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Abstract. We put forward a theoretical framework to calculate pair distribution functions in the nematic
liquid crystals formed by sphere-cylinders that self-assemble in linear chain structures. For a nematically
ordered system, one can distinguish between the spatial correlations in the plane perpendicular to the
crystalline axis, and in the direction parallel to the latter. Following this separation, we show that the
RDFs in the parallel case can be described using a superposition of a chain model and Onsager distribution,
whereas the RDFs in the perpendicular case turn out to be that of the soft disks. Based on this concept,
we show how the spatial correlations in the system are influenced by the nematic order parameter. We
conclude that even if the nematic ordering is high in the system, the imperfection of the crystal is strongly
reflected in the pair distributions.

1 Introduction

Self-assembly-driven nematisation occurs when basic
building blocks, due to anisotropic interactions, form lin-
ear semi-flexible aggregates, which may mutually align
to form nematic liquid crystals (LCs) phases with
macroscopic orientational ordered, if the concentration
is sufficiently high. Many systems, such as rod-like mi-
celles [1–3], fibers and fibrils [4–8], aqueous solutions
of short (nano) [9,10] and long B-DNA [11–14], G-
quadruplexes [15,16], chromonics [17–22] as well as cellu-
lose nanocrystals [23], exhibit a self-assembly-driven tran-
sition from an isotropic to an orientationally ordered state
on increasing concentration.

Recently, an Onsager-like theoretical approach has
been proposed [24] to accurately describe the self-
assembly-driven LC formation in the systems of
anisotropic superquadrics with attractive patches. Since
scattering experiments easily provide information on sys-
tem structure in the form of structure factors, it is nec-
essary to develop a formalism to theoretical calculations
of density-density correlations based on the results of the
predicted self-assembly and phase behaviour. In the case
of the isotropic state, we put forward such an approach
in ref. [25], where we used the analytically calculated ra-
dial distribution function (RDF) and its Fourier transform
to predict the centre-centre structure factor. However, for
the nematic phase, this approach is not applicable, as one
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needs to distinguish between the correlations along the
nematic axis and those perpendicular to it.

In this paper we present a theoretical approach to cal-
culate RDF of self-assembly-driven nematic LCs. We test
the method against the same model system which has been
already used in ref. [26], namely hard cylinders with at-
tractive sites on their bases [27]. The latter model, and its
variant where bent hard cylinders are employed, has also
been used to study the physical properties of short DNA
duplexes [28,29].

The paper is organised as follows. In the next section
we describe the methods, both simulational (subsect. 2.1)
and analytical. For the latter, we consider separately the
aforementioned cases; namely we construct independently
the RDFs parallel (subsect. 2.2) and perpendicular (sub-
sect. 2.3) to the nematic axis. We extensively compare the
analytical predictions to the results of computer simula-
tions in sect. 3, also addressing separately the two situa-
tions. A summary of our work is provided in the Conclu-
sion.

2 Methods: theory and simulations

2.1 Simulations

We performed canonical NVT Monte Carlo (MC) simu-
lations of polymerising hard cylinders (HCs) with aspect
ratio X0 = L/d = 2, 3, where L and d are the length
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Table 1. System parameters.

