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We report a numerical investigation of the viscoelastic behavior in models for steric repulsive and
short-ranged attractive colloidal suspensions, along different paths in the attraction strength vs
packing fraction plane. More specifically, we study the behavior of the viscosity �and its frequency
dependence� on approaching the repulsive glass, the attractive glass, and in the reentrant region
where viscosity shows a nonmonotonic behavior on increasing attraction strength. On approaching
the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same
exponent and critical packing fraction previously obtained for the divergence of the density
fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with
specific contributions from different length scales. We also show that the results are independent of
the microscopic dynamics by comparing Newtonian and Brownian simulations for the same model.
Finally, we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear
breakdown which is particularly strong for the case of the attractive glass. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2772628�

I. INTRODUCTION

Understanding dynamic arrest in colloidal system is cru-
cial in disparate technological applications �e.g., food
industry,1 biomaterials,2 painting�. Development of basic sci-
ence also requires a deeper understanding of the different
routes and mechanisms leading to dynamic arrest �glasses
and gels�.3–6 In this respect, model colloidal systems are
playing a very important role due to their versatility. It is
indeed possible to tailor the shape, size, and structure of the
colloidal particles, making it possible to design specific col-
loidal interaction potentials.7 Furthermore, accurate experi-
mental methods are now available for investigating the struc-
ture and the dynamics of colloids even at the single particle
level.8 Unexpected novel behaviors regarding the glass tran-
sition have been theoretically predicted9–13 and experimen-
tally observed14–19 in the cases in which colloidal particles
interact, beside the hard core, via a short-ranged attractive
interaction potentials �when the attraction range is about one-
tenth of the particle diameter or less�. The predictions based
on application of the ideal mode coupling theory20 �MCT�
for supercooled liquids suggest that the standard packing-

driven hard-sphere glass transition transforms—
discontinuously in some cases—into a novel type of glass
transition driven by the short-range attraction. The competi-
tion between the two different arrest mechanisms introduces
slow-dynamics features which are not commonly observed in
molecular and atomic systems. Experiments on solutions of
�hard-sphere-like� colloidal particles �either poly�methyl
methacrylate� or polystyrene micronetwork spheres� in the
presence of small nonadsorbing polymers14,15,17 have shown
that there exists a window of polymer densities in which the
mobility of the colloidal particles has a maximum for a finite
value of polymer concentration. Moreover, for small and
large polymer concentrations, the strength of the � relaxation
�the non-ergodicity parameter� is found to be very different,
suggesting that indeed the viscoelastic response of the repul-
sive and attractive glasses will also be significantly different.
Molecular dynamics simulations of short-ranged models21–24

have confirmed the picture resulting from the theoretical pre-
dictions and validated by the experiments. A recent review
can help summarizing the experimental and numerical stud-
ies in short-ranged attractive colloids.5

The numerical results have been so far mostly limited to
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the study of self and collective properties of the density fluc-
tuations. Despite the strong link with experiments and the
relevance to industrial applications, the numerical evalua-
tions of the viscosity � and viscoelastic properties �̃��� have
lagged behind, since significant computational effort is re-
quested for accurate calculation of �̃���, even more for
states close to dynamical arrest. Experimentally, measure-
ments of � close to the repulsive hard-sphere glass transition
show an apparent divergence, but there is no consensus on
the functional form describing such increase.25,26 For colloi-
dal gels, a power-law divergence has been reported in con-
nection to the gel transition.27 Theoretically, MCT predicts
an asymptotic power-law divergence, with identical expo-
nent, of all dynamical quantities with the distance from the
transition, and hence �, the time scale of the density fluctua-
tions �, and the inverse of the self-diffusion coefficient 1 /D0

should diverge with the same critical parameters.
In this article, we attempt a characterization of the vis-

coelastic properties of two different short-ranged attractive
potentials �a polydisperse Asakura-Osawa and a square well�
along three different paths in the attraction strength-packing
fraction plane, which allow us to access both the repulsion
driven and attraction driven glass transitions with both sys-
tems. We show the divergence of the viscosity, as well as the
diffusion coefficient or structural relaxation time, as the re-
pulsive and attractive glasses are approached. At high den-
sity, the isochoric path shows the reentrant glass; the viscos-
ity increases about three orders of magnitude upon either
increasing or decreasing the strength of attraction.

The article is organized as follows. In Sec. II we intro-
duce the numerical models and describe the methods to cal-
culate the viscosity. In Sec. III we describe the paths inves-
tigated and provide some background information on the
behavior of the diffusion and collective density fluctuations
along these paths. In Sec. IV we discuss the observed behav-
ior of the viscosity on approaching the repulsive and the
attractive glass lines. In Sec. V, guided by theoretical MCT
predictions for the viscosity, we provide evidence that the
viscoelastic behavior close to the two different glass lines is
controlled by density fluctuations of different wavelengths.
Finally in Sec. VI we report a study of the density and at-
traction strength dependence of the Stokes-Einstein relation.

