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Recently, a simple scaling argument was introduced that allows us to map, with some precautions,
Brownian and Monte Carlo dynamics for spherical particles. Here, we extend the scaling to study
systems that have orientational degrees of freedom and carefully asses its validity over a wide region
of temperature and density. Our work allows us to devise a Brownian Monte Carlo algorithm that
produces, to a good approximation, physically meaningful trajectories with a minimum programming
effort, although at the expense of some sampling efficiency. © 2011 American Institute of Physics.
[doi:10.1063/1.3629452]

I. INTRODUCTION

The Metropolis algorithm,1 which is based on the im-
portance sampling Monte Carlo method, is among the most
widely accepted and used methods to study physical sys-
tems in thermodynamic equilibrium. Monte Carlo (MC) has
been used to study a large variety of physical systems and
is a primary computational method in soft matter and statis-
tical physics to study the equilibrium properties of physical
systems.2–4

When the interest is on the dynamics of a system, on the
other hand, the primary computational methods are molec-
ular dynamics (MD) and Brownian dynamics (BD). These
schemes satisfy the fluctuation–dissipation theorem, although
they neglect fluid-mediated hydrodynamic interactions; these
can be accounted for via computationally more expensive
methods such as Lattice Boltzmann5 or Stochastic Rotation
Dynamics.6 It is commonly believed that MC simulations
simply cannot be used to study the dynamics of a physical
system in any more than a very qualitative fashion. However,
it has been known in the literature for some time that MC
simulations only consisting of physically meaningful moves,
such as small single particle displacements, may be shown to
be equivalent to BD, at least in the limit in which nearly all the
moves are accepted.7–9 Some of us have recently shown10 that
the analogy between Brownian MC (BMC) and BD simula-
tions actually holds even when the acceptance is quite small,
in some cases down to 30%, for applications of physical in-
terest such as crystal nucleation and colloidal self-diffusion
in dense suspensions. Crucially, in order to map MC times to
BD ones, it is necessary to take the average acceptance rate of
trial moves into account.

For colloidal fluids, however, we have seen that the
advantage of using BMC as opposed to BD is not obvious, as
both codes are relatively easy to write. Typically, the speedup
obtained in BMC due to the possibility of using a larger effec-

a)Electronic mail: esanz@ph.ed.ac.uk.

tive time-step is counterbalanced by the need to perform more
moves when many of them get rejected by the Metropolis cri-
terion. In this paper, we aim to explore the applicability of the
time rescaling idea to a more complicated case: that of col-
loidal particles with rotational as well as translational degrees
of freedom, such as rodlike or patchy particles. BD algorithms
become quite complicated if particles have orientational de-
grees of freedom and even more if the interaction potential is
not differentiable. Hence, it would be most useful to prove the
validity of a Brownian MC scheme for particles with orien-
tational degrees of freedom that interact via hard potentials.
We have chosen to compare BMC to event driven Brownian
dynamics (EDBD) (Ref. 22) because the latter is the simplest
BD-type algorithm to simulate non spherical, hard bodies.
Alternatives, such as Stochastic Rotation Dynamics,6 are
more complicated and incorporate hydrodynamic effects
that cannot be captured with BMC. Even though MC
schemes have often been used to study dynamic processes
of anisotropic colloidal particles,11–15 to the best of our
knowledge the validity of MC scheme in this scenario has
not yet been tested. Can we still simply use the time rescaling
via acceptance introduced in Ref. 10 to map MC times to
physical ones? What happens when rotational and transla-
tional motions have different acceptance rates? To answer
these questions, we propose a BMC scheme for particles with
anisotropic interactions and carefully test it by studying the
rotational and translational dynamics of particles interacting
via a patchy, square well potential.16, 17 Patchy particles are of
interest to colloid physics and soft matter,18 as they can lead
to a striking variety of thermodynamically self-assembled
structures and crystals.19, 20 They may also be thought of as
a simple, micron-scale models for proteins,21 which typically
have non-uniform binding sites on their surface.