X0 ϕ α M deff ϕsd ϕhd

2 0.318 9.25 6.24 2.24 0.35 0.44

0.380 12.03 6.10 2.18 0.46 0.55

0.424 15.06 6.90 2.14 0.53 0.61

0.470 18.95 8.54 2.11 0.61 0.68

3 0.318 13.75 6.67 2.16 0.35 0.43

0.380 18.11 6.81 2.12 0.45 0.54

0.424 21.75 7.61 2.10 0.50 0.60

0.470 26.33 9.41 2.08 0.57 0.65

and diameter of HCs, respectively. MC simulations have
been carried out in a cubic box with periodic boundary
conditions. Reversible polymerisation occurs via end-to-
end stacking due to the two attractive square-well sites
placed on the two bases of the HCs. We studied 4 differ-
ent fully nematic state points, with different temperature
and concentration, for each elongation. The two attrac-
tive square-well sites are located along the long axis of the
HC at a distance L/2 + 0.15d/2 from its centre of mass
and sites belonging to distinct particles interact via the
square-well (SW) potential, i.e. βuSW = −βu0, if r < δ
and βuSW = 0, if r > δ, where r is the distance between
the interacting sites, δ = 0.25d is the interaction range
(i.e. the diameter of the attractive sites), βu0 is the ra-
tio between the binding energy and the thermal energy
kBT where kB is the Boltzmann constant. L is the unit
of length and temperature T ∗ will be given in reduced
units of u0/kB . The position of the attractive sites and
the range of the square-well interaction have been cho-
sen in order to have a persistence length and a bonding
volume compatible with values used in a recent study of
DNA duplexes self-assembly [24]. Note that the effective
length of the cylinders is actually defined by the position
of the RDF first pick (in parallel case), which in turn sets
the effective volume fraction.

The parameters used in the simulations are described
in the first two columns (the semiaxis ratios X0, and the
volume fractions ϕ) of table 1. The directional character
of the interactions favours the formation of chain aggre-
gates, whose equilibrium distribution can be measured in
simulations as well as calculated analytically [24]. These
chains, if long enough, contribute to the isotropic-nematic
transition when the volume fraction of the cylinders grows.
In the third and fourth columns we provide the theoreti-
cal values for the average chain length M and the nematic
parameter α. The remaining three columns of table 1 will
be described later.

The main question we would like to address in this pa-
per is how the nematic ordering influences the interparticle
spatial correlations, which is why, in fig. 1, we present four
simulation snapshots for the volume fraction 0.318 (left)
and 0.47 (right). The semiaxis ratios are X0 = 2 (upper
row) and X0 = 3 (lower row).

It is clearly seen that the nematic ordering increases
with growing volume fraction and semiaxis ratio. This

Fig. 1. Simulation snapshots for X0 = 2 at (a) ϕ = 0.318,
T = 0.13 and (b) ϕ = 0.47, T = 0.12 and for X0 = 3 at (c)
ϕ = 0.318, T = 0.13 and (d) ϕ = 0.47, T = 0.12.

influences the structural units observed in the cross-
sections parallel and perpendicular to the nematic axis.
For a perfect nematic order, one would expect to have
only chain contributions parallel to the nematic axis, and
ideal hard discs in the plane perpendicular to the nematic
axis.

Let us check how accurate this assumption is for the
systems under study and, in that case, what ways exist to
handle the deviations.

2.2 Parallel case

The naive assumption for the RDF in the direction par-
allel to the nematic axis is that the distances within the
chains would provide the major contribution to the spa-
tial correlations. However, it would have been the only
contribution, had all chains been perfectly aligned with
the nematic axis. In reality, we know that the probability
distribution function for a cylinder to be inclined by the
angle θ from the nematic axes has the form proposed by
Onsager [30]:

fOns(θ) =
1

sinhα
cosh(α cos θ), (2.1)

where α is the nematic parameter and θ is the angle be-
tween the particle and the nematic axis (see fig. 2(a)).
From the geometry of the system θ = arcsin(d/r). Thus
the distribution function in our case is

fOns(r, α) =
1

sinhα
cosh

⎛
⎝α

√
1 −

(
d

r

)2
⎞
⎠ . (2.2)

Thus, to properly describe the RDF, one needs to use
a superposition of the RDF of chains [24,25,31] and that
of eq. (2.2). Earlier, in the isotropic case, we also used the
superposition of the two effects to describe the RDF [25],
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g‖(r, T, X0, ϕ, α, Δ) =
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:

fOns(r, α), if 0 < r < Leff − Δ;
. . .

fOns(r, α) + ps/As(X0, ϕ, Δ), if s Leff − Δ ≤ r ≤ s Leff + Δ;

fOns(r, α), if s Leff + Δ < r < (s + 1) Leff − Δ;
. . .

