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Brownian dynamics algorithms integrate Langevin equations numerically and allow to probe long
time scales in simulations. A common requirement for such algorithms is that interactions in the
system should vary little during an integration time step; therefore, computational efficiency
worsens as the interactions become steeper. In the extreme case of hard-body interactions, standard
numerical integrators become ill defined. Several approximate schemes have been invented to
handle such cases, but little emphasis has been placed on testing the correctness of the integration
scheme. Starting from the two-body Smoluchowski equation, the authors discuss a general method
for the overdamped Brownian dynamics of hard spheres, recently developed by one of the authors.
They test the accuracy of the algorithm and demonstrate its convergence for a number of
analytically tractable test cases. © 2007 American Institute of Physics. �DOI: 10.1063/1.2719190�

I. INTRODUCTION

The simulation of interacting Brownian particles, called
Brownian dynamics �BD� simulation,1 has become an impor-
tant tool in condensed matter, colloidal, and biological phys-
ics. In particular at high densities, the excluded volume has a
major effect on the dynamics of the Brownian particles. Con-
sequently, many model colloids are well described by effec-
tive pair interactions that are hard-sphere �HS�-like, or have a
HS core with additional potential tails. This places the hard-
sphere system �with or without random “Brownian” forces�
among the most important reference systems for the theories
in the field.2,3 However, such theories are in general only
approximate, requiring extensive testing through experiment
and computer simulation. Yet, the simulation of hard spheres
with Brownian dynamics is not straightforward, because of
the singular nature of the interaction potential: most methods
dealing with the numerical integration of stochastic differen-
tial equations �SDEs� require a certain degree of smoothness
in all the interactions.

Several hard-core BD algorithms have been proposed
and applied in the past,4–10 with a varying degree of justifi-
cation. Our aim here is to discuss a novel approach devel-
oped by one of us,11 called De Michele’s algorithm in the
following. We investigate the convergence to the true solu-
tions of the singular SDE by studying special situations
where the theoretical behavior is under control, in order to
validate the correctness of the approach. This is the first step
in a program to extend De Michele’s algorithm to more com-

plicated cases, such as taking into account inertial effects
�negligible by assumption in BD�, or more complicated sin-
gular interactions.

Of course the hard-sphere potential ��V�r�=� if two
particles overlap, zero otherwise, where �=1/ �kBT� is the
inverse temperature� is a purely theoretical concept. One
may view steeply repulsive “soft-sphere” potentials, e.g.,
V�r��r−n with large n, as more convenient model systems
for colloids,5,12 and try to infer HS �n→�� behavior by ex-
trapolating n or by a suitable mapping of finite-n results to
proper HS dynamics, which requires additional structural
information.12,13 Unless this is done, the n→� extrapolation
forces such soft-sphere methods to use rather small integra-
tion time steps, in order to ensure that forces vary little dur-
ing any such step. In our view, a proper HS-BD algorithm
which circumvents extrapolation or mapping procedures is
desirable.

We will not discuss hydrodynamic interactions �HI�, i.e.,
the solvent-induced interactions that are present in typical
experimental realizations of Brownian systems. Taking them
into account properly would ensure that hard spheres do not
overlap, due to divergent lubrication forces.14 To deal with
HI, several computational methods have been developed, for
example, Stokesian dynamics,15 lattice Boltzmann
simulations,16–19 dissipative particle dynamics,20,21 or fluid
particle methods.22 Usually they either deal with softened
interactions again and/or are rather time consuming; depend-
ing on the method, a huge number of degrees of freedom
needs to be considered, or the intricate nature of the non-
pairwise-additive long-range HI forces the use of elaborate
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schemes. While the theory of HI is well understood at low
particle densities, much less is known at high densities, and
theories often proceed by claiming them irrelevant. A non-HI
simulation therefore has its place in testing such theories,
and in circumventing the huge effort of the HI methods,
should the claim be true.

Testing the goodness of the approximations inherent to
all existing HS-BD algorithms has up to now received little
attention. One needs to test properties that are inherent both
to the Brownian dynamics of the system and to the hard-core
collisions. Testing for diffusive behavior is obviously not
enough, in as far as at high densities and long times it is
related to the chaotic nature of the many-body problem and
not to the details of the implemented equation of motion or
its correctness. In some previous work, static quantities such
as the radial distribution function g�r� have been checked;9

such comparisons do not test whether a HS-BD algorithm
properly discretizes the Langevin SDE, but rather its ergod-
icity.

We will therefore discuss tests of BD-HS algorithms that
involve probing the hard-sphere interactions but still allow
for a comparison with exact results known for the Brownian
system, i.e., where the Langevin equation can be solved ex-
actly in terms of a time-dependent probability distribution
function �PDF�. In such a case, an empirical PDF can be
generated from sufficiently many runs of the algorithm in
question and then be compared to the exact solution.

The method we are going to discuss in the present paper
is a crossbreed between standard Brownian methods �ignor-
ing the singular potential� and the standard event-driven
�ED� simulation method for the ordinary �nonstochastic� dy-
namics of hard spheres. Predecessors date back to Monte
Carlo �MC� inspired schemes,4–8 culminating in the algo-
rithm by Strating9 and algorithms making use of so-called
overlap potentials.23 Strating’s algorithm is but a step away
from De Michele’s algorithm11 investigated here. A slightly
different principle has also recently been implemented by
Tao et al.,10 albeit applied to a more complex system of hard
rods. We will discuss both these ED-BD methods, with an
emphasis on De Michele’s algorithm, which we will show to
be exact to first order in the integration-step size �t.

Our algorithm is different from the other HS-BD meth-
ods mentioned, a variant of the hybrid Monte Carlo24,25

�HMC� scheme, as well shall detail below. This grants the
property that it reproduces correctly the static properties of
the HS system.

