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ABSTRACT: Chromonics are a class of liquid crystals made of aqueous solutions of plank-like molecules, which self-assemble
into semiflexible chains. At a given temperature a nematic phase is formed when the system reaches a sufficiently high
concentration. Among the unusual properties of chromonic liquid crystals, particularly prominent is the large anisotropy of
elastic constants, which leads to new phenomenologies in confined volumes. To gain insights into the microscopic origin of this
behavior, we have investigated the elastic properties of a model system that undergoes self-assembly driven nematization by
using Monte Carlo simulations and an Onsager-like theory. The relative magnitude of the elastic constants and their
dependence on temperature and density show the distinguishing features found in chromonic liquid crystals. We identify the
relevant microscopic determinants of this behavior, and we discuss the role played by both the molecular self-assembly and the
intrinsic flexibility of aggregates.

■ INTRODUCTION

Chromonics are a class of lyotropic liquid crystals (LCs)
formed by aqueous solutions of molecules that have a multiring
aromatic core with peripheral hydrophilic groups.1,2 Typical
examples are drugs, nucleic acids, and dyes, such as 6-hydroxy-
5-[(4-sulfophenyl)azo]-2-naphthalenesulfonic acid, also known
as sunset yellow (SSY), and disodium cromoglycate (DSCG).
When dissolved in water, these molecules self-assemble by
face-to-face stacking into columnar aggregates, which beyond a
certain concentration form a nematic (N) phase, and then a
hexagonal columnar phase at even higher concentration. These
systems provide a relevant example of the interplay between
self-assembly and order.
Chromonic liquid crystals have a number of special features

which make them useful for applications. For instance, unlike
most liquid crystals, chromonics are biocompatible; they are
nontoxic to many microbial species and do not alter antibody−
antigen binding. They exhibit also a special elastic behavior,
which originates from a large anisotropy of the elastic
constants. This yields a variety of unusual phenomena. The
low cost for twist deformations leads to spontaneously twisted
(chiral) configurations around colloidal particles and under
confinement to curved geometries.3−7 Another impressive
effect is that the breadth of defect cores, i.e., regions over

which the orientational order parameter changes, reaches tens
of micrometers, so allowing direct observation by optical
microscopy.8 Elastic properties and biocompatibility have been
exploited in the so-called living liquid crystals, where
chromonics are used as a medium for motile bacteria.9−13

The propulsive forces generated by bacteria, of the order of
tens of pN, are comparable in magnitude to elasticity mediated
forces, which makes chromonics suitable to explore the
behavior of active soft matter.
Detailed experimental investigations of the elastic properties

were reported for SSY14,15 and for DSCG,16 and it was found
that their behavior could not be explained by the existing
theories. Liquid crystals oppose a resistance to distortion of the
director, i.e., the average alignment axis, and their bulk
elasticity is described in terms of three fundamental modes, i.e.,
splay, twist, and bend,17 with the corresponding moduli
denoted as K11 (splay), K22 (twist), and K33 (bend). The elastic
properties of low molar mass thermotropic liquid crystals have
been widely investigated, both experimentally and theoret-
ically, and several aspects of their dependence on the molecular
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structure are presently understood (see refs 18 and 19 for a
review). The usual relationship is K22 < K11 < K33, although in
the past few years an anomalously low bend elastic constant
was evidenced in the case of mesogens that have a bent shape,
such as liquid crystal dimers20 and bent-core molecules.21

Comparatively few measurements of elastic constants have
been reported for polymer systems. There is agreement on K22
being the smallest of the three elastic constants, but the relative
magnitudes of splay and bend constants depend on the
particular system. For thermotropic liquid crystal polymers, K11
larger than K33 by at most an order of magnitude can be
found.22,23 For lyotropic systems, different behaviors are
reported, which are generally related to the polymer flexibility.
For colloidal suspensions of tobacco mosaic virus (TMV) K33/
K11 of the order of 10 were reported.24,25 On the other hand,
for solutions of poly(γ-benzylglutamate) (PBG) the depend-
ence of K11/K33 on molecular weight was evidenced; in most
cases values range from around 0.7 to around 1.2,26 but also
ratios of the order of 1000 were measured.27

The elastic constants of polymer liquid crystals are expected
to strongly depend on the molecular flexibility. For hard rigid
rods (HR), the relevant molecular quantity is the aspect ratio,
between the contour length and the diameter D. The
following expressions were obtained:28
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where kB is the Boltzmann constant, T is temperature and Φ is
the volume fraction. The relative trend is the same as for low
molar mass liquid crystals, with K11 = 3K22 and K33 that can
become much larger than the other two constants with
increasing length. Equations 1 were obtained considering the
excluded volume cost for distortion of the nematic director.
For splay deformations of polymeric systems an additional cost
has to be taken into account, which originates from the
decrease of entropy caused by the restricted distribution of
polymer ends, at constant concentration.29 The following
expression is obtained using the ideal gas approximation:30

π
Δ = ΦK

k T
D D

4
11

B
(2)

For long polymers this contribution becomes very large and is
expected to dominate over the energetic cost for splay
deformations. Semiflexible (SF) polymers are characterized
by another length scale, the persistence length λP, and the
expressions for the twist and bend elastic constants
become30,31
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Equation 2 can be used also in the case of semiflexible
polymers; actually, for long semiflexible polymers the splay
elastic constants is generally identified just with ΔK11.