(2.3)

Fig. 2. Sketch of the chains in the nematic phase. (a) In the
plane parallel to the nematic axis: the distance r between the
centres of the cylinders depends on the nematic parameter
through angle θ. (b) In the plane perpendicular to the ne-
matic axis: the effective diameter deff changes depending on
the nematic order parameter.

but there the contribution from the various contact dis-
tances of the elongated particles had to be taken into ac-
count. In the nematic phase instead, this contribution can
be neglected, due to the fact that configurations, other
than almost parallel ones, are not possible.

see eq. (2.3) above

Here, r is interparticle centre-centre distance,

p(T,X0, ϕ) =
M(T,X0, ϕ) − 1

M(T,X0, ϕ)

is the probability to form a dimer (for details see [24]),
As(X0, ϕ,Δ) = s3(LeffΔ)3ϕ/vd, where vd is the volume of
the particles and ϕ is the volume fraction, Leff corresponds
to the effective length of the particle.

The comparison of the prediction from eq. (2.3) and
the results of the simulations will be provided in sub-
sect. 3.1.

2.3 Perpendicular case

In the plane perpendicular to the nematic axis, one can
assume the RDF to be approximately that of simple
hard disks. However, as it is shown in fig. 2(b), the
cross-section of the inclined cylinder has an elliptic
rather than circular shape. On the other hand, the
probability density distribution corresponding to eq. (2.1)
is symmetric with respect to zero, which means that the
average cross-section would be a circle with a certain

effective diameter larger than d. In this manuscript, we
will compare the simulation results obtained for the
cylinders in the perpendicular case to two different RDFs:
theoretical pair distribution taken from the work of Yuste
and Santos [32,33]; and the simple Molecular Dynamics
simulation for soft disks performed in the software
package ESPResSo [34]. The main idea to calculate the
RDF for hard disks put forward in works [32,33] is to
combine RDF’s for one and three dimensional systems:

g⊥(r, ϕ) = a(ϕ)g(1)
PY(r, ϕλ(1)(ϕ))

+[1 − a(ϕ)]g(3)
PY(r, ϕλ(3)(ϕ)). (2.4)

Here, g
(k)
PY is RDF for k-dimensional hard spheres provided

by the virial expansion up to first order of concentration,
a(ϕ) mixes the Percus-Yewick RDFs for hard rods and
for hard spheres. The λ(k)(ϕ) scale the density of the
reference systems (one and three dimensional). For any
details see [32,33] and references therein. This formula is
used for the disks of unit diameter, therefore we need to
modify it. In the perpendicular case the effective diameter
of the disk can be calculated as deff = d/ cos(

√
2/α) with

the angle θ =
√

2/α calculated on the basis of Onsager
distribution (see, fig. 2(b)).

3 Results and discussions

3.1 Parallel case: how nematic is the “Nematic”?

In this section we investigate the influence of the semiaxis
ratio and concentration of cylinders on the pair correla-
tions. For this we use the systems described in table 1.
The main question is how, with increasing concentration
followed by the growth of the nematic order, the RDFs
evolve, and if they converge to those of a perfect nematic,
i.e. a nematic liquid crystal with all particles perfectly
aligned. The answer is provided in figs. 3 and 4.

In fig. 3 we plot the RDFs calculated parallel to the
nematic axis. In the left column the system of shorter
cylinders X0 = 2 is presented; in the right one we plot the
results for the systems with X0 = 3. The RDFs have ob-
viously two main contributions: high peaks coming from
the interparticle distances in chains and a constant slow
drift to unity (for the distances not possible in chains),
which is magnified in fig. 4 and is discussed a bit later in
this section. Let us focus on chain peaks first. With grow-
ing volume fraction (from the top to the bottom of the
figure), for both semiaxis ratios, the height of the peaks
grows and their width slightly decreases. This is attributed
to two effects: growing chain length and increasing value
of α. Another interesting observation can be seen when
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Fig. 3. Radial distribution functions parallel to the nematic
axis as a function of the interparticle centre-centre distance.
In the left column X0 = 2, in the right one X0 = 3. Volume
fractions are given in the graphs. Simulation data are plotted
with symbols; theoretical results are presented with solid lines.
One can clearly see a contribution of chains in the form of
well-pronounced peaks, and the impact of imperfect nematic
alignment is reflected by the slow growth to unity.