This paper is organized as follows: the next section dis-
cusses the theoretical background, Sec. III introduces the
idea of ED-BD and De Michele’s algorithm �extending it to
the case of linear shear flows and constant external forces�.
Section IV demonstrates its convergence to the BD-PDF on
the two-body level, while Sec. V focuses on a comparison of
the algorithm’s many-body behavior with the theoretical pre-
dictions. Section VI summarizes and concludes.

II. HARD-SPHERE BROWNIAN DYNAMICS
ALGORITHMS

We start from the N-particle �1� i�N� Langevin equa-
tion

miv̇i = fi
p + fi

r + fi
d + fi

ext, �1�

where the subscripts i label the particles and will be dropped
where they are clear from the context. In Eq. �1�, fp incorpo-
rates the effect of the HS interaction and fext is a sufficiently
smooth external force. fr and fd are the random and dissipa-
tive forces resulting in Brownian dynamics, therefore the
above equation is a second-order SDE in the particle posi-
tions. The random force is characterized by its zero mean
and the correlation

�fr�t� � fr�t��� = 2kBTR��t − t�� . �2�

The fluctuation-dissipation theorem �FDT� then requires the
dissipation to be fd=−R�v−u�, where u is a local flow ve-
locity field; u is nonzero in the case of applied shear, u
= �̇r, where �̇ is a shear-rate tensor. R is in general a com-
plicated matrix depending on the full configuration of the
system at any given time, representing HI. Here we are con-
cerned with the simpler case where R=�1 is constant, with a
real number ��0. In this paper we furthermore deal with the
limit m /�→0, the case of strong dissipation, where Eq. �1�
reduces to a first-order SDE in the positions,

�v = fi
p + fi

r + �u + fi
ext. �3�

In what follows, we will, according to customary
procedure,26 assume that one can fix a small enough time
interval �t over which the particle configuration and all
smooth forces vary slowly, allowing them to be treated as
constant. If this were possible for fp as well, one could use
conventional SDE integrators,27 a topic in its own right �see,
e.g., Refs. 1 and 28–36�. For hard spheres, the forces are not
Lipschitz continuous and standard numerical integrators are
ill defined.37 Integrating Eq. �3� over the interval �t, one
obtains

�r��t� = g�t + ���t� , �4�

where g=u+�−1�fp+ fext� contains the systematic and interac-
tion terms, while � is a Wiener process with ���t� � ��t���
=2D min�t , t��, where D=kBTR−1T= �kBT /��1 is the matrix
of diffusion coefficients. Note that we still allow these bare
diffusion coefficients to depend on the particle index, as it
may arise in multicomponent �polydisperse� systems.

We discuss the case u= fext=0 first. One approach is to
simply set fp=0 in generating random displacements �r with
the statistics given by �.4–9 A second step then is needed to
ensure that the random displacements are compatible with
the presence of fp�0; for hard spheres this is the criterion
that no two particles overlap. One can either discard all dis-
placements that violate this condition—this is a variant of
standard Metropolis MC �called simply MC in the follow-
ing�. It has been shown4 that in the limit �t→0 one indeed
obtains Brownian dynamics, i.e., a faithful realization of Eq.
�3�. We will discuss this point again further on.

More elaborate overlap removal can be applied: some
implementations put particles back at contact �or around con-
tact on average� along the line of their relative
displacement,5–8 although this has unwanted effects on the
pair distribution function, hence on observable such as pres-
sure. Strating9 proposed to remove overlaps by performing
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elastic collisions: from the time step �t and the displacement
�r, assign a fictive velocity v=�r /�t to the particles, and
move them by displacements �r as if they underwent ballis-
tic flight �including eventual elastic collisions� with this ve-
locity v in the time interval �t.

Whatever the removal procedure �other than simple re-
jection�, one has to be aware that the removal of one overlap
can itself create new �called secondary, tertiary, and so forth�
overlaps. This is especially likely to happen in dense sys-
tems. As Strating pointed out, both the removal of all these
“higher-order” overlaps as well as the order in which over-
laps are removed are crucial for the algorithm to work. Ac-
cording to Ref. 9, one needs to remove them in the order in
which they would have occurred in a Newtonian-dynamics
simulation.

At this point it is convenient to turn around the discus-
sion and start from an algorithm that treats Eq. �3� in the
opposite limit: If � were zero, one would recover the stan-
dard Newtonian dynamics of hard spheres. The best numeri-
cal schemes in this case are ED simulations:38,39 assuming
the collisions are binary in all nondegenerate cases and of
infinitesimal duration, one advances the system from one
such collision to the next, solving the intermediate ballistic-
free flight exactly. The random force in Eq. �3� prevents a
naive application of this approach, but we can reintroduce
randomness as follows: if we interpret the velocities of the
ED simulation as the fictive velocities of the above discus-
sion, randomly drawn every �t, the ED scheme is simply a
device to prevent all unphysical overlaps in the first place,
using a set of vectors v as its book-keeping device.

Note that in terms of efficiency, there is little difference
to Strating’s method, since the main effort in ED simulation
goes into the calculation and the sorting of collision times,
something that is also needed when one is to remove over-
laps in their “correct” order. Note also that this algorithm
bears a resemblance to some ED granular matter
simulations,40–44 where, however, a modified kinetic equa-
tion instead of Eq. �1� needs to be solved.

The question then arises how to interpret and perform
“Brownian collisions” in such a combined ED-BD scheme.
We will argue below that the elastic collision rule of New-
tonian dynamics is a reasonable choice, inspired by its ex-
actness in one dimension. This is De Michele’s algorithm,
first used in Ref. 11. In the limit of small �t and for vanish-
ing u it is essentially Strating’s algorithm, with the overlap
problem cured. �For large �t, the two algorithms differ in the
treatment of one particle “tunneling” across another.� We
also discuss another choice, made by Tao et al.10 in the more
complicated context of hard rods: instead of ballistic colli-
sions, where the pre- and postcollision velocities are per-
fectly correlated, one can decorrelate them by assigning the
postcollision velocity randomly �with proper restrictions to
avoid overlaps�.