As we demonstrate in this paper, it is possible to formu-
late a simple BMC scheme which is in quantitative agree-
ment with the EDBD simulations also in the case of systems
with orientational degrees of freedom. The additional care one
has to take with respect to the isotropic colloid simulations
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reported in Ref. 10 is that there is a well-defined ratio be-
tween the translational and the rotational MC attempts which
needs to be satisfied for Stokes’ laws to hold. However, Our
BMC method can handle cases in which rotations and trans-
lations are accepted with different probabilities in the MC
scheme.

Our paper is organized as follows. In Sec. II we intro-
duce our methodology. Specifically, we discuss how to quan-
tify translational and rotational diffusion, and we present a
generalization of the theory in Ref. 10 which suggests how
to map time in Monte Carlo cycles to physical time. In the
same section, we also sketch the way our EDBD simulations
are performed and describe the primitive model of water we
focus on. In Sec. III, we discuss our results and compare in
detail the dynamical behavior of the system as predicted by
EDBD and by BMC. Finally, in Sec. IV, we present our con-
clusions.

II. METHODOLOGY

We perform BMC and EDBD simulations and compare
the dynamics by measuring the translational and rotational
diffusion coefficients, Dt and Dr, given by

Dt =
〈

1
N

∑N
i ‖ ∫ t

0 vi(t ′)dt ′‖2
〉

6t

=
〈

1
N

∑N
i ‖ri(t) − ri(0)‖2

〉
6t

(1)

and

Dr =
〈

1
N

∑N
i ‖ ∫ t

0 wi(t ′)dt ′‖2
〉

6t
, (2)

where wi(t) and vi(t) are the angular velocity and the center-
of-mass velocity of particle i in the laboratory reference sys-
tem at time t , ri(t) is the position of particle i at time t , 〈·〉
denotes averaging over the initial time and ‖ · ‖ denotes the
Cartesian norm.

The translational diffusion both in EDBD and BMC sim-
ulations can be calculated from Eq. (1). The calculation of
the rotational diffusion coefficients is somewhat less straight-
forward. In EDBD simulations, one can proceed as follows.
Consider a particle i which undergoes Ni collisions in the
time interval [0, t], with t = ∑Ni

k=0 �ti,k , where �ti,0 is the
time interval between t = 0 and the first collision occurring
at a time t1 > 0, �ti,Ni

is the time interval between the Ni th
collision and time t, and �ti,k is the time interval between the
kth and (k + 1)-th collisions for k �= 0, Ni . With these defini-
tions, Eq. (2) can be rewritten as

Dr =
〈

1
N

∑N
i ‖∑Nk

k �wi,k‖2
〉

6t
, (3)

where �wi,k = wi(tk)�ti,k . Eq. (3) can conveniently be used
to calculate Dr from an EDBD simulation. Eq. (3) can also be
used to calculate the diffusion coefficients from a MC simula-
tion with the proviso that Nk is now the number of MC cycles
over which we are calculating the diffusion coefficients and

�wi,k is the angular displacement of particle i over the kth
MC cycle (where k = 0 is the first MC cycle).

A. BMC with orientational degrees of freedom:
mapping to physical time

Recently, some of us have studied the possibility of
using MC to simulate the dynamics of particles undergoing
Brownian motion with translational degrees of freedom only
(spherical particles).10 The main result was that the time
corresponding to an MC cycle—consisting of N attempts
(N being the number of particles) to shift a randomly chosen
particle by a randomly displacement uniformly chosen
in the interval [−δt, δt] for each Cartesian axis—can be
approximated by10

�tt

cycle
≈ δ2

t at (δt)

6D0
t

, (4)

where at(δt) is the average acceptance ratio of the trial
moves and D0

t is the diffusion coefficient at infinite di-
lution. The simplest way to derive Eq. (4) is to require
that 〈�r2〉/�t = 6D0

t , the mean squared displacement per
unit time at infinite dilution, is equal to the mean squared
displacement in a single MC cycle

〈�r2〉
cycle

= 3

2δt

∫ δt

−δt

x2at (x)dx ≈ atδ
2
t , (5)

where the acceptance at(x) has been approximated by its
average, at. Reference 10 provides a more detailed analysis
of the dependency of 〈�r2〉/cycle on the acceptance ratio.