II. NUMERICAL SIMULATIONS

A. Model A: Square well and hard-sphere binary
mixture

We perform molecular dynamics �MD� simulations of a
50:50 binary mixture of 700 particles of mass m with diam-
eters �AA=1.2 and �BB=1 �setting the unit of length�. The
particles interact through a hard core repulsion comple-
mented by a narrow square well �SW� pair potential. The
hard core repulsion for the AB interaction occurs at a dis-
tance �AB= ��AA+�BB� /2. The SW potential is

VSW�r� = �� , r � �ij

− u0, �ij � r � �ij + �ij

0, r 	 �ij + �ij ,
� �1�

where r is the distance between particles of types i , j=A ,B,
the depth of the well u0 is set to 1, and the widths �ij are
such that �ij / ��ij +�ij�=0.03. Temperature T is measured in
units of u0 �kB=1�, the attraction strength 
=1/T, and time t
in �BB�m /u0�1/2. The use of a binary mixture allows us to
suppress crystallization at high packing fraction �c= ��A�A

3

+�B�B
3� /6, where �i=Ni /L3, L being the box size, and Ni

the number of particles for each species. The system under-
goes phase separation into a gas and a liquid for large attrac-
tion strength in a wide range of packing fractions:28 The
critical point is located roughly at 
c�3.33 and �c�0.27
�the latter is estimated from the Noro-Frenkel scaling29 in-
variance close to the Baxter limit30�. Previous studies23,28,31

of the same model allowed us to locate the dynamical arrest
line and the spinodal curve. The “numerical” glass line was
determined by extrapolation via a power-law fitting of the
normalized diffusion coefficient D /D0, i.e., D /D0�	�c

−�c
G	�,31 where D0=
1/2. This study was complemented by

the calculation of the MCT glass lines for the same model.
Hence, a bilinear transformation of �c and T was used to
superimpose the theoretical onto the numerical glass line.

We also study, as discussed below, the same 50:50 bi-
nary mixture of 700 particles, with the same �AA, �BB, and
�AB above, but interacting simply as hard spheres, for which
the potential reads

VHS�r� = 
� , r � �ij

0, r 	 �ij .
� �2�

For Newtonian dynamics simulations, we used a stan-
dard event-driven �ED� algorithm.32 We also perform Brown-
ian dynamics �BD� simulations of the same model to ensure
the independence of the viscoelastic calculations of the mi-
croscopic dynamics. For BD simulations we exploit a re-
cently developed33 BD algorithm, which we shortly describe
below. For a more extensive discussion we invite the reader
to consult Ref. 34.

If the position Langevin equation is considered, i.e.,

ṙi�t� =
D0

kBT
fi�t� + r̊i�t� , �3�

where ri�t� is the position of particle i, D0 is the short-time
�bare� diffusion coefficient, fi�t� is the total force acting on
the particle, and r̊i�t� a random thermal noise satisfying
�r̊i�t� · r̊i�0�=6D0��t�. The BD integration scheme of Eq. �3�
can be schematized as follow: �i� every tn=n�t �n integer�
extract velocities vi according to a Maxwellian distribution
of variance �kBT /m; �ii� evolve the system between tn and
tn+�t according to the laws of ballistic motion �performing
standard ED molecular dynamics�.

The present binary mixture model allows us to study the
viscoelastic properties within the reentrant liquid region en-
closed by the nearby attractive and repulsive glass transi-
tions. On the other hand, due to phase separation, it does not
allow us to approach the attractive glass line at moderate
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density. Hence we will study VHS for varying �c �path 1A in
Fig. 1� and VSW at fixed �c=0.58 on varying T �path 3 in Fig.
1�.

B. Model B: Asakura-Oosawa polydisperse system

We also study an interaction potential based on the
Asakura-Oosawa model to make a direct link with experi-
ments in colloid-polymer mixtures. A polydisperse system,
comprised of 1000 particles, is simulated with the standard
velocity Verlet algorithm for Newtonian dynamics in the ca-
nonical ensemble, which requires a continuous differentiable
potential. To this end, a soft core was used instead of the
hard core in model A,

Vsc�r� = ��ij/r�36, �4�

where �ij = ��i+� j� /2, with �i the diameter of particle i. Di-
ameters were distributed according to the flat distribution
��−� ,�+�� with � the mean diameter and �=0.1�. The
short-range attraction between particles is given by the
Asakura-Oosawa model for polydisperse systems,

VAO�r� = − kBT�p
���̄ + 1�3 −
3r

2�
��̄ + 1�2 +

r3

2�3�
+

3�

8r
��1 − �2�2���̄ + 1� −

r

�
�2� , �5�

for �12�r��12+�� and 0 for larger distances; �i=�i /�, �̄
= ��1+�2� /2, and �p is the volume fraction of the polymer.
The range of the interaction, �, is the polymer size, and its
strength is proportional to �p, the concentration of ideal
polymers. To ensure that the interaction potential Vsc+VAO

has its minimum at �12; the Asakura-Oosawa potential is
connected analytically to a parabola at �12+� /10.35 For av-
erage particles, �1=�2=�, the attraction strength of the
Asakura-Oosawa potential is given by Vmin=−kBT�p�3/2�
+1�, which for �=0.1 is Vmin=−16kBT�p.