III. EVENT-DRIVEN BROWNIAN DYNAMICS

A. The Brownian two-body problem

To investigate the role of ED collisions in the BD algo-
rithm, we study the two-body BD-HS problem without ex-

ternal forces in more detail. This can be solved
analytically45,46 by transforming from the particle coordi-
nates ri , i=1,2, to the relative r=r1−r2 and center-of-motion
coordinates R=	−1��1r1+�2r2�, where 	=�1+�2. The latter
then separates from the problem, giving free center-of-
motion diffusion. In the relative coordinates, the hard-core
interactions can be included as a boundary condition into the
diffusion equation of a point particle,

�tp�r,t� = D�2p�r,t�, r � 
 , �5a�

r · �p�r,t� = 0, r = 
 , �5b�

where p�r , t� is the PDF for finding a relative distance r at
time t, D=D1+D2 is the relative diffusion coefficient, and

= �
1+
2� /2 with the particle diameters 
i.

One could aim to include the exact solution of this case
in a HS-BD algorithm by drawing particle displacements ac-
cording to this p�r , t� whenever two particles are sufficiently
near. However, the procedure would be rather involved, since
the analytical solution45,46 is only available as an infinite sum
in the Laplace domain. It would also be only approximate in
the presence of more than two particles, hence valid only for
small time steps, and more gravely, again introduce
secondary-overlap problems.

It is therefore easier to consider the limit of small �t,
then, the interaction between HS particles only becomes rel-
evant for small r−
. In this limit, the boundary at r=
 can
be considered as flat and the analytical PDF can be easily
obtained by the method of images. Denoting by G0�r , t0

+�t �r0 , t0� the Green’s function of the unbounded diffusion
equation �for a particle starting at r0 at time t0�, we then
have47

p�r,t0 + �t�r0,t0� = G0�r,t0 + �t�r0,t0�

+ G0�r,t0 + �t�r0
*,t0� �6�

for r�
, and zero otherwise. Here, r0
* is the mirror image of

the initial coordinate r0 with respect to the boundary. A well-
known simple geometrical transformation, illustrated in Fig.
1, relates p�r , t0+�t �r0 , t0� to the free G0�r , t0+�t �r0 , t0�:
starting from r0, extract a new position r* according to G0

and accept it �r=r*� if moving from r0 to r* does not cross

FIG. 1. Illustration of the image-method treatment of “Brownian collisions”
in De Michele’s algorithm. The probability of moving one particle from r0

to r in a time step �t is the sum of the direct part �0� and a part �1�
corresponding to the transition from the image r0 of the starting point with
respect to the wall �vertical solid line� to the final r. The latter occurs with
probability equal to that of a move from r0 to r* �the image of r� and is
simulated by reflecting such a trajectory at the wall �point C�. The dashed
circular arc indicates the typical dimension of the real hard-sphere boundary
in the r0−r plane for realistic parameters �average �r�0.1
�.
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the boundary. Otherwise, if the extracted transition from r0

to r* crosses the boundary, update r*�r by reflecting it at
the boundary. The resulting r arises from the direct contribu-
tion �left-hand arrow� and the reflected one, where the latter
has the same probability as a transition from r0

*, the mirror
image of r0, to r. Hence the endpoints r are distributed ac-
cording to p. The reflection of r* is equivalent to a “ballistic”
collision of the trajectory at the boundary �point marked C in
the figure� if one uses a fictive velocity v=�r /�t in the
process.

Transforming back to the individual particles’ coordi-
nates, an algorithm implementing the above geometrical con-
struction runs as follows: during the time interval �t, per-
form ballistic flights for both particles, with fictive velocities
v chosen from a probability distribution f�v� that satisfies
f�v=�r /�t�dv=G0��r , t0+�t �0, t0�dr. This will satisfy the
correct diffusion equation for the above no-flux boundary
conditions, as long as the correct solution can be obtained by
the image method and G0 describes a homogeneous process,
i.e., depends on position only through the difference �r=r
−r0, and not on r and r0 individually. More generally, it will
implement the correct boundary conditions if �t is chosen
small enough such that in every time interval and for almost
all cases, the reflection procedure applies only when r0−
 is
sufficiently small to consider the boundary as flat.

The fictive-velocity distribution corresponding to
free Brownian diffusion, G0��r ,�t�= �4�D�t�−d/2

exp�−��r�2 / �4D�t��, is of course just the Maxwell-
Boltzmann distribution, f�v�= ��m /2��−d/2 exp�−��m /2�v2�.
This connection is essentially the way in which the FDT
enters the ED-BD algorithms. The parameter �mi sets the
bare diffusion coefficient for each particle i, given as

Di =
�t

2

1

�mi
. �7�

In particular, polydisperse systems, where different HS spe-
cies have different Di, can be simulated by incorporating
elastic collisions according to the �fictive� masses mi.

B. The many-body algorithm

De Michele’s ED-BD algorithm11 for hard spheres ap-
plies the above two-body approach to the case of many par-
ticles:

�i� every tn=n�t �n integer� extract velocities vi accord-
ing to a Maxwellian distribution with fictive masses
obeying Eq. �7�;

�ii� evolve the system between tn and tn+�t according to
the laws of ballistic motion �performing ED molecular
dynamics�.

In other words, Gaussian particle displacements �ri=vi�t
are extracted according to ��ri

2�=2dDi�t �in d dimensions�
and ED rules enforce no-flux boundary conditions at the par-
ticle surfaces.