comparing the RDFs for the same volume fraction but
different values of X0. Here, the width of the peaks is
always smaller for X0 = 3. One can understand this by
considering the local rigidity of the chains and the contri-
bution of the elongation to the growth of α (compare the
values of the order parameter provided in table 1 for dif-
ferent X0). The overall fluctuations along the chains made
of long cylinders are weaker. Note that the peaks are lower
for X0 = 3, because the number density is smaller for this
case, as the volume fractions are fixed.

In fig. 4 the zoomed version of RDFs is presented.
We can clearly see that the drift mentioned above is
very sensitive to the cylinder volume fraction. Thus the
higher the value of ϕ, the lower the corresponding part
of the RDFs, i.e. the slower the drift. In general, this
drift shows the probability of finding the centres of two
cylinders from different chains to lay on the same line
(parallel to the nematic vector) at a given distance. For a
perfect nematic this probability is zero for any distance;
for a relatively disordered system with short chains one
can expect the misalignment to be rather frequent. In
other words, the slower the drift goes to unity, the lower
the probability of such a misalignment to take place at
shorter distances in the system. That is why this part of

Fig. 4. Magnified plots of radial distribution functions parallel
to the nematic axis as functions of the interparticle centre-
centre distance. (a) X0 = 2, (b) X0 = 3. Volume fractions are
given in the legend. Simulation data are plotted with symbols,
theoretical results are presented with solid lines. It is evident
that growing nematic order drives to a higher “drift” in the
RDFs.

the RDF can be so well described by Onsager probability
distributions. The other important observation, provided
by the zoom, is that the peaks of the RDF are not exactly
at the distances equal to X0d, but are regularly shifted
towards larger r. This shift is related to the size of the
attractive patch, and defines the effective height of the
cylinders and rescales the overall volume fraction with
the factor of approximately 8-10 per cent. This factor will
play an important part in the perpendicular case.

In both plots one can see that the theoretical predic-
tions agree very well with the simulation data. Thus, we
can safely summarise the parallel case, confirming that
even for high values of α the pair distributions are quite
far from those expected for a perfect nematic ordering
(chain peaks alternated with zero), which tells us that the
imperfections of the ordering are in this case magnified in
the RDFs.

3.2 Perpendicular case: soft disks

In the plane perpendicular to the nematic axis, the system
can be thought of as one of disks. It would have been ab-
solutely correct, had the system been perfectly nematic.
In fig. 5, however it can be clearly seen that it is not
the case. In this figure, analogously to the parallel case
(see fig. 3), we plot RDFs for X0 = 2 on the left and for
X0 = 3 on the right; the volume fraction grows from the
top to the bottom. The RDFs for the cylinders are plotted
with squares and rhombuses. In order to match the data
with the analytical expression for hard disks (solid curves,
eq. (2.4) [32,33]), we need to scale the hard-disk diameter
and the area fraction of the latter. In order to check that
the coincidence is not accidental, we perform the addi-
tional series of simulations, using Molecular Dynamics in
ESPResSo [34] for soft disks and plot the results with dots.

At this point we can check that the scaling of the di-
ameters and densities is physical. First of all, to match soft
and hard disks, we calculate the effective diameter using
the following expression:

deff
hd =

Rc∫
0

exp [−βUWCA(x)] x2dx

Rc∫
0

exp [−βUWCA(x)] xdx

, (3.1)
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Fig. 5. Radial distribution functions perpendicular to the ne-
matic axis as a function of the interparticle centre-centre dis-
tance. In the left column X0 = 2, in the right one X0 = 3.
Volume fractions are given in the graphs. Simulation data for
cylinders are plotted with symbols (pale violet squares and or-
ange rhombuses, the effective area fraction and disk diameters
are used), theoretical results (hard disks with effective area
fraction and effective diameter) are presented with solid lines.
The assumption of the disk model is confirmed by brown cir-
cles: Molecular Dynamics simulation results for soft disks with
a corresponding area fraction.

with thermal energy β = 1 and Weeks-Chandler-Andersen
potential for soft spheres (soft disks when used in 2D) [35]
having the form

UWCA(r) =

{
4ε

[(
σ
r

)12 −
(

σ
r

)6 + 1
4

]
, if r ≤ 2

1
6 σ,

0, if r ≥ 2
1
6 σ.