Because the attractive glass transition occurs inside the
liquid-gas spinodal, it cannot be accessed directly from the
fluid with this potential. Thus, we have added a long range
repulsive barrier to the interaction potential that destabilizes
a macroscopic separation into two fluid phases. The barrier is
given by

Vbar�r� = kBT
� r − r1

r0 − r1
�4

− 2� r − r1

r0 − r1
�2

+ 1� , �6�

for r0�r�r2 and zero otherwise, with r1= �r2+r0� /2. The
limits of the barrier were set to r0=�12+� and r2=2�, and its
height is 1kBT. The barrier raises the energy of a dense
phase, so that liquid-gas separation is suppressed. The result-
ing total interaction,

Vtot�r� = Vsc�t� + VAO�r� + Vbar�r� , �7�

is analytical everywhere and allows straightforward integra-
tion of the equations of motion.

This model allows us to study the viscoelastic properties
of the fluid close to the attraction driven glass transition at
moderate density, i.e., far from the high order singularity. We
will use this system to approach the repulsive glass with
increasing �c at �p=0, hence using simply Vsc �path 1B in
Fig. 1�, as well as to study the attractive glass at moderate
density �c=0.40 �path 2 in Fig. 1� by using Vtot.

C. Computation of viscosity

The shear viscosity � is given by the Green-Kubo rela-
tion,

� � �
0

�

dtC���t� =
�

3V
�

0

�

dt �
���

�����t�����0� , �8�

which expresses � as the integral of the correlation function
of the nondiagonal terms of the microscopic stress tensor,
���=�i=1

N mvi�vi�−�i�j
N �rij�rij� /rij�V��rij�, where V is the

volume of the simulation box, vi� is the �th component of
the velocity of particle i, and V� is the derivative of the total
potential. �¯ indicates an average over initial conditions.
However, from the computational point of view, it is more
convenient to use the Einstein relation,

� = lim
t→�

��t� =
�

6V
lim
t→�

1

t
��A�t�2 , �9�

where A�t� is the integral from 0 to t of the three off-diagonal
terms of the stress tensor,

�A�t� = A�s + t� − A�s� = �
s

s+t

�
���

����s��ds�. �10�

Using Eq. �9� is analogous to the calculation of the diffusion
coefficient as the long time slope of the mean squared dis-
placement.

For discontinuous potentials �hard cores or square
wells�, Eq. �9� can still be used36 despite the impulsive char-
acter of the interactions. In this case,

FIG. 1. Schematic phase diagram showing the attraction and repulsion
driven glasses and the three paths followed in this work. Note that path 1
�infinite temperature limit� is studied within both models. The inset shows
the three paths in the temperature-packing fraction representation.
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��A�t��HS,SW = �
collisions

�
���

��m�
i=1

N

vi�vi���t

+ m�xk� − xl���vk�
after − vl�

before�� , �11�

where �t is the time elapsed from the previous collision, k
and l are the two colliding particles, xk� is the position of
particle k in direction �, and �vk�

after−vl�
before� is the momentum

change in direction � of particle k due to the collision with
particle l. We have not attempted to numerically recover
C���t� from �A�t�.

D. Units

For both studied models we report states in the packing
fraction versus attraction strength plane ��c−
�. For model
A, the attraction strength is given by the inverse temperature
�for HS temperature is irrelevant and is set equal to 1�,
whereas for model B, 
=−Vmin. Distances are measured us-
ing �BB for model A and the mean diameter � for model B,
while the particle mass m is always set to 1. The stress cor-
relation function is measured in units of kBT /�3, and time in
units of ��2m /kBT�1/2. The viscosity is thus given in
�mkBT�1/2 /�2. For the integration of the equations of motion
in model B, the time step was set to �t=0.0025/�3.

III. DESCRIPTION OF PATHS, TRANSITION, FITS,
EXPONENTS

Using the models presented above, we numerically study
the following paths schematized in Fig. 1.

Path 1. The zero-attraction case for both models, i.e., the
hard and the soft sphere models. The two models are not
identical along this path because �i� the Asakura-Oosawa
model has a soft repulsion �although the r−36 core is quite
hard and no important effects are expected37� and more im-
portantly �ii� the size distributions are different: bimodal in
model A versus continuous in model B. Model B has been
studied previously along this path monitoring the self-
diffusion and the density correlation functions.38 The glass
transition points and the exponents controlling the power-law
divergence of the structural relaxation time scale �� and the
diffusion coefficient �D, as well as the von Schweidler expo-
nent b �which provides a measure of the slow decay of the
density correlation function�, are shown in Table I for both
systems. The difference in the critical packing fractions can
be attributed to the different size distributions of the two
models. The exponents �� and �D, on the other hand, are
very similar in both models.

