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Abstract
In the real world, diffusion-limited reactions in chemistry and biology mostly occur in crowded
environments, such as macromolecular complex formation in the cell. Despite the paramount importance
of such phenomena, theoretical approaches still mainly rely on the Smoluchowski theory, only valid in
the infinite dilution limit. In this paper we introduce a novel theoretical framework to describe the
encounter rate and the stationary density profiles for encounters between an immobilized target and a
fluid of interacting spherical particles, valid in the local density approximation. A comparison with
numerical simulations performed for a fluid of hard spheres and square well attractive hard spheres
confirms the accuracy of our treatment.

(Some figures may appear in colour only in the online journal)

1. Introduction

Binding of different molecules, or their absorption by specific
substrates, needs first the different molecular components to
encounter by diffusive motion, and subsequently the specific
reaction to take place within the encounter complex [1]. In
solution the latter part of the process typically proceeds much
faster than the former, and the reaction is thus overall limited
by diffusion. Because diffusion-limited reactions are common
in biology and chemistry, a complete characterization of the
formation of the encounter complex is a key step towards their
understanding. The simplest theory for a reaction of the type

A+ B→ B (1)

was proposed almost a century ago by Smoluchowski in terms
of two isotropically reactive diffusing spherical molecules A

and B, that diffuse until they meet, yielding the encounter
complex [2]. At low concentrations, and for DA � DB, one
can work in the reference frame where a B particle is at
rest and tracers diffuse with an effective diffusion constant
D = DA + DB, which is akin to the Born–Oppenheimer
approximation made in solid-state physics [3]. This setting
is known as the target problem, as opposed to the trapping
problem, where a single test particle diffuses in the presence
of a static, quenched distribution of absorbers (traps). We
note that, while in the infinite dilution limit the two
problems obviously coincide, a full quantitative picture of
how many-body effects due to inter-particle interactions
influence the A–B encounter is still lacking.

The encounter takes place when the centres of the two
molecules are at a distance R= a+b, the sum of the individual
radii a and b. In the infinite dilution limit, one can reformulate
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the many-body problem in terms of a two-body problem. The
governing equation of the process is then

∂ρ(Er, t)

∂t
= D∇2ρ(Er, t) (2)

where ρ(Er, t) is the local density of molecules at time t.
Equation (2) has to be solved with boundary conditions

(i) ρ(Er, t)||Er|=R = 0 (ii) lim
|Er|→∞

ρ(Er, t) = ρ∞ (3)

implementing (i) the irreversible formation of the encounter
complex, and thus the loss of a tracer A molecule, and
(ii) fixing the tracer bulk concentration ρ∞ (that is, the
concentration far from B molecules). In spherical coordinates,
equation (2) has the simple stationary solution

ρ(Er) = ρ∞

(
1−

R

r

)
. (4)

Correspondingly, the rate of encounter complex formation,
that is, the overall flux across the sink surface, reads

κS = 4πDRρ∞. (5)

Equations (2) and (3) describe the encounter process in the
ideal case of infinite dilution ρ∞→ 0.

In real-world situations, diffusion-limited reactions take
place in crowded environments, such as the cell, and
interactions between the diffusing particles cannot be
neglected. As a consequence, the encounter dynamics must
be treated as a many-body process.

The effect of macromolecular crowding has been dis-
cussed in several contexts, such as association, isomerization,
protein folding and stability with respect to denaturation.
Several critical reviews have been published in the last years
and we direct the reader to them for an exhaustive overview
of the field [4–6]. Concerning the development of theoretical
and computational tools, the use of coarse-grained schemes,
where the crowding agents are often modelled as ideal or
quasi-ideal spheres (HS), has proven quite useful.

This allows the use of simple thermodynamics argu-
ments, where scaled particle theory is used for the calculation
of the free-energy of the formation of a cavity in a HS fluid or
a fluid of hard ellipsoids [7]. In this framework, simulations
have been widely used to determine, for example, the effect
of crowding on protein folding [8] and the diffusion in the
presence of crowding and hydrodynamic interactions [9].

In the spirit of generalizing Smoluchowski’s approach
in the simplest possible way, we have recently proposed to
consider a reaction of the type presented in equation (1)
where the concentration of interacting tracers A is allowed
to increase, while the B sinks still form a diluted fluid. This
amounts to considering explicitly many-body effects in the
target problem. To this end, we have modelled the diffusing
tracers of radius a as hard spheres interacting only through
their mutual excluded volume and chose the centre of a
particle of radius b as our reference frame [10]. Using a novel
simulation scheme we have been able to explore the effects of
hard-core interactions between particles both on the encounter
complex formation rate and on the concentration profiles.

More generally, we believe that our approach, borrowing ideas
from liquid-state theory and colloidal physics, can represent a
promising new direction to explore.

Although simulated experiments represent an extremely
powerful tool to investigate the combined consequences
of finite concentrations and inter-particle interactions, they
must be complemented by a suitable analytical approach to
reach a satisfactory understanding. In this paper we derive
analytical expressions for the rate and the stationary density
profiles within a dynamic density functional theory (DDFT)
approach coupled to a local density approximation (LDA). To
this aim, we start from the N-body Smoluchowski equation
and we arrive to a DDFT formulation of the effective
two-body Smoluchowski problem and its solution. To our
knowledge, this is the first time that this approach has been
laid down for this problem. Our simple LDA approximation
makes it possible to go beyond the Smoluchowski regime
in the presence of crowding. As a first consistency step, we
have re-derived the generalization of the rate constant that
we obtained previously using a density-dependent mobility
constant [10]. Moreover, the new approach allows us to
calculate the stationary density profiles, which can be directly
compared with the results of computer simulations. In
particular, we derive analytic formulae relating directly the
reaction rate and the density profiles to the equation of state
(EOS) of the bulk fluid of A particles.