Here, we are interested in using MC to simulate the dy-
namics of Brownian particles with orientational, as well as
translational, degrees of freedom. To achieve that, we must
appropriately tune the ratio between the amount of transla-
tions and rotations sampled in the MC algorithm. As we show
below, it is possible to devise an MC procedure that repro-
duces physically meaningful trajectories by carefully choos-
ing the ratio between δt and δr, the maximum rotation angle in
a rotational trial move. We consider an MC scheme in which,
on average, N rotations and N translations are attempted in
each cycle. To sample the orientational degrees of freedom,
we select an axis at random around which a randomly cho-
sen particle is rotated by an angle uniformly chosen between
0 and δr. The mean squared rotational displacement per cycle
is given by

〈�θ2〉
cycle

= 1

δr

∫ δr

0
ar(θ )θ2dθ, (6)

where ar(θ ) is the acceptance rate of θ -radiant rotations. As
done for the translation in Eq. (5) and in Ref. 10, we approxi-
mate ar(θ ) by its average ar in order to approximate the inte-
gral above

〈�θ2〉
cycle

≈ arδ
2
r

3
. (7)

Now, we assume that the same procedure used for transla-
tional degrees of freedom applies to rotational degrees of
freedom; that is, the infinite dilution diffusion coefficient can
be used to introduce a mapping between physical time and

Downloaded 14 Nov 2011 to 141.108.2.219. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124106-3 MC dynamics of anisotropic Brownian particles J. Chem. Phys. 135, 124106 (2011)

MC cycles. By definition, one has 〈�θ2〉 = 6D0
r �t that, com-

bined with Eq. (7), gives the “rotational” time per cycle

�tr

cycle
= δ2

r ar(δr)

18D0
r

. (8)

In order for time to evolve evenly for orientational and
translational degrees of freedom, �tt and �tr must be equal.
By equating Eqs. (4) and (8) and substituting Dr and D0 by
the Stokes-Einstein expressions for the rotational and transla-
tional diffusion [D0

r = kBT/(πησ 3) and D0
t = kBT/(3πησ )],

we find

δt

δr
= σ

3

√
ar(δr)

at(δt)
, (9)

which is the condition needed to map MC dynamics into BD
for particles with orientational degrees of freedom. In the con-
text of this paper, we call BMC an MC scheme that satisfies
Eq. (9). In other words, by tuning δt and δr so that Eq. (9)
holds, an MC run should produce dynamically meaningful
trajectories. To test whether this is actually the case, we com-
pare the long time diffusion coefficients found with this proce-
dure with those obtained with EDBD simulations (see the Re-
sults section). In practice, δt and δr need to be iteratively tuned
to satisfy Eq. (9) in a series of short MC simulations prior to
any production run. We stress that acceptance rates have to be
high to justify the assumption that particles diffuse according
to the Stokes–Einstein equation, an assumption which is exact
only in the limit of all moves being accepted.10

Summarizing, our recipe for BMC simulations with ori-
entational degrees of freedom is as follows:

(i) Fix δt/δr = σ/3 and δt sufficiently small so that a high
(greater than 0.7, see later in the text) acceptance ratio is ob-
tained for both rotations and translations.

(ii) Run a short simulation to obtain an estimate of the
number of steps (ncorr) needed for the MC scheme to produce
an independent configuration.

(iii) In a series of short simulations, each longer than ncorr

steps, iteratively adjust δr so that Eq. (9) is approached. Stop
when Eq. (9) is satisfied within an error of a few per cent. This
procedure can easily be made automatic once an estimate of
ncorr is available.

(iv) Use the obtained value δr for a production run.
Since the variables upon which Eq. (9) depends are state

dependent, the tuning procedure must be carried out at every
state point simulated. We advise to always check a posteri-
ori that Eq. (9) is satisfied to a good approximation. We also
suggest that two different values of δt be tried for each state
point to check that consistent results are obtained for both the
translational and rotational diffusion properties.