Path 2. Approaching the attractive glass. This path is
studied with model B, for which the liquid-gas transition is
destabilized and the glass transition can be approached from
the fluid. This path has been studied previously monitoring
the density correlation functions35,39 and the viscosity,40 and
the glass transition is found for 
G=9.099; the associated
von Schweidler and critical exponents are given in Table II.

Path 3. The reentrant region and the approach to the
attractive glass. This path is studied with model A at �c

=0.58, a value well within the reentrant region.23 The corre-
sponding parameters for this path are provided in Table II. At
large temperature, the glass transition is approached but not
reached because the studied packing fraction is close, but
smaller than �c

G for VHS, i.e., the path is parallel to the re-
pulsive glass line in the limit T→�.

Note that, as predicted from MCT, the attractive glass
shows lower von Schweidler exponents than the repulsive
glass, for both paths and models, while �� is larger. This
implies that the divergence of the time scale for structural
relaxation is more abrupt. For the square well mixture, quan-
titative results from simulations and MCT are available,31

predicting the transition point at �c=0.58 for 
G,MCT�3.70,
in quite good agreement with that estimated from the fits

G�3.56. For path 2 a quantitative comparison with MCT
has been also recently performed,41 showing that the driving
mechanism for the slowing down observed in the simulation
is driven by the short-range attractions �large-q modes of
S�q��.

IV. VISCOSITY RESULTS

In this section we study the viscosity along the three
paths described above.

A. Hard and soft spheres: Paths 1A and 1B

In Fig. 2 we present, along path 1B, the stress correlation
function for Vsc at different concentrations �upper panel� and
the integral of the squared nondiagonal terms of the stress
tensor �lower panel�. The correlation functions have been
averaged over 5000 independent calculations. Note the pro-
gressive development of a two-step decay in C���t� as the
concentration increases and the glass transition is ap-
proached, with the second �structural� decay of C���t� mov-
ing to longer and longer times. This implies that stress re-
laxes slower and slower, or equivalently that the system
increases its ability to store the stress; i.e., the system be-
comes viscoelastic. Additionally, it can be observed that
C���0� grows close to the transition. Both effects are respon-
sible for the increase of the viscosity upon increasing the

TABLE I. Glass transition point �c
G, von Schweidler exponent b, and diver-

gence exponents of the characteristic time of the decay of density fluctua-
tions �� and of the diffusion coefficient �D for models A and B in the
absence of attraction, i.e., respectively, VHS and Vsc, along path 1.

�c
G b �� �D

Model A: VHS 0.584 0.51 2.75 2.17
Model B: Vsc 0.594 0.53 2.72 2.02

TABLE II. Glass transition point �G, von Schweidler exponent b, and di-
vergence exponents �� and �D for models A and B in the presence of attrac-
tion, i.e., respectively, VSW and Vtot, respectively, along path 3 and 2.


G b �� �D

Path 2: Vtot 9.099 0.37 3.23 1.23
Path 3: VSW 3.56 0.33 3.75 2.2
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packing fraction, but the increase in the time scale is the one
providing the leading contribution to the integral �see Eq.
�8��.

The integral of the stress correlation function is very
noisy, and the numerical evaluation of the viscosity is more
accurate if calculated using the Einstein relation �Eq. �9��, as
shown in the lower panel of Fig. 2. For comparison, the
integral of the functional form used to describe C���t� �see
below� is also included for two state points. Note that all
three quantities show the same long time limit, i.e., the vis-
cosity does not depend on the way it is calculated. At inter-
mediate times, the integral of C���t� and its fitting are in
perfect agreement, but the integral of the fitted function is
less noisy. Thus, we will calculate viscosities using the Ein-
stein relation in Eq. �9�.

The viscosity, as given by the long time plateau, grows
with increasing particle density, as shown in Fig. 3. This
increase is consistent with a power law, diverging at the tran-
sition point estimated from the structural relaxation time and
from the diffusion coefficient �c

G=0.594.40 The exponent for
this power law ��=2.74 is similar to �� but different from
�D, as reported in Table I.

For hard spheres, path 1A, the viscosity can only be
calculated by integrating the squared nondiagonal terms ob-
tained from Eq. �11�. For these calculations, ���A�t��2 was
averaged over 20 independent starting configurations and
over time for a minimum of 70��, where �� is the density
relaxation time at the wavelength corresponding to the
nearest-neighbor peak. The behavior of ���A�t��2 along this
path �not shown� is very similar to that reported in Fig. 2 for
model B, and the viscosity, included in Fig. 3, increases as
the glass transition is approached. A power-law divergence

with exponent ���2.9 is observed for the viscosity, with the
transition point at �c

G=0.584, slightly lower than for Vsc. The
value of the exponent is, again, in good agreement with ��

but quite different from �D.