30,31

Chromonics not only are flexible but also, as reversible
polymers, have the feature of a distribution of lengths, which is
affected by temperature and concentration. The rigid rod
model is clearly inadequate to describe the behavior of their
elastic constants:14,16 it predicts K11/K22 = 3, irrespective of
temperature and concentration, whereas measured values are
much higher and decrease with decreasing concentration and
increasing temperature. Likewise, the predicted K11/K33 is
significantly lower than experimental values and has the wrong
dependence on concentration (decreases rather than increasing
with increasing Φ). The expressions for semiflexible polymers,
eqs 3 and 4 together with eq 2, are more appropriate to
account for the behavior of the elastic constants of chromonics.
However, using reasonable estimates of Φ and λp, values of
K22/K33 up to an order of magnitude larger than the measured
ones are obtained for DSCG16 and SSY.14 For long
semiflexible polymers, from eqs 3 and 4 one obtains

λ=K K/ /11 33 p; for chromonics this ratio will depend on
temperature and concentration, since these may affect the
length distribution and the persistence length of aggregates.
Chromonic liquid crystals were investigated by atomistic

molecular dynamics simulations,32,33 which provided insights
into the structure of aggregates and the mechanism of
aggregation. Theory and Monte Carlo simulations with
coarse-grained models were used to describe the phase
behavior of systems undergoing linear polymerization as a
function of temperature and concentration.34−38 In a very
recent paper, both phase behavior and elastic properties of
chromonic liquid crystals were investigated by Monte Carlo
simulations, using a Gay−Berne coarse-grained model.39 In the
latter work elastic constants ratios of the order of the unity
were found, similar to those of conventional thermotropic
liquid crystals. Here, we address the same problem using a
different model, similar to that adopted to describe the liquid
crystal behavior of self-assembling DNA oligomers.38,40,41

Chromonic molecules are represented as hard disks of
thickness d and diameter D (see Figure 1), decorated with

two attracting sites. We have taken model parameters
appropriate for SSY, which forms a nematic phase whose
viscoelastic properties were recently measured.14 The
aggregate structure of aqueous solution of SSY has been
rather well characterized:32,42−44 stacks were found to contain
one molecule in cross section and to have an average diameter
of about 1 nm44 or 1.4 nm.45 In the present study, Monte
Carlo simulations are complemented by theory: an Onsager-
like approach, which was proposed to evaluate the chiral
strength and twist elastic constant of the cholesteric phase of
DNA oligomers,46 is extended here to the three bulk elastic

Figure 1. Model used in this work.
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constants (i.e., splay, twist, and bend). The theoretical
approach, despite the drawback of some unavoidable
approximation, has the advantage of a lower computational
cost; therefore, it has been used for more extensive
investigation of the phase diagram. Moreover, theory is useful
to disentangle the special features coming from flexibility and
self-assembly. The phase behavior and the elastic properties of
our model system are consistent with experimental findings for
SSY. Remarkably, the elastic constants are highly anisotropic, a
result that we explain considering the average value and
distribution of contour lengths and the persistence length of
aggregates.
The paper is organized as follows: the next section presents

the model, together with details of the Monte Carlo (MC)
simulations and an outline of the Onsager-like theoretical
approach. In the third section we show the results of
simulations and theory, and finally in the fourth section we
draw our conclusions.

■ METHODS
Model. Our model system is composed of hard disks as those

shown in Figure 1, with aspect ratio = =X D/ 0.310 d , where D is
the diameter and d is the thickness of a disk. Each disk is decorated
with two attractive sites on its bases, which are located along the
symmetry axis, at a distance + D/2 0.164d from the center of mass.
Sites belonging to distinct particles interact via a square-well (SW)
potential; i.e., uSW = −u0 if r ≤ δ and uSW = 0 if r > δ, where r is the
distance between interacting sites, δ = 0.273D is the interaction range
(which corresponds to the diameter of the yellow spheres in Figure
1), and u0 is the binding energy. In our model u0 does not depend on
the aggregate size, i.e., aggregation is isodesmic.40 The binding energy
is used to define the temperature scale, i.e., T* = kBT/u0.
The disk aspect ratio has been inspired by the shape of the SSY

molecule,32 whereas patch position and size (i.e., distance along
symmetry axis and δ) ensure that (i) no branching occurs in the
system and that (ii) the (dimensionless) persistence length lp of
aggregates (calculated as in ref 38) is equal to 22.9 disks, a value
consistent with the estimate provided in ref 14. Note that this value is
independent of temperature and volume fraction as discussed in ref
38.
Monte Carlo Simulations. We used standard isothermal−