We note that Eq. (9) is valid for our particular choice of
exploring the configuration space with MC. If one so wishes,
it can be extended to other choices by (i) performing the inte-
grals in Eqs. (5) and (6) according to the MC scheme chosen,
(ii) requiring Stokes’ laws to hold, and (iii) requiring time to
evolve evenly for rotational and translational degrees of free-
dom. In this way, one can get the equivalent of Eq. (9) for any
MC algorithm.

B. Event-driven Brownian dynamics with rotations

We have performed EDBD simulations modeling parti-
cles as constant density spheres of diameter σ and mass m.
The moment of inertia is diagonal and equal to I = mσ 2/10.
In EDBD simulations of spherical particles, velocities are pe-
riodically reset, sampling from a Gaussian distribution, with
a time interval equal to τt. During each interval, as described
in Ref. 22, the system propagates according to Newtonian
dynamics. If particles are not spherical or have anisotropic
interactions,17, 23 the rotational diffusion has to be taken
into account. An extension of the algorithm developed in
Ref. 22 to particles with rotational degrees of freedom is quite
straightforward: the center-of-mass and angular velocities are
periodically reset, sampling from a Gaussian distribution with
different time intervals, τt and τr, respectively. The transla-
tional and rotational diffusion coefficients D0

t and D0
r in the

infinite dilution limit are

D0
t = kBT τt

2m
,

D0
r = kBT τr

2I
. (10)

In this limit, we expect that such diffusion coefficients obey
the Stokes–Einstein (SE) and Debye–Stokes–Einstein (DSE)
relations. In the present case of anisotropically interacting
spherical particles with a diameter σ ,

D0
t = kBT

3πησ
,

D0
r = kBT

πησ 3
, (11)

where η is the solvent viscosity. From Eqs. (10) and (11) it
follows that

τt = 2m

3πησ
,

τr = 2I

πησ 3
. (12)

Hence, given a value for the viscosity η, the time intervals τt

and τr can be readily evaluated. We note that τt/τr = 10/3,
i.e., the reset intervals of the angular and center-of-mass ve-
locities are different. For a detailed discussion of the algo-
rithm used to propagate the Newtonian trajectory in the pres-
ence of patchy square well interactions we refer the reader to
Refs. 17 and 24.

C. Model and units

We compare the dynamics obtained with BMC and
EDBD for the primitive model of water (PMW) by Kolafa
and Nezbeda,16 whose equilibrium phase diagram is well
characterized.25, 26 In the PMW, each particle is composed of
a hard sphere of diameter σ and four additional tetrahedrally
arranged sites. Two of the sites (the proton sites H) are lo-
cated on the surface of the hard sphere, i.e., at distance 0.5σ

from the center. The two remaining sites (the lone-pair sites,
LP) are located at 0.45σ from the center. The H and LP sites
of distinct particles interact via a square well (SW) potential
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uSW of width δ = 0.15σ and depth u0, i.e.,

uSW(r) =
{−u0 r < δ

0 r > δ
, (13)

where r is here the distance between the two sites. The choice
of δ = 0.15σ guarantees that a site cannot be involved in more
than one bond. The depth of the square well potential u0 de-
fines the energy scale. We stress that in this model bonding
between different particles is possible only for specific ori-
entations and distances. Since the LP site is buried 0.05σ

within the hard-core, the maximum center-to-center distance
at which bonding is possible is 1.1σ , a value typical of the
short-range colloid–colloid interactions.

We use σ as the unit of length and u0 as the unit of energy.
Temperature T is given in units of u0/kB. We measure time
in units of σ 2/D0

t for the translation and of rad2/D0
r for the

rotation. The Brownian translational time unit, σ 2/D0
t , corre-

sponds to the time that a particle needs to diffuse over its own
size at infinite dilution, whereas the Brownian rotational time
unit rad2/D0

r corresponds to the time a particle needs to dif-
fuse in angular space over 1 radiant, also at infinite dilution.
In general, the two are different (both in MC steps and in real
time). Translational and rotational diffusion coefficients are
given in D0

t and D0
r units, respectively. According to the SE

and DSE relations, D0
t /D

0
r = 1/3 in simulation units. To con-

vert the number of MC cycles to time in Brownian units, we
multiply the number of MC cycles by (δt/σ )2at/6 [Eq. (4)]
for the translation and by δ2

r ar/18 [Eq. (8)] for the rotation.