B. Attractive glass: Path 2

In this section, we analyze the viscoelastic behavior
close to the attractive glass. As discussed above, for this
purpose we use model B for which the liquid-gas separation
is suppressed by the presence of the added repulsive barrier,
allowing for the study of low density ��c=0.40� in a homo-
geneous system. The attraction between particles induces a
minimum after the short time �microscopic� relaxation in the
stress correlation function �not shown�, which introduces a
negative correlation at intermediate attraction strengths.40 At
high attraction strength, the correlation is positive at all
times, and after the minimum, C���t� shows the development
of a slow decay and a large increase of the value at zero time
C���0�, similarly to the phenomenology observed for the re-
pulsive glass. This indicates that the system is becoming sol-
idlike due to the bonds formed in the system.

���A�t��2, used to calculate the viscosity, grows dra-
matically upon increasing the attraction strength. The long
time limit value � is shown in Fig. 4 as a function of attrac-
tion strength. The data can be fitted using a power-law diver-
gence as a function of the distance from the transition

−
G, where 
G is reported in Table II. The exponent
��=3.16 is again in good agreement with ��.

C. Reentrance region: Path 3

Path 3 is a high density isochoric path, where the attrac-
tive and repulsive glass lines are about to merge. Varying the
attraction strength, the system can be studied in states close
to the repulsive or to the attractive glass. This path is studied
only with system A because the short interaction range of the
studied SW opens up a large fluid region between the two
glasses.

FIG. 2. Upper panel: Stress correlation function C���t� for Vsc. The thin
lines are empirical fittings to describe the data �see Sec. V for details�.
Lower panel: Full lines are ����A�t��2 /6Vt �from the Einstein relation, Eq.
�9�� for all studied �c. For two specific values of �c ��c=0.57 and �c

=0.40� we also show ��t� obtained using a direct integration of C���t�
�symbols�, and integration of the fitting curves �dashed thick�. Note that
while ��t� and ���A�t��2 /6Vt have the same long time value, their time
dependence is different.

FIG. 3. Viscosity of soft �full black circles� and hard �empty red circles�
spheres as a function of particle packing fraction, approaching the glass
transition. Lines are power-law fits to points with �c	0.50. The values of
the critical packing fraction have been fixed to the previously determined
values �see Table I�, i.e., �c

G=0.594 and �c
G=0.584 for soft and hard spheres,

respectively. The corresponding fitting exponents �� are 2.74 and 2.9.
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Figure 5 shows ���A�t��2 / t calculated using Eq. �11�.
The corresponding viscosity is reported in Fig. 4 as a func-
tion of 
. As expected in this region, the viscosity increases
both at low temperature due to the proximity of the attractive
glass and at high temperature because of the nearby repulsive
glass. A power-law divergence describes the attractive glass
increase of � with exponent ���3.75, i.e., the same that is
found also for the density relaxation time ��. Data refer to an
average over 20 independent starting configurations and over
time for a minimum of 200��. A pronounced reentrant be-
havior, covering two full decades toward both limits, is ob-
served in �, similar to that reported previously for the diffu-
sion coefficient D in the same system.23

V. COMPARISON OF C��„t… WITH MODE COUPLING
THEORY

MCT predicts42 that the stress correlation function is re-
lated to an integral over all wave vectors of the density cor-
relation functions,

C���t� =
kBT

602�
0

�

dqq4�d ln S�q�
dq

�q�t��2

. �12�

We theoretically calculate C���t� along two paths analogous
to paths 1B and 2 studied in simulations to compare the full
time behavior of the stress correlation function. Hence, we
study �i� A one-component hard-sphere system with increas-
ing �c, using the Percus-Yevick �PY� structure factor as in-
put; �ii� a one-component Asakura-Oosawa �AO� model with
size ratio �=0.1 at fixed packing fraction �c=0.40. Here S�q�
is calculated using PY closure for the two-component
Asakura-Oosawa mixture. This model mixture is composed
of HS colloidal particles and ideal-gas polymers with HS
interactions between polymers and colloids.43 The obtained
colloid-colloid structure factor is used as input to a one-
component MCT, a treatment based on the validity of an
effective one-component description for small polymer-
colloid size ratio.44,45 We did not use the fundamental mea-
sure density functional theory46,47 which yields analytical ex-
pressions for Sij�k� as done previously48 because within this
closure the system shows spinodal instability before MCT
would actually give a glass. This is not the case with PY
closure, for which only a very tiny increase in the structure
factor at small q is found approaching the MCT transition.

We solved the full dynamical MCT equations, as well as
their long time limit, to calculate the viscoelastic properties
close to the glass transition. Our calculations are based on
standard algorithms already developed some years ago49 and
we use a grid of 1500 wave vectors with mesh �q=0.314.