isobaric (NPT) and canonical (NTV) MC simulations to evaluate
the equation of state and to estimate elastic constants, respectively. In
NPT-MC simulations we studied 1000 disks in a cubic box of side L
with periodic boundary conditions for the following scaled temper-
atures T*: 0.09, 0.10, and 0.11. NPT simulations lasted at least 2 ×
108 MC steps, and the equation of state was evaluated during the final
5 × 107 MC steps. NTV simulations were carried out using N = 8000
particles and lasted at least 3 × 106 steps, and elastic constants were
evaluated during the final 2 × 106 steps. The nematic order parameter
S was determined as the largest eigenvalue of the ordering tensor,
calculated as in ref 47. Elastic constants were obtained from the
fluctuations of the nematic director as proposed by Allen and
Frenkel.48−51

Theory. The Helmholtz free energy F of the N phase formed by a
polydisperse mixture of self-assembling linear aggregates is expressed
as a functional of the number density of aggregates ν(l). Here l is the
length (or number of monomers) of the aggregate to which a
monomer belongs. The density function obeys the normalization
condition ∑lν(l) = ρ, where ρ = N/V, with N the number of
monomers and V the volume, is the number density of monomers.
The Helmholtz free energy of the system can be written as the sum of
the following contributions:38,41,46

= + + +F F F F Fid excl or st (5)

where Fid is the ideal gas free energy and Fexcl and For account for the
excluded volume interactions and for the entropy decrease due to

orientational order, respectively. These three terms represent the
Helmholtz free energy in the Onsager theory.52 The last term, Fst, is
the stacking free energy, which accounts for monomer aggregation
and which is expressed in terms of Δ = Δ(T), the bonding free
energy.38 It introduces into the free energy a nontrivial dependence
on temperature, through the length distribution ν(l). Here, we have
assumed for Fst the same functional form that was obtained in ref 40,
and an exponential aggregate length distribution is assumed, i.e. ν(l) =
ρM(l−1)/(M − 1)(l+1), with M the average number of disks in an
aggregate.38

Nematic−Isotropic Phase Transition. The For contribution to
the free energy is given by the product of temperature times an
entropic term, which vanishes in the isotropic phase. Two expressions
were proposed for the limiting cases of stiff (A) and very flexible (B)
chains.53 For our system, For is expressed as the sum of contributions
having the A (B) form for aggregates shorter (longer) than a reference
value l0,

38 which is an adjustable parameter of the order of the
persistence length lp; in the present case, using the same procedure
discussed in ref 38, l0 ≈ 27 was found.

The excluded volume contribution to the free energy in the
absence of deformation, F0

excl, is expressed as

∑ ∑β η ν ν= Φ ′ ̅ ′
′

F
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l l v l l
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2

( ) ( ) ( , )
l l

0
excl

excl

(6)

where v̅excl(l,l′) is the average excluded volume between two
aggregates made of l and l′ disks and η(Φ) is the Parsons−Lee
factor,54,55 introduced to account for higher order terms in the virial
expansion. Here Φ is the effective volume fraction, i.e. Φ = ξϕ, with ξ
a scaling factor whose meaning will be discussed later and ϕ volume
fraction of disks. Concerning the average excluded volume v̅excl, let us
consider two chains, 1 and 2, composed of l and l′ monomers. If R1 =
{r1,1...r1,l}, R2 = {r2,1...r2,l′}, U1 = {u1,1...u1,l}, and U2 = {u2,1...u2,l′},
where rγ,i and uγ,i are the position and the orientation (unit vector) of
monomer i belonging to chain γ = 1, 2, the average excluded volume
in the isotropic phase is defined as

∫
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where dRγ =∏i=1
l drγ,i and dΩγ =∏i=1

l dωγ,i with dωγ,i the infinitesimal
solid angle around the orientation uγ,i and e12

ll′ is the Mayer function:56

= {− } −′e U k TR U R U R U R U( , , , ) exp ( , , , )/ 1ll
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with Uh(R1,U1,R1,U2) being the hard-core pair potential:

=
∞l

m
oo
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0 if 1, 2 do not overlaph 1 1 2 2
(9)

The prime in the integral of eq 7 means that it has to be evaluated
over all positions and orientations of monomers such that (i) within
each chain only two monomers are single bonded and all the
remaining monomers (if any) are double bondeda and that (ii) chains
do not self-overlap.

The average excluded volume in the isotropic phase is calculated by
Monte Carlo integration of eq 7 for l, l′ ≤ 10. Then, the numerical
values are fit to an analytical form (see Supporting Information),
which corresponds to the Onsager expression52 for the excluded
volume of two hard cylinders of diameter of diameter D and lengths
ξX0Dl and ξX0Dl′, where ξ is a factor accounting for the fact that
because of the finite range of SW interaction between patches, the
length of an aggregate is not simply the sum of disk lengths.