There are two central approximations inherent in this
algorithm: one is due to the fact that the image method can-
not be used to construct the exact two-body PDF for two
Brownian hard spheres. The approximation is indicated in

Fig. 1, where the dashed circular arc represents the correct
position of the two-body HS boundary, which the algorithm
effectively replaces with the flat reflecting wall shown as the
vertical solid line �depending on the angles of r0 and r with
respect to the line joining the particle centers�. Both approxi-
mations limit the maximum allowable time step �t for the
algorithm: the first requires �t�davg

2 / �4D�, where davg

	−1/d is a typical interparticle separation; the second re-
quires �t�
2 / �4D�. In the limit �t→0 the ED-BD algo-
rithm converges to the correct solution, essentially since the
boundary problem reduces to the one-dimensional case
where the algorithm is exact. This statement will be made
more precise in the following.

The possible occurrence of multiple collisions per time
step poses another approximation within the algorithm. Its
effect, however, is less severe: if we consider an arrangement
of three instead of just two particles, multiple collisions es-
sentially mimic a many-images solution for the Green’s
function of a point source �one moving particle� in a corner
or wedge formed by the approximately planar surfaces of
two other particles nearby. Such a solution will be suffi-
ciently close to the real solution, in the spirit of treating
three-particle �and higher� PDFs by a dynamical superposi-
tion approximation. The influence of this latter aspect is hard
to quantify, but can be expected to become small in the
small-�t limit. In general, one expects that for small �t, the
N-body Smoluchowski operator can be decomposed in a
leading two-body term, and smaller contributions from the
higher-order correlations. That such a decomposition holds
not only for low densities, but also for short times at high
densities, was pointed out by Lionberger and Russel.48 This
argument lends justification to the use of our algorithm at
high densities, where of course hard-sphere simulations be-
come most interesting.

De Michele’s algorithm essentially is a special case of
the HMC scheme.24,25 There, one combines the steps �i� and
�ii� above with an acceptance criterion for each substep �t.
The acceptance rate is min�1,exp�−��H�� and differs from
unity only when there is a non-negligible error �H in the
total energy stemming from the numerical treatment of com-
plicated Hamiltonians. For the ED simulation of a HS sys-
tem, �H�0 to machine precision, so that there is no differ-
ence between HMC and our ED-BD scheme. Incidentally,
this equivalence makes clear that De Michele’s algorithm
explores phase space according to the canonical ensemble, as
the corresponding proof for HMC can be directly transferred.
Note that the equivalence is based crucially on the fact that
within each subinterval �t, we perform a Newtonian-
dynamics simulation. The HMC properties are not granted,
e.g., for Strating’s method or the Tao-BD algorithm.

De Michele’s algorithm can be extended in a straightfor-

ward manner to include a linear shear field, u= �̇r, and ex-
ternal forces that change slowly in space �such that they can
be approximated as constant over the typical �r resulting in
a time step�. Let us discuss the case of linear shear flow in
more detail. In this case one needs to deal with two effects on
the Brownian motion: there will be a systematic drift u, but
also the noise term for �r will be modified because u
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depends on r. If the shear flow acts along the x direction,
u= �̇yex, we have49 ��y�= ��z�=0, ��x�=y�̇�t, and ��y2�
= ��z2�=2D�t, but ��x2�= ��x�2+2D�t�1− �1/3���̇�t�2�.
The random displacements appearing in Eq. �4� in the pres-
ence of linear shear are also cross correlated, ��x�y�
= �D�t���̇�t�.

This leads to the following extension of De Michele’s
algorithm:

�i� extract random velocities v= ��r− ��r�� /�t from a
multivariate Gaussian distribution according to the
above averages;

�ii� add to the fictive velocities the systematic drift
��r� /�t induced by the shear flow and/or gravity.

In previous applications of HS-BD algorithms to sheared
systems, only the systematic drift has been taken into ac-
count �cf. Ref. 9�. The effect of neglecting these high-shear-
rate corrections to the Brownian displacements has not been
studied so far and remains to be clarified. For constant exter-
nal forces �such as gravity�, only a systematic drift needs to
be taken into account.

IV. TWO-BODY TESTS

As in two �and higher� dimensions, no exact solution in
terms of a mirror image exists for the two-body HS problem,
De Michele’s algorithm even for two particles introduces an
approximation which is worthwhile testing. We will first fo-
cus on the comparison of the single step PDF from various
algorithms to the exact results, then to some checks of the
convergence of the PDF after several steps.

A. Single-step behavior

The Laplace transform of the exact two-body distribu-
tion function in up to three dimensions has been given by
Hanna et al.45 and by Ackerson and Fleishman.46 In two
dimensions, for example, the relative part solving Eq. �5� is
written with the Laplace frequency s=D2q2 and polar coor-
dinates �r ,��,

p�r,�,s�r0,�0� =
1

2�D
� 


m
�eim��−�0�Km�qr��Im�qr��

− eim��−�0�Km�qr��Km�qr��
Im� �q
�
Km� �q
�� ,

�8�

where r� is the greater of r, r0, and r� the lesser. Im�z� and
Km�z� are the modified Bessel functions of the first and sec-
ond kind of order m. �Here and in the following, D denotes
the relative diffusion coefficient for the two-body problem.�
This is to be contrasted with the two-body PDF implemented
through the algorithm, i.e., the Laplace transform of Eq. �6�.
Using the addition theorem for the modified Bessel
functions,50

pED�r,�,s�r0,�0� =
1

2�D
� 


m

eim��−�0�Km�qr��Im�qr��

− eim��−�0
*�Km�qr�

* �Im�qr�
* �� , �9�

where �r0
* ,�0

*� are the polar coordinates of the mirror image,
themselves complicated functions of �r0 ,�0�. The first term
in the brackets is identical to the one in the correct solution
and represents free diffusion. To show that the algorithm
recovers the correct two-body case for small time steps, we
analyze the second term in the limit q
→�. The second
contribution in Eq. �8� then approaches
Km�qr�Km�qr0�exp�2q
�exp�im��−�0�� /� for not too large
m �note that large orders of m are suppressed�. On the other
hand, the corresponding term in Eq. �9� approaches
Km�qr�

* �Km�qr�
* �exp�2qr�

* �exp�im��−�0
*�� /�. This agrees

with the exact result in the further limit r0→
, where by
construction �0

*→� and r0
*→r0. For r0�
, the leading as-

ymptote of both expressions is free diffusion. Therefore De
Michele’s algorithm converges to the correct BD result for
q
→� �corresponding to D�t /
2�1�. In three dimensions,
the discussion proceeds along the sames lines, replacing the
angular exponential and the Bessel functions with their
spherical counterparts.

To discuss the influence of different initial separations r0

more clearly, let us proceed by looking at a particular aver-
age that can be calculated exactly: the average displacement
magnitude ���r�dD�= �
i��xi�dD

2 �1/2, where xi label the Carte-
sian components and ��xi�dD=�r�
rd−1drd�d�xip�r ,s �r0� is
the d-dimensional average, evaluates to a relatively simple
expression whose inverse Laplace transform can be per-
formed numerically.51 In particular, noting r0�
,

�r�1D =
1

q3e−q�r0−
�, �10�

��r�2D� = �LT−1� 1

q3

K1�qr0�
K1��q
� �� , �11�

��r�3D� = �LT−1� 1

q3

k1�qr0�
k1��q
� �� . �12�

Both the two- and three-dimensional expressions, Eqs. �11�
and �12�, have the one-dimensional �1D� result, Eq. �10�, as
their leading asymptote for q→�. This reconfirms that in the
limit of small step sizes, the dynamics is governed by its
one-dimensional equivalent, and that the ED-BD algorithm,
providing this leading asymptote, converges as �t→0. To
demonstrate the convergence behavior for small but finite �t,
we compare the exact result for the two-dimensional mean
displacement, Eq. �11�, with simulation data in Fig. 2. Each
data point in the figure corresponds to an average over
50 000 runs starting from a given �x0 ,y0�, each performing
one step of size �t as indicated in the different panels of the
figure. Here and in the following, we choose units such that

=1. The size of the time step shall be measured relative to
the intrinsic “thermal” time �m
2.

De Michele’s algorithm �circles� and Starting’s algo-
rithm �diamonds� give almost identical results for small
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enough �t; only at unrealistically large step sizes ��t�1�
does one observe a difference due to “missed” collisions in
Starting’s algorithm. At this point, however, both algorithms
already deviate significantly from the exact solution �shown
as a solid line�. The convergence to the right solution is good
enough to give reasonable results already for �t=0.1, about
one order of magnitude bigger than what has been used in
previous studies.9–11 For even smaller �t, also the exact so-
lution becomes indistinguishable from the one-dimensional
��r�1D, cf. Eq. �10�, which can be written �using 0=r0−
�
as

��r�1D = 2
�D�t
��

e−0
2/�4D�t� − 0 erfc

0

�4D�t
�13�

for 0�0 and zero elsewhere.
Let us point out that this convergence is indeed closely

related to the elastic-collision rule. In fact, from a
Metropolis-MC scheme with Gaussian displacements,4 one
gets the results shown as triangles in Fig. 2. They approach
for small �t their one-dimensional limit ��r�1D

=��0��D�t /� exp�−0
2 / �4D�t��, dropping a term con-

nected to the possible tunneling of a particle across the
excluded-volume region �exponentially small for �t

�
2 /4D�. For small 0, this differs from the BD result, Eq.
�13�, by a factor of 2, highlighting that the approach of MC
to true Brownian dynamics is less straightforward even as
�t→0. This can be seen in the lowest panel of Fig. 2; re-
ducing �t even further will not change the figure, because
the 1D asymptote is already reached and exactly scales with
�D�t as a function of 0 /�D�t, as used in the figure. The
MC method neglects a term of O���t� that is part of the
finite-time-step solution of the Smoluchowski equation,
whereas De Michele’s algorithm has a leading error term of
O��t�, the latter owing to the finite curvature of the par-
ticles’ boundaries. A similar argument about the convergence
of MC to BD has been brought forward by Heyes and
Brańka52 for the case of smooth forces. There, however, one
needed to look at the mean-squared displacement ��r2� to
find differences at finite �t, whereas here the disagreement
sets in one level earlier. It also explains why the use of
Monte Carlo to simulate BD needed an elaborate density-
dependent extrapolation procedure to �t=0, using several
simulation runs at different �t�04.

The algorithm of Tao et al.10 is more difficult to assess
analytically. It replaces the deterministic reflection of the ex-
tracted trajectories by a stochastic collision law: using as
above the fictive velocity to calculate a collision time 0� tc

��t, one advances the particles up to contact and then as-
signs final positions from new random displacements whose
variances are in accord with the remaining time �t− tc. The
distribution of these secondary displacements has to be re-
stricted such that particles do not recollide. Tao et al. state
that the displacements should be such that the particles sepa-
rate initially. If one implements this algorithm for hard disks,
the results for ��r� are almost identical to De Michele’s ones
for large �t, as the plus symbols in Fig. 2 show. For small
�t, a small but discernible difference seems to remain, owing
to the randomness in the velocity reflection. One can intro-
duce a slight modification to the Tao-BD algorithm, in which
the postcollision velocities are only required to be such that
the two colliding particles do not overlap at the end of the
time step. If one does so, one can improve on the result for
��r�, as the crosses in Fig. 2 show: for small �t, this algo-
rithm behaves just like the original Tao-BD one, as expected,
and for larger �t, its results remain closer to the true solu-
tion. We did, however, not test this modification for the
many-particle case: relaxing the criterion for the postcolli-
sion velocities can in principle lead to the same secondary-
overlap problems earlier non-ED algorithms suffer from.