The long time limit of the integrand of Eq. �12�,

I�q� = lim
t→�

q4�d ln S�q�
dq

�q�t��2

= q4�d ln S�q�
dq

fq
c�2

,

�13�

is plotted as a function of q�, in Fig. 6 for both studied
systems, fq

c being the critical nonergodicity parameter at the
MCT transition. The same figure reports also fq

c and the input
static structure factor, also at the transition, Sc�q�.

For the repulsive glass we find that the dominant contri-
bution to the integral is provided by the wave-vector region
around the nearest-neighbor peak, i.e., q*��6.5. For the at-
tractive glass, on the other hand, the dominant contribution is
found at much larger q values, i.e., q*��24 �in the region of
the fourth peak of S�q��, providing another confirmation of
the importance of small length scales in the localization
properties of such a glass.4 Moreover, in this case, the inte-
grand is not just peaked around a specific value, but it is
rather spread within a very large q interval. The amplitude of
the integrand is also much larger in the case of the attractive
glass as compared to the repulsive glass.

We can then compare in the upper panel of Fig. 7 the
theoretical stress correlation function with the squared theo-
retical density correlator �q*

2 �t� at the maximum of I�q�. We
show two state points: one close to the repulsive glass and
the other state close to the attractive one. Apart from an
amplitude scaling factor, the dominant contribution is al-
ready sufficient to describe the long time behavior of C���t�
for both attractive and repulsive glasses. However, for the

FIG. 4. Viscosity approaching the attractive glass transition along path 2
�full black circles�, and in the reentrant region along path 3 �empty red
circles�, as a function of attraction strength. The lines represent power-law
fittings �with values of the critical attraction strength fixed to the previously
determined values reported in Table II�, with exponents �� equal to 3.16 for
path 2 and 3.75 for the attractive side of the reentrant path 3.

FIG. 5. ����A�t��2 /6Vt for different attraction strengths 
 along the isoch-
ore �c=0.58 for path 3A. On decreasing 
, the long time limit first de-
creases �full lines� and then increases again �dashed lines�, resulting in a
pronounced reentrant behavior of the viscosity.
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attractive glass case, the decay of the squared density corre-
lation shows a slightly smaller stretching as compared to
C���t�, which causes a small discrepancy at very long times.
We attribute this difference to the fact that, in the case of
attractive glasses, a large window of wave vectors contrib-
utes to the decay of the stress autocorrelation function �see
Fig. 6�.

In the lower panel of Fig. 7, the time dependencies of
both C���t� and �q*

2 �t�, as calculated from the simulation
data, are also plotted. Here q* is the wave vector at which the
agreement between the time dependence of C���t� and �q*

2 �t�
is optimal. The q* values found in this way, respectively,
q*��7.5 and q*��26, agree very well with those predicted
by the theory.40 Moreover, the behavior of C���t� is well
described �within the numerical error� by a single squared
density correlator for both glasses. The small discrepancy
which was observed in the MCT data for the attractive glass
is probably buried within the numerical noise.

Finally, we want to compare the elastic moduli for both
glasses in the theoretical and numerical calculations. In order
to calculate elastic and viscous moduli, the stress correlation
functions calculated from simulations have to be Fourier

transformed: G���= i�C̃���, where C̃��� is the Fourier
transform of C���t�. However, due to the noise in the corre-
lation function, direct transformation produces very low
quality results. Thus, we have fitted C���t� with empirical
functional forms close to both glasses before performing the
Fourier transform. We have chosen

C���t� = C���0��f�t/�0� + A�1 − f�t/�0��exp�− �t/�1���� ,

�14�

where f�x� is an even function that describes the short time
relaxation of C���t�: f�x�=1/ �1+x2� for the repulsive glass
�Fig. 2� and f�x�=exp�−x2� for the attractive glass. �0 repre-
sents a microscopic time scale, which should be state inde-
pendent, whereas �1 gives the time scale for the stress final
relaxation. The parameter A gives the amplitude of the stored
stress �so that AC���0� is the height of the plateau in C���t��
and � is the stretching exponent, which according to the
MCT prediction should be roughly equal to the stretching
exponent of the density-density correlation function at q*.

In Table III we present the parameters of the fittings for
C���t� for states along path 1B, drawn in Fig. 2 as thin lines.
As expected, �0 is state independent and �1 increases sub-
stantially when the glass transition is approached. A and �
are correctly estimated only when the second relaxation is
noticeable, i.e., above �c=0.55; in these cases the amplitude
is almost constant and � is compatible with the value ob-
tained from the density correlation function at q*, �=0.52.38

TABLE III. Parameters of the fitting of C���t� for states close to glass
transition for soft-spheres �path 1B�.