(3.2)
Here, we use ε = 1 and σ = 1. This value in our case is ap-
proximately 1.07. The next step is to evaluate the approxi-
mate area fraction of soft disks for the cylinders depending
on the nematic order parameter α, using deff , the values of
which are provided in table 1. Thus, we obtain the values
of the ϕsd = ϕheff/deff , where heff is the position of the
parallel RDF first peak. Finally, the area fraction of the
hard disks should be rescaled using ϕsd(deff

hd)
2. All values

are provided in table 1.
The comparison works very well, and the system of

cylinders indeed converges to that of soft disks in the plane

perpendicular to the nematic vector with growing concen-
tration, i.e. with increasing nematic parameter. Note that
for the highest density, the analytical expression fails due
to the limitations of the second-order expansion.

The main conclusion of this section is that even for
high ordering, the spatial correlations are still far from
the perfect case of hard disks; however, they can be ef-
fectively described by the RDFs of soft disks with proper
scaling of the diameter and area fractions. The hard-disk
pair correlation functions as expected agree well with the
soft ones, immediately after the first peak. Finally, the in-
fluence of X0 in this case is much less pronounced than in
the parallel case.

4 Conclusion

In the present paper, we put forward a theoretical ap-
proach to calculate RDFs in the nematic LCs formed by
sphere-cylinders, that self-assemble in linear chain struc-
tures. For a system with the nematic order, it is convenient
to study spatial correlations in the plane perpendicular to
the crystalline axis separately from those in the direction
parallel to the latter. We used this split in our theoretical
framework.

We found that the RDFs in the parallel case can be
described using a superposition of a chain model and On-
sager distribution. The width of the RDF’s peaks due to
chain formation is determined by the particle elongation.
Namely, the higher the value of the cylinder semiaxis ra-
tio, the more narrow the peaks. This is the consequence of
the following: the chain formed by several highly elongated
cylinders has the same metric length as the chain made
of multiple short cylinders, as a result the chains made of
long particles have less internal degrees of freedom. The
background drift (slow increase of the RDF parts between
the peaks) observed in the parallel case is caused by the
imperfection of the nematic order. The drift is slower for a
higher value of the nematic order parameter. The higher
nematic order is provided by longer chains; however, in
the longer chains the long-range ordering is also more pro-
nounced. Thus, if two very long chains are even slightly
inclined with respect to the nematic axis, the range of
high probability to find two centres of the cylinders from
different chains on the same line (parallel to the nematic
vector) shifts towards larger distances.

The RDFs in the perpendicular case converge to that
of the soft disks with growing nematic parameter. For the
perfect nematic, the cross-section of the system of chains
made of hard cylinders perpendicular to the nematic vec-
tor is made of perfect hard disks, whose diameter sim-
ply coincides with that of the cylinder. The inclination of
chains leads to the effective increase of the disk diame-
ter, which fluctuates, thus inducing an effective softness.
We prove this by comparing the RDF obtained for hard
cylinders (perpendicular case) to the RDF calculated in
Molecular Dynamics simulations of soft disks and to the
analytical pair correlation function of hard disks of an
effective diameter, both with the corresponding area frac-
tions.
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In such a way, we elucidate how the spatial correla-
tions in the system are influenced by the nematic order
parameter and show that even if the nematic ordering is
high, the imperfection of the liquid crystalline phase is
strongly reflected in the pair distributions.

Our theoretical approach is rather general and as an
input parameter uses only the semiaxis ratio, cylinders’
volume fraction and the bonding free energy, which is why
it is applicable to any system where the equilibrium self-
assembly in chains causes the isotropic-nematic transition.
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