The average excluded volumes in the nematic phase are different
from those in the isotropic phase because the orientational
distribution function has changed. We have assumed the Onsager
orientational distribution function:52

α
π α

α θ=f u( )
4 sinh

cosh( cos )O (10)
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where θ is angle between the particle orientation u and the nematic
director and α is a non-negative parameter, which increases with
increasing order. The parameter α is related to the nematic order
parameter S as

∫ θ θ θ θ

α
α α α

= − =

− + ⎯ →⎯⎯⎯⎯ −

π
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Then, the average excluded volumes in the nematic phase are
calculated using the form of the average excluded volume between
two cylinders adopted in ref 38, which is a function of the parameter α
(see eq S.2 in the Supporting Information).
The analytical forms of the average excluded volume in the

isotropic and in the nematic phase are used for arbitrary lengths in eq
6. The total free energy, eq 5, is expressed as a function of the average
aggregate lengthM and of the orientational parameter α, whose values
at a given volume fraction and temperature are obtained by
minimizing the free energy. Coexistence lines are built using the
condition of equal pressure and chemical potential in the isotropic
and in the nematic phase.
Elastic Constants. Starting from a microscopic expression for the

Helmholtz free energy, such as eq 5, the elastic constants for a system
of low molar mass nematics can be easily obtained, under the
assumption that the local free energy density in a deformed sample
remains the same as in the absence of deformation, but with respect to
the local director. This assumption is justified by the large length scale
of director deformations compared to the molecular size. Thus, in eq
5 only the excluded volume contribution, Fexcl, is affected by the
distortion. By truncating the Taylor expansion of Fexcl with respect to
director displacements, we can write

= + + +F
V
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11
2

2

22
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2
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where F0
excl is the excluded volume contribution to the free energy of

the undeformed nematic phase, q is the wavelength of the distortion,
and K11, K22, and K33 are the splay, twist, and bend elastic constants,
respectively. These are expressed in terms of integrals analogous in
form to eq 7, with a different integrand.57

In the case of semiflexible polymers, the need of analyzing the
configurational statistics in a space-dependent nematic field makes the
development of an elastic theory a formidable task. Here, we use an
approximate treatment, where segments shorter than l0 are treated as
rigid, while those longer than or equal to l0 are decomposed into
effective rigid segments of length l0.

31 Thus, for a mixture of
aggregates of different lengths, the elastic constants Kii (i = 1, 2, 3) are
calculated as
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where v̅ii
excl(l,l′) is the average generalized excluded volume between

two aggregates made of l and l′ disks. This is evaluated as

∫
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where all monomers belonging to aggregate γ have the same
orientation uγ, Rcm

i is a Cartesian component of Rcm = (Xcm, Ycm,
Zcm), which is the center-of-mass position of aggregate 2 relative to
aggregate 1 in a reference frame (X, Y, Z) with Z parallel to the local
director at the position of particle 1 (Rcm

i equal to Xcm for i = 1, Ycm for
i = 2, Zcm for i = 3), X̂ is the unit vector parallel to the X-axis, and fȮ is
the first derivative of the Onsager orientational distribution function
with respect to its argument. The generalized excluded volumes
v̅ii
excl(l,l′) are estimated through Monte Carlo integration of eq 14 and
then numerical data are fit to analytical forms (see eq S.6 in the
Supporting Information).

Additional Cost for Splay Deformation. As mentioned in the
Introduction, the cost for splay deformations of polymeric systems has
an additional contribution, ΔK11, which originates from the coupling
between director field and areal density.30,58 Thus, we express the
renormalized splay elastic constant as

= + ΔK K K11 11
0

11 (15)

where K11
0 is the bare splay constant (eq 13). Extending to the a

polydisperse mixture of aggregates the expression for the decrease of
entropy caused by the splay deformation, under the assumption that
polymer ends are randomly distributed as in an ideal gas,58 we can
write

∑α ν
Δ

=
K

k T
F

l l
( )
2

( )
l

11

B

2
2

(16)

where DX0lF(α) is the average projection of the length of an
aggregate of l monomers along the nematic director. Using the
relationship

∑ ν ρ= −l l M( ) (2 1)
l

2

(17)

Figure 2. (a) Equation of state obtained from MC simulations at different temperatures, T* = 0.09 (green), 0.10 (blue), and 0.11 (orange). Pv0/
kBT, with v0 the volume of a disk, is the dimensionless pressure. (b) Average aggregate lengthM and (c) nematic order parameter S as a function of
temperature for volume fraction of disks ϕ = 0.29, 0.30, and 0.31. Symbols are numerical estimates from MC simulations, and solid lines are theory
predictions.
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eq 16 becomes

α ρ
Δ

= −
K

k T
F

M
( )
2

(2 1)11

B

2

(18)

The factor F(α) is estimated through Monte Carlo integration, as
outlined in the Supporting Information.