D. Simulation details

We have studied systems of N = 350 particles with pe-
riodic boundary conditions for several packing fractions φ ≡
(π/6)N/V (where V is the system volume in units of σ 3)
and temperatures. To calculate the mean square displacement
(MSD), each particle is allowed to diffuse, on average, at least
ten times its diameter. In evaluating the MSD, we have taken
care to subtract the center-of-mass displacement, an impor-
tant correction in the long simulations at low T . At low T ,
simulations required more than 108 MC steps, corresponding
to about a month of computer time. We checked that the equi-
librium energy obtained is the same for BMC and EDBD for
all state points studied.

III. RESULTS AND DISCUSSION

A. Square well model: EDBD and Langevin dynamics

In Ref. 22, it was shown that EDBD generates the cor-
rect long-time dynamics in agreement with true Langevin dy-
namics (LD) for a hard sphere system by adapting the algo-
rithm developed in Ref. 27 for the one-dimensional case. In
the present work, particles interact with both hard core and
attractive interactions and it is thus essential to show that
EDBD still provides correct results with respect to true LD
in the presence of attractions between particles. For the sake
of simplicity, for this test we consider a monodisperse system
of spherical particles interacting via an isotropic square-well

10-3 10-2 10-1 100 101 102

tDt
0/σ2

10-2

10-1

100

101

102

103

〈Δ
r2 〉 /σ

2

ML
EDBD

0.6 0.8 1
kBT/u0

0.4

0.5

D
/D

t0

FIG. 1. Mean square displacement versus time for the same state point (T
= 0.8, φ = 0.31) simulated with EDBD and Micro Langevin (ML) dynam-
ics. Inset: reduced diffusion coefficients as a function of the temperature for
three different state points at φ = 0.31. As shown, the EDBD algorithm is
very reliable in giving the correct dynamics at all times.

potential vSW(r) defined by

vSW(r) =
⎧⎨
⎩

∞ r < σ

−u0 σ < r < σ + �

0 r > σ + �

; (14)

in our simulations, we set the interaction range to � = 0.15σ .
We use an adapted version of the algorithm proposed in

Ref. 27 in order to perform Langevin simulations of this sys-
tem with a damping factor ξ/m ≈ 150. The results of this
comparison are shown in Fig. 1, where the MSD for the
state point φ = 0.31, T = 0.8 is plotted against the rescaled
time for both EDBD and LD. This state point is chosen
as a test case since it is a low-T , high-density equilibrium
liquid, where the dynamics is not trivial and the system is
homogeneous.28 The behavior of the MSD is very well repro-
duced by EDBD. In the inset of Fig. 1, we show the diffusion
coefficients obtained from EDBD and LD at φ = 0.31 for a
few temperatures, all showing very satisfactory agreement be-
tween the two methods. This test allows us to use EDBD as a
reliable reference algorithm to test our Brownian Monte Carlo
procedure.

B. Event-driven Brownian dynamics and Brownian
Monte Carlo compared

To validate the use of BMC to study the dynamics of
Brownian particles with orientational degrees of freedom we
compare BMC with EDBD simulations. To get a correct de-
scription of dynamical processes of Brownian particles with
orientational degrees of freedom, it is crucial that in the gen-
erated trajectories particles rotate and translate in the right
proportion. This proportion can be quantified by the ratio be-
tween the rotational and translational mean squared displace-
ments 〈�θ2〉/〈�r2〉, which in the diffusive regime tends to a
constant whose value Dr/Dt is state dependent. In the infinite
dilution limit, for instance, 〈�θ2〉/〈�r2〉 = D0