�c C���0� A �0 �1 �

0.58 181 0.18 0.024 13.30 0.509
0.57 156 0.16 0.026 3.56 0.665
0.55 134 0.15 0.024 1.18 0.759
0.53 83 0.23 0.025 0.20 0.421
0.50 34 0.39 0.024 0.03 0.353

FIG. 7. Stress correlation function C���t� �full lines� for repulsive and at-
tractive glasses calculated within MCT �top� and from simulations �bottom�.
The dashed lines are the squared density correlation functions �q*

2 �t�, arbi-
trarily scaled in amplitude to overlap the long time behavior. For the MCT
data, the wave vector q* is the one reported in Fig. 6, while in the simulation
panel it is the one which provides the best long time overlap between �q*

2 �t�
and C���t�.

FIG. 6. Mode coupling contributions to the viscosity I�q� / �602�, with I�q�
defined in Eq. �13�. The wave vector at which I�q� is maximum, q*�, is
�6.5 for the repulsive glass �upper panel� and �24 for the attractive glass
�lower panel�. To compare, we report in the same figure also the q depen-
dence of the critical nonergodicity parameter fq

c and of the static structure
factor Sc�q�.

144906-7 Viscosity of colloidal glasses J. Chem. Phys. 127, 144906 �2007�

Downloaded 06 Aug 2008 to 128.178.157.82. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



The parameters of the fittings for the attractive glass
�path 2� are given in Table IV. As before, �0 is almost con-
stant, whereas �1 increases dramatically upon increasing the
attraction strength.

From the values of the fits, we can directly compare
other quantities between theory and simulations: namely, the
t=0 value of the stress correlation function C���0� and the
height of the long time plateau f� for both glasses. The re-
sults from MCT and simulations are reported in Table V for
both studied paths. For both glasses, the simulations provide
a lower value of C���0� and a larger value of f� with respect
to MCT. Although numbers are not important per se when
comparing to MCT, the ratio f� /C���0� is wrong by one
order of magnitude for both attractive and repulsive glasses.
This result seems to suggest that the factorization
approximation42 adopted to derive Eq. �12� may be too se-
vere, although the structural relaxation is apparently well de-
scribed, as shown by the comparisons of Fig. 7.

We finally directly compare the elastic and viscous
moduli G���� and G���� in Fig. 8 for repulsive �top� and
attractive glasses �bottom�. We observe qualitatively the
same trends for both transitions in theory and simulations,
despite a shift in the absolute numbers.

�i� An increase of G���� at large � �but smaller than the
microscopic frequency� with the approach to the glass
transition.

�ii� The appearance of a minimum in G� which moves to
lower and lower � with decreasing distance from the
transition, in agreement with previous experimental
and theoretical studies on both repulsive50,51 and at-
tractive glasses.52,53 The minimum appears when �
�0.01 according to the theory ��= 	Xg−X	 /Xg, with X
being either �c or 
� and at slightly larger values of �
according to the simulations.

�iii� Much larger moduli �up to one order of magnitude�
for the attractive than for the repulsive glass. This
observation holds both for theory and simulations and

agrees well with recent rheological measurements for
thermoreversible sticky spheres.19,54

Overall, MCT correctly predicts the behavior of the vis-
coelastic properties on approaching both glass transitions.
However, the results disagree again quantitatively, and more
importantly in the ratio of the height of the plateau in G� �or
minimum in G�� with respect to G�� �or Gmax� �.

VI. BREAKDOWN OF STOKES-EINSTEIN RELATION

Finally, we discuss the breakdown of the Stokes-Einstein
�SE� relation55–61 close to the glass transition for all different
studied paths.

We start by examining path I. Figure 9 shows the SE
relation for the hard-sphere binary system and the soft sphere
polydisperse system. To allow for a unifying picture, we plot
the results as a function of the relative distance to the esti-
mated glass transition ��c

G−�c�. At low and moderate den-
sity, far from the transition the data are consistent with SE,
although different value limits are obtained for model A or B;
whereas the former takes the stick value, D� /T= �3��−1,
the latter goes to the slip limit: D� /T= �2��−1. The reason
for this difference is not clear,62–64 but probably lies in the
fine details of the interaction at short distances.65,66 In both

TABLE IV. Parameters of the fitting of C���t� for states close to attractive
glass transition �path 2�.

�p C���0� A �0 �1 �

0.42 1650 0.077 0.011 81.48 0.325
0.41 1506 0.072 0.011 8.09 0.389
0.40 1470 0.061 0.011 3.49 0.585
0.39 1404 0.071 0.012 1.90 0.949
0.30 724 −0.085 0.013 0.07 1.757

TABLE V. Approximate values of initial value of the stress correlation
value C���0� and height of the plateau, f� for paths 1B and 2. The first two
columns refer to simulation data and the last two to theoretical MCT pre-
dictions.

C���0� f� C��
MCT�0� f�

MCT

Path 1B 181 32 400 3
Path 2 1650 127 6000 100

FIG. 8. Shear moduli G� and G� from simulations �left� and MCT �right� for
repulsive �top� and attractive glasses �bottom�.
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cases, as the system approached the glass transition, the SE
relation breaks down significantly, both in the form D� and
D� �see inset�.