■ RESULTS AND DISCUSSION

Monte Carlo Simulations. Figure 2a shows the equation
of state obtained from MC simulations at T * = 0.09, 0.10, and
0.11. In this figure ϕ is the volume fraction of disks, calculated
as ϕ = Nv0/L

3, where N is the number of disks in the system, L
is the side of the cubic box, and v0 = πX0D

3/4 is the volume of
a disk.
The temperature range corresponds to the region inves-

tigated in ref 59, assuming a bonding energy of linear
aggregates, u0, equal to 10 kBT, which is in line with the
estimate of 7−11 kBT reported in the literature for SSY.14,60 In
the equation of state we can distinguish an isotropic and a
nematic branch at larger volume fraction, with the phase
transition shifted at higher ϕ values as temperature increases.
Figures 2b,c show the temperature dependence of the

average aggregation number, M, and of the nematic order
parameter, S, for volume fractions in the nematic range. The
average aggregation number increases with decreasing temper-
ature and with increasing concentration, reaching values of the
order of hundreds at the lowest T* values. Hence, the average
aspect ratios of aggregates can be estimated between around 20
and more than 50. Such values are considerably higher than the
experimental values obtained for SSY from correlation lengths
measured in SAXS experiments, which range between 10 and
14.59,61 However, it was pointed out that such estimates are
hard to reconcile with the formation of the nematic phase,59

and indeed larger values, from tens to hundreds of monomer
units, which are in better agreement with the results of our
simulations, were inferred from NMR measurements of
diffusion coefficient in the isotropic phase.60

Figure 2c shows the orientational order parameter S,
calculated from the orientation of the normals to disks. It
increases with increasing volume fraction, as expected for
lyotropic polymers. Additionally, the order parameter shows
here a significant increase with lowering temperature, as in
thermotropic liquid crystals, although the S values are much
higher than for typical thermotropic nematics. Concentration
and temperature dependence of the order parameter shown in
Figure 2c are analogous to the typical experimental data
exhibited by chromonics. The data available in the literature
for SSY show some dispersion: using polarized Raman
spectroscopy, S values between 0.7 and 0.85 were
obtained,62,63 whereas lower values, in the range 0.6−0.75,
were determined by UV−vis absorption spectroscopy,42 and
even lower values were inferred from NMR spectroscopy
(0.54−0.65)44 and birefringence measurements (≃0.52−
≃0.63).14 The origin of the temperature dependence of the
order parameter in chromonics is not obvious: it may reflect
the presence of interaggregate interactions other than pure
excluded volume repulsion as well as the temperature
dependence of the aggregate length.43 In our simulations,
due to the hard-core nature of the interactions between
aggregates, only the latter can be responsible for the behavior
shown in Figure 2c; the increase of S with decreasing
temperature is a signature of molecular self-assembly and
derives from the increase in length of aggregates. In principle,
also the change of the persistence length lp could affect the
orientational order parameter, but this is not the case of our
simulations, since in our coarse-grained model the persistence
length lp of aggregates is independent of T and ϕ. The
calculated order parameters are high, close to the data obtained
by polarized Raman spectroscopy,63 although the sensitivity to
temperature seems weaker than in experimental data. This is
presumably due to the form of the interaction potential in our
coarse-grained model. Better agreement with experiments
could be achieved by a more realistic modeling of monomers
stacking interaction. Stacking forces are supposed to originate

Figure 3. Dimensionless elastic constants (a−c) and elastic ratios (d−f) obtained from MC simulations (symbols), as a function of temperature, for
volume fraction of disks ϕ = 0.29 (black), 0.30 (red), and 0.31 (green). The lines show the results of theory. D is the diameter of a disk.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b00900
Macromolecules 2018, 51, 5409−5419

5413

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.8b00900/suppl_file/ma8b00900_si_001.pdf
http://dx.doi.org/10.1021/acs.macromol.8b00900
http://pubs.acs.org/action/showImage?doi=10.1021/acs.macromol.8b00900&iName=master.img-003.jpg&w=425&h=234


from hydrophobic effect which is expected to exhibit a strong
temperature dependence.64

The plots in Figure 3 show the elastic constants and their
ratios as a function of temperature at different concentrations.
The splay constant obtained from the analysis of director
fluctuations contains both contributions appearing in eq 15.
We can see that the elastic constants have the same order of
magnitude as experimental data for chromonics.14−15 The twist
elastic constant is an order of magnitude lower than both bend
and splay constants, with the splay nearly twice as big as the
bend. This is different from the typical behavior of conven-
tional low molar mass thermotropic liquid crystals, which also
exhibit K22 smaller than K11 and K33, but with K33/K22 that
rarely exceeds 2 or 3 and K33/K11 generally larger than 1. High
elastic anisotropy is characteristic of polymer liquid crystals.
For thermotropic polymers, K11 orders of magnitude larger
than K33 was reported.22,23 The available data for lyotropic
polymers show a wide variability of the K11/K33 ratio, ranging
from values of the order of 0.1 for colloidal suspensions of stiff
TMV24,25 to values of the order of 1 (either smaller or larger
than 1) for solutions of the more flexible PBG,26 for which
however also ratios as high as 1000 can be found.27