B. Many-step behavior

Having discussed the one-step behavior of the algo-
rithms, let us now look at the results after many steps M, i.e.,
at a time t=M�t large compared to �t, M �1. Here we
perform a numerical comparison of the one-particle PDF in
the two-dimensional case in the presence of fixed other
spheres �corresponding to the relative part of the PDF in the
two-body problem�. We restrict the discussion to De
Michele’s algorithm now. As initial condition, let us fix a
relative distance r0=1.1
. Since the inversion of the Laplace
transformed analytical solution from Refs. 45 and 46 is cum-

FIG. 2. Average displacement size, ���r�2D�, for the two-dimensional
Brownian motion of two equal hard spheres �
=1� in their relative-
coordinate frame; r0 is the initial center-to-center distance. The relative dif-
fusion coefficient is D=�t /2; the step size �t is kept fixed within each
panel. All values are scaled by 1/�D�t. Symbols are one-time-step simula-
tion results, averaged over 50 000 runs for each point: De Michele’s algo-
rithm �circles�, the Tao-BD algorithm �plus symbols�, a modified Tao-BD
algorithm �crosses�, Strating’s algorithm �diamonds�, and a MC algorithm
�triangles�. For �t=0.01, diamonds and circles, as well as crosses and plus
symbols overlap. Solid lines are the analytical solutions. The dotted line
corresponds to exp�−�r0−
�2 / �4Dt�� /��Dt.
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bersome, we found it easier to obtain the exact PDF numeri-
cally. Using Crank’s method53 on a two-dimensional K�K
periodic square mesh �K=800� of length L=8, conditions of
no flux are imposed on a circle; with such conditions Crank’s
method conserves the probability. Indicating with �x=L /K,
Crank’s method is stable for time steps D�t��x2; the inte-
gration time step was chosen as �t=10−2�x2 /D, checking
that smaller time steps do not improve the accuracy of the
numerical solution. The simulation data was obtained from
averages over 200 000 runs, then using data binning with
dx=dy=0.32 for both the simulation data and the numeri-
cally solved PDF.

A visual inspection already yields some insight on the
quality of the agreement. To this end, we plot equal-
probability contour lines corresponding to the 1/2-, 1 /5-,
and 1/50-maximum values of the PDF. The comparison of
the exact result with De Michele’s algorithm is shown in Fig.
3. There, solid lines indicate the exact results, while the dif-
ferent symbols represent the results of De Michele’s algo-
rithm with different time steps, �t=0.01 �corresponding to
M =5000 steps� and �t=0.1 �M =50�. One recognizes that
the algorithm captures all three contour lines rather nicely.
The fluctuations visible in the figure are all well within the
fluctuations expected for the number of runs used to obtain
the average. We therefore conclude that De Michele’s algo-
rithm reproduces the BD two-body PDF also in two dimen-
sions.

Also in the three-dimensional �3D� case, this conver-
gence is observed: as noted above, the one-step results for
��r� do not change qualitatively. Comparing the two-body
PDF directly requires a huge set of data; here we restrict the
discussion to a special case: a simple expression for the two-
particle PDF can be obtained if one starts from a spherically
symmetric initial distribution, p�r ,0 �r0�=��r−r0� / �4�r0

2�.

The exact form of this reduced angular-symmetric PDF,
pred�r , t �r0�, is given in Ref. 54 and is compared with simu-
lation results in Fig. 4. We show a cut using r0=1.01
 and a
fixed time step �t=0.1 in the algorithm. The final time t is
varied through the number of simulation time steps M. Note
that this �t, as judged from Fig. 2, is already quite large, so
that for only one simulation time step, a discrepancy is
clearly visible. This however vanishes quite quickly; already
for M �5 the deviations are minute, and for M �25, they are
no longer identified. Generally, this indicates that the transi-
tion from two to three dimension in the analysis of the algo-
rithm poses no surprises. Furthermore, even if in the one-step
comparison some differences remain for moderately large
�t, the results obtained after M �1 steps can still be correct.
We will discuss the implications of this finding in the follow-
ing section.

V. MANY-BODY TESTS

Let us now turn to a test of the many-body behavior of
the algorithm. Having shown that the ED-BD procedure con-
verges to the true PDF after a reasonable number of time
steps in the two-body case, the following section demon-
strates that this convergence is not destroyed, even if colli-
sions with several particles take place within a few time
steps. For high-density HS-BD systems, analytical results are
scarce, so we will now restrict the discussion to the three-
dimensional mean-squared displacement �MSD�, �r2�t�
= ��r�t�−r�0��2� starting from an equilibrated initial configu-
ration. For the test of De Michele’s algorithm, we used N
=1000 particles at two different volume fractions �=0.05
�representing the two-body dominated dilute case� and �
=0.45 �where higher-order terms in � are significant�.

First, we investigate the low-density limit where one ex-
pects that the system is dominated by two-body interactions.
Analytical results based on the two-body exact solution are
in fact available for the long-time diffusion coefficient DL

=limt→��r2�t� / �6D0t�. To first order in the number density,
one gets45 DL=D�1−2��, where �= �� /6�n
3 is the packing
fraction, and n the number density of the hard-sphere system.