r /D
0
t = 3. In

Fig. 2(a) we plot 〈�θ2〉/〈�r2〉 for T = 0.15 and two packing
fractions, φ = 0.31 and 0.41, as a function of 〈�r2〉 for BMC
(satisfying Eq. (9)) and EDBD simulations. As it can be seen,
roughly the same value of 〈�θ2〉/〈�r2〉 is obtained for BMC
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FIG. 2. (a) Ratio between the orientational and translational mean squared
displacements versus the translational mean squared displacement for
Brownian MC (satisfying Eq. (9)) and EDBD at kBT/u0 = 0.15 and two
packing fractions: φ = 0.31 and 0.41. EDBD and Brownian MC produce tra-
jectories with the same proportion of rotation and translation. (b) Ratio be-
tween orientational and translational mean squared displacements versus the
translational mean squared displacement for standard MC (where δt and δr
are chosen to obtain a given acceptance rate), and EDBD at kBT/u0 = 0.15
and φ = 0.31. As shown, a standard MC algorithm produces trajectories very
far from physical, even if the acceptance rate is high (please note the log scale
on the y axis).

and EDBD simulations. Figure 2(a) shows that increasing φ

penalizes translation with respect to rotation, as particles can
still easily rotate even though translation is hindered by col-
lisions with other particles. The extent to which this happens
is well captured by our BMC scheme. On the other hand, as
shown in Fig. 2(b), a standard MC simulation in which the
maximum trial displacements δt and δr are adjusted to give
the same acceptance ratio produces trajectories that are very
far from physical; the amount of rotation with respect to trans-
lation can be off by an order of magnitude with respect to the
EDBD value. Figure 2 underlines the importance of satisfy-
ing Eq. (9) to study the dynamics of Brownian particles with
orientational degrees of freedom using MC.

We now know that the trajectories produced by our BMC
scheme are representative of the real dynamics of a set of
Brownian particles with orientational degrees of freedom. If
one wishes to obtain also the diffusion coefficients from BMC
it is necessary to map the number of MC cycles to a phys-
ical time. We do that via Eqs. (4) and (8) for the translation
and the rotation, respectively. From the slope of a plot of the
mean squared displacement as a function of time one can get
the diffusion coefficients. In Fig. 3, the mean squared dis-
placements (both translational and rotational) from BMC and
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FIG. 3. Rotational and translational mean squared displacements versus time
at kBT/u0 = 0.15 and φ = 0.15 from BMC and EDBD simulations. Here, δt
was fixed at 0.02, corresponding to at = 0.64, and δr was chosen with the
procedure introduced in Sec. II A to be 0.05036, corresponding to ar = 0.91.
The solid BMC curves (w. acc.) have been obtained using δ2

t at/6 and δ2
r ar/18

[Eqs. (4) and (8)] to convert BMC cycles to translational and rotational time,
respectively. To obtain the dashed curves the same rescaling factors without
including the acceptance (w/o acc.) have been used (δ2

t /6 and δ2
r /18).

EDBD at kBT/u0 = 0.15 and φ = 0.31 are compared. The
agreement between BMC and EDBD is good, both for rota-
tion and translation. Dashed lines correspond to MC results
without including the acceptance rate to convert MC cycles to
physical time (Eqs. (4) and (8)). The agreement is much more
satisfactory if the acceptance is included in the rescaling. In
this way, good estimates of the diffusion coefficients can be
obtained from MC even if the acceptance rate significantly
deviates from 1, which is the limit for which Eqs. (4) and (8)
are exact. This is useful because MC is very inefficient for
acceptance rates near 1.4 In Fig. 4, we analyze the influence
of the acceptance rates on the diffusion coefficients. First, we
notice that the inequality at > ar always holds. This is due
to the fact that, while rotations can only be rejected due to
bond breaking, translations can also be rejected because of
overlap formation. Therefore, at is the limiting parameter in
our Brownian MC simulations of the PMW. For at close to
1, the agreement with EDBD is excellent but the algorithm
is highly inefficient. For at < 0.6, however, BMC clearly
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FIG. 4. Diffusion coefficients as a function of the average acceptance ratios,
at or ar, for kBT/u0 = 0.15 and φ = 0.31 (the same state point as Fig. 3).
Our rescaling procedure works reliably for acceptance ratios greater than 0.7.
For the case reported here, the translational moves are much more constrained
than the rotational ones, but this needs not to be the case in general.
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FIG. 5. Reduced rotational and translational diffusion coefficients as a func-
tion of the inverse temperature u0/(kBT ) for two packing fractions, φ = 0.31
and φ = 0.41. The procedure we propose works very well at high tempera-
tures, reaching the hard sphere limit for u0/(kBT ), and retains good perfor-
mance also at temperatures as low as it is possible to equilibrate within a few
weeks of computer time.