Experimental data for chromonics are comparable with those
for PBG: K33/K22 ∼ 10 and K33/K11 ∼ 1 for SSY;14 K33/K22 ∼
35 and K33/K11 between 1 and 2 for DSCG.16

Figure 3 shows that all three elastic constants decrease with
increasing temperature and decreasing volume fraction, in
qualitative agreement with experiments on chromonics14,16 and
also in agreement with experiment is the temperature and
concentration dependence of the elastic ratios, K33/K22, K11/

K22, and K11/K33. Especially significant is the temperature
dependence of the elastic ratios on temperature, which cannot
be explained by the theory for semiflexible rods of fixed length.
Comparing with the experimental data for SSY,14 we can see

that the calculated elastic constants are too high, especially the
splay one, which exhibits also a too weak temperature
dependence. On the other end, the ratios K33/K22 are close
to experimental values, whereas elastic ratios involving K11 are
overestimated. These results, together with the high and rather
weakly temperature-dependent order parameter, suggest that
the average length of aggregates may be overestimated. Better
agreement could be achieved by tuning the geometry and
energetic parameters of the model, which affect the contour
and persistence lengths of aggregates, but this is beyond the
scope of the present work.

Theory. Figure 4a shows the theoretical phase diagram,
together with estimates of phase boundaries from MC
simulations for T* = 0.09, 0.10, and 0.11. Isotropic−nematic
coexistence is found at a volume fraction of disks, ϕ, roughly in
the range 0.25−0.34. The upper limit could be overestimated
because the columnar phase, which is not accounted for by the
present theoretical treatment, might override the nematic
phase at high densities. The results of theory are in reasonable
agreement with those of MC simulations, whereas comparison
with experimental data for SSY59 shows that the volume
fraction of the isotropic−nematic coexistence region is too
high. However, there is some ambiguity in the experimental
determination of volume fractions, and different evaluations
can be found in the literature (see, e.g., refs 15, 42, and 59 and
the Supporting Information of ref 14). Another issue that

Figure 4. (a) Theoretical phase diagram (lines), with symbols showing numerical estimates of phase boundaries obtained from MC simulations. ϕ
is the volume fraction of disks, and T* is the dimensionless temperature. (b) Isotropic−nematic coexistence lines in the average aggregation
numberM and volume fraction, ϕ, plane. The dotted lines connect points corresponding to the isotropic and to the nematic phase in equilibrium at
a given temperature.

Figure 5. (a) Dimensionless splay elastic constant K11 and (b) ratio of the renormalized to the bare splay constant, K11/K11
0 , as a function of

temperature for volume fractions of disks ϕ = 0.265 and ϕ = 0.31. D is the diameter of a disk.
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comes into play when comparing our calculated volume
fractions with experimental data is that chromonic molecules
have two ionizable sulfonate groups at their surface. These
(partially) unscreened charges originate additional electrostatic
repulsion between aggregates, beside the steric repulsion
present in our model, which could be accounted for through an
effective diameter, larger than the steric one. Assuming a
Debye screening length around 0.3 nm, as reported in the
experiments described in ref 14, we can estimate an effective
volume of aggregates that is about 1.7 times the steric one.
Dividing our volume fractions by this factor, we obtain values
that are very close to the experimental ones.
In Figure 4b the theoretically estimated coexistence lines in

theM−ϕ plane show a re-entrant behavior, as already observed
in past studies of the phase diagrams for DNA oligomers.38,40

We note that theoretical results suggest that in the nematic
phase the average aggregation number M cannot be lower than
30−32 monomer units. The average length of aggregates
exhibits a minimum along the nematic coexistence line, a
theoretical prediction that still awaits experimental confirma-
tion. In Figures 2b,c the theoretical estimates of the average
aggregation number M and order parameter S at ϕ = 0.29,
0.30, and 0.31 are compared with the results of MC
simulations. The value of M is quite well captured by
theoretical calculations, while the theoretical order parameters
are generally lower than the simulation values.
Figure 5a shows the renormalized elastic constant K11, eq 15,

as a function of temperature for the volume fraction of disks ϕ
= 0.265 and 0.31. K11 increases with decreasing temperature
and increasing concentration. From Figure 5b, which displays
the ratio K11/K11

0 as a function of temperature, for the same
concentrations as in Figure 5a, we can infer that the main

contribution to K11 comes from ΔK11. The relative weight of
ΔK11 strongly increases with increasing concentration and
lowering temperature, and the bare splay constant gives a non-
negligible contribution only at high temperature and low
concentration. This can be explained considering that ΔK11 ∝
M(ϕ,T) (see eq 18 and Figure 2b). A dominant role of ΔK11 is
expected for long polymers,29,31 and in a recent Monte Carlo
study of a thermotropic polymer with contour length much
longer (up to an order of magnitude) than the persistence
length, it was found that the cost for splay deformation could
be essentially ascribed to ΔK11.