FIG. 3. Contour plot comparing the probability distribution �PDF� for the
relative diffusion of two hard spheres �diameter 
=1, relative diffusion
coefficient D=1� at time T=1/4. Circles �squares, diamonds� are the posi-
tions where the binned simulation-data PDF has reached its half-maximum
�1/5, 1 /50�; filled symbols correspond to �t=0.01 �5000 steps� and open
symbols to �t=0.1 �50 steps�. Solid lines are the corresponding exact-PDF
results. A bin size of dx=dy=0.32 was used. The gray circle indicates the
position of the second particle �no-flux boundary condition along the dashed
line�.

FIG. 4. Two-particle reduced angular preaveraged PDF in three dimensions,
pred�r , t �r0�, at times t=0.1, 0.5, and 2.5, as a function of the scaled initial
separation �r0−
� /�Dt, where r0=1.01
 �solid lines�. Results from the De
Michele’s algorithm with �t=0.1 are shown as symbols; they correspond to
M =1, 5, and 25 simulation time steps.
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In the same limit, the full time dependence of the MSD is
known analytically up to numerical integration over a
�known� memory kernel.55

The algorithm’s results for the MSD are shown as sym-
bols in Fig. 5, normalized to the free diffusion asymptote,
d�t�= ��r2� / �6Dt�. For �=0.05, shown in the upper panel,
the low-density long-time asymptote d�t�=1−2� is reached
for Dt�1 for all shown step sizes �t. In addition, the simu-
lation results for different �t collapse for t�5�t onto the
exact d�t� obtained from Ref. 55 which is shown as a thick
solid line in the figure. In agreement with the discussion
above �cf. Fig. 4�, the algorithm needs about O�5� steps in
order to reproduce correctly the Brownian-dynamics MSD.
The effect of the finite step size is clearly seen at short times,
�t�0.05, where the ballistic subintervals in the algorithm
lead to a MSD quadratic in time, i.e., d�t�	 t. If one is inter-
ested in short time scales, one needs to reduce the time step
to �t=O�10−3� in order to recover a window in which the
proper Brownian short-time dynamics is visible. Otherwise,
the artificial ballistic d�t� crosses over directly to the correct
long-time behavior, at least for realistic �not too big� choices
of �t. It is reassuring that the improper treatment of the
short-time dynamics does not influence the convergence to
the correct long-time dynamics, and does not even induce an

effective time scale �or an effective free diffusion coeffi-
cient�. In other words, if one is not interested in very early
times, a reasonably large �t can be chosen to obtain the
dynamics at t��t. This is a clear advantage over other
schemes, in which an elaborate �t→0 extrapolation needed
to be applied. For example, in the MC algorithm we find
reasonable agreement for d�t� when Gaussian displacements
of variance �r2=O�0.01
� per Cartesian coordinate are cho-
sen. Since in each MC step, a trial move for a single particle
is made, this displacement size is connected to a time step by
�r2=2ND�t4. For our system, N=1000, corresponding
hence to a time step �t�10−7 in our units.

The regime in which the hard-sphere system is a concep-
tually and practically relevant reference system corresponds
to high volume fractions, e.g., close to the glass transition.
Since monodisperse hard spheres crystallize at very high
densities, we limit the discussion to �=0.45, where the liq-
uid is still the thermodynamically stable state. Note, how-
ever, that we could use a multicomponent system to study the
liquid at higher densities �as it has been done in Ref. 11�, but
the effect of polydispersity on the MSD would complicate
our discussion here too much. At high densities, the interpar-
ticle distance davg decreases drastically; therefore choosing a
�t�davg

2 / �4D� in order to deal with two-body events only
could be a severe restriction for the computational efficiency.
In order to test the behavior of the ED-BD algorithm, we
need to compare with a reliable result for the MSD, which is
not available analytically at such high density. We therefore
performed a “Langevin simulation” with an algorithm
adapted from the one-dimensional case given in Ref. 56,
using a thermostat designed to reproduce the correct Lange-
vin equation of motion, Eq. �1�. This is achieved at the ex-
pense of prohibitively long simulation times �about 100
times longer than the corresponding ED-BD runs discussed
here�, which render this approach impractical for realistic
simulation purposes beyond providing a benchmark curve to
test our ED-BD algorithm against. The lower panel of Fig. 5
shows the agreement between this Langevin and De
Michele’s algorithms for long times at �=0.45. The Lange-
vin result is only shown for large times, since it uses a finite
damping m /�=100 and therefore does not obey proper
Brownian dynamics at short times. The ED-BD curves fur-
thermore show the same scenario already observed in the
low-density limit �upper panel�: decreasing �t, one opens an
increasing window inside which the short-time diffusion is
observed. Again, irrespective of the precision with which the
short-time characteristics are reproduced, the long-time be-
havior of the MSD is correct essentially for �t�0.01, dem-
onstrating the validity of our algorithm also at high densities.

To demonstrate the reliability of the diffusion coeffi-
cients determined from De Michele’s algorithm, we compare
with data obtained from the MC-like BD algorithm by
Cichocki and Hinsen.4 Those data have been estimated from
three simulations with different �t=O�10−2� and an extrapo-
lation to �t→0. They are shown as circle symbols in Fig. 6.
In order to compare with our algorithm, we have chosen the
same system sizes �between N=300 and N=580 particles�
and a �t=0.01 that is of the same order as the �t used in
Ref. 4, but no extrapolation procedure �saving a factor of 3 in

FIG. 5. Mean-squared displacement ��r2� of Brownian hard spheres at pack-
ing fractions �=0.05 �upper panel� and �=0.45 �lower panel�, normalized
by the free diffusion limit 6Dt. Symbols are simulations with De Michele’s
algorithm using 1000 particles with various step sizes �t as indicated in the
figure. The dashed horizontal line indicates the Brownian-dynamics short-
time asymptote, d�t�= ��r2� / �6Dt�=1. The dot-dashed line corresponds to
the long-time asymptote evaluated to first order in the packing fraction,
d�t�=1−2�. The thick solid line in the upper panel is the exact Brownian-
dynamics result �from Ref. 55�; in the lower panel, it shows the results from
a Langevin simulation with m /�=0.01 �see text for details�.
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computing time�. The data agree within error bars, underlin-
ing the validity of our approach even at finite �t�0.

