)

= ±ex · R−1(u1/2)e12. (C22)

For |e12 · ui| 2= 1, this allows one to calculate ϕ(0)
i (e12, u1, u2).

For |e12 · ui| = 1, Eqs. (C20) imply ϑ (0)
1 = 0 and ϑ (0)

2 = π .
Due to the singularity of the polar coordinates at the poles,
ϕ(0)

i is not defined for ϑ (0)
1 ,ϑ (0)

2 equal to 0 or π .

Accordingly, we succeeded in expressing the first-order
contribution of the contact function by the first-order term of
an arbitrary shape function s(ϑ ; ε) and determining the polar
coordinates of the contact point in zeroth order.

Since the thermodynamic quantities in the main text are
calculated only up to the first order in ε, the analytical knowl-
edge of d̃1(e12, u1, u2) is sufficient. Of course, from a purely
theoretical point of view it would interesting to continue the
perturbative procedure systematically to higher orders. We
expect that already the next-to-leading order, d̃2(e12, u1, u2),
will also depend on (u1 · u2), in contrast to d̃1(e12, u1, u2).
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