65 Our case is different, because
neither of the two contributions to the splay elastic constant
seems to be negligible. This suggests that the interplay of these
contributions could be a relevant aspect of the elastic behavior
of chromonics, which has not been pointed out yet.
The twist and bend elastic constants, K22 and K33, as well as

the bare splay constant, K11
0 , depend on the persistence length

of aggregates; therefore, they are expected to saturate to a
limiting value on lowering the temperature and increasing
concentration (cf. eq 13). This behavior is shown in Figure 6,
which reports all the elastic constants as a function of
temperature up to coexistence, for two different values of the
disk volume fraction, namely ϕ = 0.265 and 0.31. Consistently
with the results of MC simulations, shown in Figure 3a−c, and
with experimental results for SSY14 and for DSCG,16

theoretical estimates of elastic constants decrease on increasing
temperature and on lowering concentration. Comparing with
the results of MC simulations (Figure 3), we can see that
theoretical predictions for K22 and K33 are close to the
numerical results, although their temperature dependence
seems to be underestimated. On the contrary, K11 is
significantly larger than numerical values, which suggests that

Figure 6. Dimensionless elastic constants as a function of temperature from T* = 0.09 up to isotropic−nematic coexistence at the volume fractions
of disks (a) ϕ = 0.265 and (b) ϕ = 0.31. D is the diameter of a disk.

Figure 7. Temperature and concentration dependence of the elastic ratios (a) K11/K22, K33/K22 and (b) K11/K33 at different values of the volume
fraction of disks ϕ.
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eq 18 provides a crude estimate of ΔK11 and needs to be
improved.
At the lower concentration (see Figure 6a) the bend elastic

constant K33 is much smaller than the renormalized splay
constant K11 at any temperature. The two constants become
comparable at higher temperatures and concentrations.
Anyway, both K11 and K33 are always much greater than K22.
This behavior is clearer in Figure 7, which shows the relative
values K11/K22, K33/K22 (a) and K11/K33 (b) at two different
densities. The trends are analogous to those reported in recent
experimental studies of chromonics.14,16

Comparison with the results of MC simulations, reported in
Figure 3e, shows rather good agreement for K33/K22, although
theory underestimates the temperature dependence of this
ratio. The comparison is less satisfactory in the case of elastic
ratios involving the splay constant, which can be ascribed to
the lower quality of ΔK11 predictions. We can see that both
K11/K22 and K11/K33 (see Figures 3d and 3f, respectively) are
higher than the numerical results and their sensitivity to
changes in concentration is strongly underestimated. More-
over, K11/K33 is predicted to decrease with increasing density,
whereas in MC simulations it is found to increase, in
agreement with measurements14 and experimental findings5

for SSY.
It is now interesting to compare our results with those

obtained using eqs 2−4 for semiflexible polymers of fixed
contour length. The persistence length is calculated as λp =
ξX0Dlp, so it is assumed to be constant at any temperature and
density. On the other end, the average aggregate length is
calculated from the average number of disks in aggregates M as

ξ ϕ= *X DM T( , )0 ; therefore, it depends on temperature
and density. Figure 8 shows the elastic constants as a function
of the volume fraction, at the temperature T* = 0.09. We can
see that K11 and K11

SF are similar, the reason being that K11 is
dominated by the nonexcluded volume contribution, ΔK11,
which according to eq 18 depends on the average length of
aggregates, analogously to eq 2. On the contrary, there are
significant relative differences between the two estimates of the
twist constant, K22 and K22

SF, and of the bend constant, K33 and
K33
SF. The differences concern the magnitude and the density

dependence: both elastic constants obtained from our
calculations are smaller and more sensitive to changes in
density than the corresponding quantities calculated according
to eqs 2. Density affects K22 and K33 through the length
distribution of aggregates, which includes values shorter and
longer than the persistence length, and through the degree of
orientational order. The former is not accounted for by eq 2,

whereas the latter is included in the asymptotic limit of very
high ordering.31

Comparison with Experiments in Confined Systems.
The unconventional elasticity of chromonics is evidenced by
unusual phenomenologies in confined systems, which have
been interpreted as a signature of high elastic anisotropy, i.e.,
K33,K11 ≫ K22. One of these is the emergence of twisted
director configurations (both right- and left-handed) in
spherical droplets of SSY in oil5 and in tactoids of DSCG,3

i.e., spindle-shaped nematic nuclei that form upon cooling the
isotropic phase. This is an amazing example of chiral symmetry
breaking, since chiral structures appear in the absence of
molecular chirality in the systems. Twisted director patterns
were observed, in certain temperature ranges, also in
tangentially anchored spherical droplets of low molar mass
thermotropic nematics.66,67 They were predicted to appear
when the following disequality holds:68