In fact, the agreement at large densities is perhaps less
surprising: there, the long-time dynamics is dominated by
collective steric hindrance of the hard spheres, less than by
the diffusive nature of the short-time dynamics. This is dem-
onstrated in the inset of Fig. 6, where we show the same data
on a semilogarithmic scale, together with diffusion coeffi-
cients obtained from Newtonian-dynamics �ND� simulations
of hard spheres.57,58 The latter have been normalized by their
low-density limit, viz., the Boltzmann diffusion coefficient,
DB= �3/8����kBT /m / �n
2�. Normalized in this form, all
data points collapse within error bars onto the same curve

D̃���. At the highest densities, the n dependence of DB could
even be neglected without significant difference. The agree-
ment underlines a well-known fact that the long-time dynam-
ics of dense fluids is, up to a shift in time scales, independent
on the specifics of the short-time dynamics.59

VI. CONCLUSIONS

We have discussed schemes to integrate the Brownian
motion of a many-body hard-sphere system, where the sin-
gular potential prevents the use of standard Brownian dy-
namics techniques dealing with smooth forces. Emphasis
was placed on testing their correctness for small but finite
integration time steps �t. We have employed a set of tests
based on the exactly known two-particle probability distribu-
tion functions for hard spheres.45,46 These tests are sensitive
to both the proper implementation of free diffusion, i.e., the
random force in the Langevin equation, Eq. �3�, and to the
treatment of hard-core “collisions,” i.e., the singular hard-
sphere force fp in this equation. Hence they test both crucial
ingredients to the HS-BD problem at low densities. This also
guarantees the performance of the algorithm at large densi-
ties, where a comparison with ND simulation data shows that
collective entropic effects dominate over Brownian motion
in the dynamics.

It was shown that De Michele’s ED-BD algorithm, that
by construction reproduces correctly the statistics of HS sys-
tems, indeed converges to the correct solution of Eq. �3�. The
algorithm works with a finite time step and performs a
Newtonian-dynamics simulation within each interval �t,
where the fictive masses of the particles play the role of the
inverse diffusion coefficients. Every �t, random uncorrelated
fictive Maxwellian velocities are assigned to each particle,
used as a book-keeping device to implement MC-like ran-
dom moves without overlaps. Such scheme realizes the over-
damped limit to the Langevin equation. We have seen that
the two main approximations in this scheme are the treat-
ment of particle boundaries as locally flat and the neglect of
certain aspects of correlated three-body motion on short time
scales. Both of them are well under control for reasonably
small but finite �t.

Unlike a number of earlier schemes �cf. Ref. 9 and cita-
tions therein�, this ED-BD method avoids unphysical hard-
sphere overlaps in any case. Methods based on soft-sphere
approximations to the hard-sphere potential either require the
use of very small integration time steps or a careful mapping
between the structure of hard and soft spheres. Monte Carlo
methods, implementing hard-core exclusion but not flux re-
flection, reproduce Brownian dynamics strictly only for �t
→0. In contrast, by implementing the no-flux boundary con-
ditions correctly to first order in �t, De Michele’s algorithm
works reliably with significantly larger time steps. Their
magnitude is not bound by the steepness of the potential, but
only by the size of the hard spheres. The dynamical features
of Eq. �3� are correctly reproduced after a small number of
such time steps, and the method is stable in the sense that no
drift or effective rescaling is introduced to the long-time be-
havior when increasing the step size within the limits named
above. This is an improvement over methods requiring care-
ful extrapolation to �t→0. Note that in continuous-potential
methods, the time step �t plays a different role, since it
needs to be small enough to ensure the correct integration of
the equations of motion, even without Brownian motion. In
our case, �t is essentially a tool to incorporate randomness.

As a simple extension of well-tested event-driven meth-
ods for hard spheres, De Michele’s algorithm shares their
effectiveness �but also the problem of being difficult to par-
allelize�. The same holds for the method recently developed
by Tao et al.,10 although the latter is somewhat more expen-
sive in terms of computing time: there, considerably more
random numbers need to be drawn �at least one more per
collision and dimension�, while De Michele’s algorithm uses
simpler velocity-reflection laws. We found no considerable
difference concerning the results between the two methods,
but De Michele’s ED-BD algorithm is easier to discuss ana-
lytically, as it is formally equivalent to a hybrid Monte-Carlo
scheme.

De Michele’s algorithm can easily be extended from the
equilibrium case tested here. We have discussed in particular
how to include linear shear flows �of in principle arbitrary
magnitude�. At large shear rate, one needs to take into ac-
count two modifications, namely, a deterministic drift and a
distortion of the fictive-velocity distribution. The latter has
so far been ignored in the discussion of BD-HS algorithms.

FIG. 6. Comparison of long-time diffusion coefficients as a function of
packing fraction D���, obtained from the present ED-BD algorithm with
�t=0.01 �squares connected by dashed lines� with those estimated by a
�t→0 extrapolation from the MC algorithm by Cichocki and Hinsen
�circles, Ref. 4�. The inset shows the same data on a semilogarithmic scale,
together with results from Newtonian-dynamics simulations of hard spheres
�diamonds, Refs. 57 and 58�. The BD data has been normalized by D0, and
the ND data by the Enskog diffusion coefficient DB.
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Further extensions such as the inclusion of finite inertial
terms, or of finite stepwise interactions, will be discussed in
subsequent publications.
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