underestimates Dt. We empirically find that at 
 0.7 is a good
compromise between accuracy (how close is BMC to EDBD)
and efficiency (how long it takes to simulate a Brownian time
unit). Therefore, a good recipe is to find a value of δt that gives
at 
 0.7 by following the steps described in Sec. II A.

From the slope of curves such as the ones shown in
Fig. 3, we obtain the long-time diffusion coefficients, which
we show in Fig. 5 for two different packing fractions and sev-
eral temperatures. The agreement is excellent for both pack-
ing fractions. A comparison between Event Driven Molecular
Dynamics (EDMD) and MC for the same model17 showed
that the diffusion coefficients obtained with MC can be
mapped onto those obtained by EDMD using an empirical
rescaling factor. Such mapping holds reasonably well for low
and moderate temperatures, but it breaks down for high tem-
peratures. Notably, in our MC–EDBD comparison the rescal-
ing of the MC time is not empirical, but comes from the
derivation shown above, and the agreement does not deteri-
orate with temperature.

IV. CONCLUSIONS

In this work, we have explored the possibility of study-
ing the dynamics of suspensions of Brownian particles with
orientational degrees of freedom using Monte Carlo simu-
lations. Based on the Stokes–Einstein relations, we derived
the ratio between translational and orientational maximum
trial displacements that guarantees an equal time evolution for

translation and rotation in a Monte Carlo simulation (Eq. (9)).
Such ratio has to be iteratively achieved by tuning the maxi-
mum displacements in a series of short MC simulations. The
tuning procedure needs to be done for every simulated state
point. In a similar fashion we also extended the EDBD algo-
rithm to the case of particles with rotational degrees of free-
dom taking into account both Stokes–Einstein and Debye–
Stokes–Einstein relations. We tested our scheme with a prim-
itive model of water, a non-differentiable potential. By com-
paring our Brownian Monte Carlo scheme with EDBD, we
found that the dynamic Monte Carlo scheme we propose leads
to a very reliable estimate of both the rotational and the trans-
lational long-time diffusion coefficients for different packing
fractions and a wide range of temperatures. Given that the
implementation of Monte Carlo is much simpler than that of
EDBD, the scheme proposed here may prove very useful in
studying dynamic processes in suspensions of Brownian par-
ticles with orientational degrees of freedom. The efficiency of
our Brownian MC is limited because its accuracy breaks down
if the value of the trial displacements is tuned to get accep-
tance rates of 0.3–0.4, as is the usual practice in MC. How-
ever, for acceptance rates grater than 0.7 we observe good
agreement between BMC and EDBD dynamics. Although we
have illustrated the usefulness of our Brownian BMC scheme
by comparing it to EDBD for the case of a non-differentiable
potential, we expect that, should a differentiable model be
used, a standard BD algorithm would be usable in agreement
with our Brownian MC. In principle, our scheme is devised
for systems with small density heterogeneities in which the
acceptance rate is roughly the same throughout the system.
For instance, it would be suitable for studies of the dynamics
of glass formation or crystal nucleation from a dense fluid, but
not of gas–liquid phase separation, crystallization from a gas,
or gel formation. A straightforward extension of the method-
ology proposed here would be required if one were interested
in the rotation along a specific symmetry axis of the particle
rather than in the overall average rotation.
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