Figure 10 shows the SE relation for the attractive glass
case �path II� and along the reentrance �path III�. The former
case is rather clean and allows us to access a breakdown by
two orders of magnitude with respect to the typical SE value,
both in D� /T and D� �inset�. For both paths, at large 
 �low
T� a clear breakdown of both D� and D� /T is observed for
the attractive glass.

For path III �reentrance case�, one has to bear in mind
that the path becomes parallel to the repulsive glass line at
small 
 �see Fig. 1� and the increase is limited to the one
observed in the HS case at the same packing. For this path
we have also performed BD simulations. The BD results,
also shown in Fig. 10, coincide with the MD data at all state
points investigated, confirming that the SE behavior close to
both repulsive and attractive glass transitions does not de-
pend on the microscopic dynamics.

Data in Figs. 9 and 10 provide evidence that the break-
down of the SE is a phenomenon which can be observed in
the vicinity of both the repulsive and the attractive glass

transitions. Within the investigated state window, it appears
that the magnitude of the breakdown is enhanced in the at-
tractive glass case, speaking for the presence of more intense
dynamical heterogeneities67–69 when confinement is origi-
nated by short-range bonds rather than by the excluded vol-
ume caging.

VII. CONCLUSIONS

In this article we reported the behavior of the viscosity in
two models for short-range attractive colloids along three
different paths in the attraction-strength packing-fraction
plane. Along the first path, the system approaches the repul-
sive hard-sphere glass transition. Along the second path, it
approaches the attractive glass. The third path is chosen in
such a way that the system moves continuously from the
repulsive to the attractive glass at constant packing fraction
in the so-called reentrant region.70 In this case, we have also
compared Brownian and Newtonian simulation results, con-
firming that the viscosity is independent of the microscopic
dynamics, in agreement with results based on the decay of
density fluctuations in atomic liquids.71

We find that the increase of the viscosity on approaching
the glass transition is consistent with a power-law diver-
gence. The divergence of � can be described with the same
exponent and critical packing fraction previously found for
the collective relaxation time, but with an exponent different
from the one that characterizes the divergence of the diffu-
sion coefficient. This holds for both attractive and repulsive
glasses.

As previously observed for diffusion and collective re-
laxations, the viscosity shows a nonmonotonic behavior with
the attraction strength in the reentrant region �path III�, con-
firming once more the validity of the theoretical MCT pre-
dictions.

To provide a connection between density relaxation and
viscoelastic behavior we investigate the leading density fluc-
tuation contributions to the decay of the stress autocorrela-
tion function within MCT. Interestingly, for the case of the
repulsive glass, it is possible to identify a small range of
wave vectors �not far from the first peak of the structure
factor� which are responsible for the viscoelastic behavior. In
the case of the attractive glass, instead, the decay of the
stress is associated with a much larger window of wave vec-
tors, centered at much larger values. In this respect, the vis-
coelastic analysis confirms that dynamic arrest is driven by
the short-lengh scale introduced by the bonding. We also
compare the simulation results for the frequency dependence
of the elastic moduli with corresponding theoretical MCT
predictions, finding a substantial qualitative agreement.

Finally, we have evaluated the Stokes-Einstein relation.
A clear breakdown of the relation is observed on approach-
ing both glass lines, consistent with the different exponents
characterizing the power-law dependence of diffusion and
viscosity. The breakdown is particularly striking on ap-
proaching the attractive glass �a variation of the product
D� /T of up to two orders of magnitude in the investigated
range�. Recent theoretical work on MCT seems to provide
insights that could be useful to reconcile the decoupling of

FIG. 9. Breakdown of the SE relation for D� /T approaching the repulsive
glass transition for paths 1A �empty red circles� and 1B �full black circles�.
For the hard-sphere case, T=1. The lines are guide to the eye. The two
horizontal dashed lines mark the slip and stick values of the SE relation.
Inset: D� for the same paths.

FIG. 10. Breakdown of the SE relation for D� /T approaching the attractive
glass transition for paths 2 �circles� and 3 �squares: MD and triangles: BD�.
Note the partial breakdown also at high T for the reentrant path due to the
closeby repulsive glass. The two horizontal lines mark the slip and stick SE
values. Inset: D� for the same paths. The star indicates the HS value for path
3.
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self-diffusion and viscosity �or relaxation time� within
MCT.58 It would be interesting in the future to deepen our
knowledge of the connection between SE breakdown and the
presence of dynamic heterogeneities, which has been previ-
ously studied for the same model.67

Note that while finalizing the manuscript, we become
aware of a numerical study by Krekelberg et al.72 which also
reported the nonmonotonic behavior of the viscosity along
the reentrant path and the breakdown of the SE relation. In
that work, Krekelberg et al. seek a connection between the
structural and dynamical properties of the system. We show
here that MCT predicts correctly the properties of the system
upon approaching the glass transitions, i.e., the connection
between structure and dynamics is the nontrivial one pro-
vided by MCT.
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