≤ −K K K K/ 2.32(1 / )33 11 22 11 (19)

which requires small K22/K11 and/or K33/K11. It can be easily
seen that these conditions are satisfied by the elastic constants
reported in Figures 3 and 5−7 and that crucial to this purpose
is the role of the nonexcluded volume contribution to the splay
constant, ΔK11.
A more subtle effect was investigated in ref 63, where

tactoids of SSY were found to change from a bipolar to a
twisted bipolar and finally to a new splay-minimizing
configuration with lowering concentration. It was proposed
that this behavior would reflect the relative increase in length
of aggregates with decreasing density, along the isotropic−
nematic coexistence. This would lead to a strong increase of
the splay elastic constant, which depends on the aggregate
length, and would have much lower effect on the bend and
twist moduli, which are essentially determined by the
persistence length of aggregates. Our theoretical predictions
show that indeed the ratio K33/K11 decreases as the coexistence
concentration decreases, but this is due to the contribution of
both the splay and the bend elastic constant. We have seen that
the splay elastic constant is dominated by the nonexcluded
volume contribution ΔK11, and according to eq 18, ΔK11/ϕ is
proportional to the average aggregate length M, which
increases with decreasing density (Figure 4b below ϕ ≈
0.31). At the same time K33/ϕ decreases, and the same does
K22/ϕ, although to a lesser extent (see e.g., Figure 6), which is
not predicted by eqs 3 and 4, at least if the persistence length is
constant. Figure 9 shows the terms on the two sides of eq 19
along the isotropic−nematic coexistence, and we can see that

Figure 8. Splay (a) and twist and bend (b) dimensionless elastic constants calculated at T* = 0.09 using the present theory and the expressions for
semiflexible polymers (SF), eqs 2−4, as a function of the disk volume fraction ϕ. D is the diameter of a disk.
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the inequality is always satisfied, which means that at any
concentration a twisted director configuration is predicted.
Interestingly the opposite, i.e., a bipolar droplet configuration
at any concentration, would be obtained if the bare splay
constant, K11

0 , had been used, as shown by the dashed lines in
Figure 9. This suggests that the nonexcluded volume
contribution to the splay elastic constant, ΔK11, has a subtle
role for the change of tactoid configuration reported in ref 63
and that the expression that we used in eq 18 has to be
improved.

■ CONCLUSIONS
Stimulated by evidence of unconventional behavior, which has
been reported for chromonic liquid crystals, we have
investigated the elastic properties of the nematic phase of a
system of hard patchy disks undergoing reversible polymer-
ization. We have used Monte Carlo simulations and a
theoretical approach based on Onsager theory, which takes
into account the formation of polydisperse linear aggregates
and includes an approximate treatment of the flexibility of
aggregates. To our knowledge, the elastic properties of self-
assembly driven nematics were not previously investigated by
theory or simulations, with a single recent exception of Monte
Carlo simulations.39 These however could not provide new
useful insights, since the calculated elastic properties did not
show the distinctive features exhibited by chromonics. On the
contrary, such features emerge from our study, and we can
identify the effects of molecular self-assembly, which controls
the average value and distribution of aggregate lengths, and
those of the intrinsic flexibility of aggregates. The support of
theory helps to rationalize the results of MC simulations.
The systems of polymerizing disks investigated here, using

parameters suitable for chromonics, contain a mixture of
aggregates with sizes ranging from less than the persistence
length up to 7−8 times the persistence length. Their
contributions to the elastic constants do not scale in a trivial
way with size, but reflect different behaviors, between the
limiting cases of rigid rods and long semiflexible polymers. The
interplay of length distribution and intrinsic flexibility are the
main factors affecting the twist and bend elastic constants. The
splay constant differs from the other two because, besides the
excluded volume term, there is an additional term deriving
from the coupling between director field and areal density
(ΔK11), whose relative weight depends on the ratio between
persistence and contour length. This term generally overcomes

the excluded volume contribution, but unlike what occurs for
very long polymers,65 it is not an order of magnitude larger.
Our results suggest that the simultaneous presence of the two
contributions to the splay constant is one important reason
behind the special elastic behavior of chromonics.14,16

The elastic constants that we calculate show specific features
exhibited by chromonics; i.e., they increase both when
concentration increases and when temperature decreases.
This temperature dependence is absent for hard polymers
and it is a consequence of molecular self-assembly. On the
basis of our results, we can analyze some puzzling behaviors
that were recently reported for chromonics under confinement.
The high values of K11/K33 and K11/K22 are in agreement with
the formation of spontaneously twisted director configurations.
Moreover, we can discuss the origin of changes in director
configuration, which were observed in tactoids on moving
along the nematic−isotropic coexistence. Again, a key role of
the nonexcluded volume contribution to the splay elastic
constant, ΔK11, emerges, and the comparison with exper-
imental data shows that the simple form that we have used,
based on the assumption that polymer ends are randomly
distributed as in an ideal gas, has to be improved to reach a
more quantitative agreement.
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