In this paper, we use dynamic Monte Carlo (DMC)
simulations for the case of hard spheres and attractive square
well particles. For the former, we recover and extend the
results of our previous work. For the latter, we show that
by choosing an appropriate EOS we can reproduce the rate
of reaction quite accurately within the LDA approximation,
provided the density is not too large. The generalization
towards attractive interactions fits in the wake of several
recent observations demonstrating the importance of enthalpic
effects in crowded conditions [11–14]. The paper is structured
as follows. In section 2, we first derive an effective two-body
diffusion equation within the DDFT formalism starting
directly from the N-body problem. This derivation has the
advantage of defining precisely the assumptions that lie
behind our theoretical treatment, thus elucidating the contours
of our approach. Next, we implement the LDA in order to
derive explicit formulae solving the encounter problem. In
section 3, we introduce the dynamic Monte Carlo algorithm
and test it in the ideal case. Finally, in section 4, we present
the numerical simulations for the purely repulsive and the
attractive cases and compare the numerical results with our
analytical predictions.

2. Accounting for excluded-volume and
inter-particle interactions in the Smoluchowski
theory

In this section we introduce our theoretical framework to in-
clude excluded-volume effects and inter-particle interactions
in the theory of diffusion-limited bi-molecular encounters.
For the sake of clarity, we start from the most general
situation. Let us consider a fluid composed of N = NA +
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NB interacting Brownian particles of type A and B, of
radius a and b, and characterized by bulk densities and
diffusivities ρA,DA and ρB,DB, respectively. The stochastic
dynamics of the fluid is described by the N-body probability
density P(x1, x2, . . . , xNA , y1, y2, . . . , yNB , t), where we have
indicated with {xi} and {yi} the coordinates of the A and
B particles, respectively. The probability P satisfies the full
N-body Smoluchowski equation

∂P
∂t
= DB

NB∑
i=1

E∇yi ·

[
E∇yi P + βP E∇yiUN

]

+ DA

NA∑
i=1

E∇xi ·

[
E∇xi P + βP E∇xiUN

]
(6)

where β−1
= kBT and UN(x1, x2, . . . , xNA , y1, y2, . . . , yNB)

is the full N-body potential energy of the fluid.
Under the above hypotheses, we are thus finally led to the

following effective one-body relative Smoluchowski equation

∂ρ1(r, t)

∂t
= D E∇ ·

[
E∇ρ1 + β

(
ρ1 E∇V

+

∫
ρ2(r, r′, t) E∇v2(r, r′) d3r′

)]
(7)

where D = DA + DB is the relative diffusion coefficient. To
recapitulate, in equation (7) r is the B–A vector, V(r) is the
B–A potential and v2(r, r′) is the A–A potential. Furthermore,
it will not be superfluous to recall that equation (7) is valid
under the two following hypotheses:

H1 One species should be much more diluted than the other,
namely ρB � ρA.

H2 The same species should be either static (DB = 0, no size
restriction) or diffusing much more slowly than the other
(DB � DA, and consequently b� a).

In this study, we will restrict to the case DB = 0. This setting
is commonly referred to in the literature as the target problem,
as it describes reactions between a particle in the dense fluid
and an immobilized sink (the target).

2.1. Dynamical density functional theory and local density
approximation

Equation (7) still presents significant difficulties, as the
two-body density ρ2 is not known. A possible way to
proceed could be to opt for a mean-field-type factorization
of the type ρ2(r, r′, t) = ρ1(r, t)ρ1(r′, t), as one does with
the Bogolyubov–Born–Green–Kirkwood–Yvon or BBGKY
hierarchy to obtain the Vlasov equation when also momenta
are taken into account [15]. However, we will proceed here
along a different route, which is more suitable to our aims. At
equilibrium, the one-particle density of the A particle fluid is
given by [15]

ρ1(r) = 3−3 exp [β (µ− V(r))+ c1(r)] (8)

where 3 is the De Broglie thermal wavelength, µ is the total
chemical potential and c1(r) is the two-body direct correlation

function, whose physical meaning is to express all correlations
between two particles except those that are mediated by single
other particles. Equation (8) extends the known barometric
law to the case of a fluid of pairwise interacting particles at
equilibrium. Differentiation of equation (8) gives

ρ1(r) E∇c1(r) = E∇ρ1(r)+ βρ1(r) E∇V(r)

= −β

∫
ρ2(r, r′) E∇v2(r, r′) d3r′. (9)

The last step follows by invoking the first equation in
the known Yvon–Born–Green (YBG) hierarchy [16]. Note
that this is consistent with the stationarity condition in
equation (7). The direct correlation function can be computed
at equilibrium from the functional derivative of the excess
(with respect to the ideal fluid plus external potential)
free-energy functional Fex [15], namely

c1(r) = −β
δFex[ρ1]

δρ1
= βµex(r), (10)

where µex denotes the corresponding excess chemical
potential. Following the dynamical density functional theory
(DDFT) approach of Marconi and Tarazona [17], we assume
that the exact equilibrium closure that follows by combining
equations (9) and (10) holds unchanged out of equilibrium,
namely∫

ρ2(r, r′, t) E∇v2(r, r′) d3r′ = ρ1(r, t) E∇µex(r, t). (11)

As a consequence, equation (7) becomes

∂ρ1(r, t)

∂t
= D E∇ ·

[
E∇ρ1 + βρ1 E∇ (V + µex)

]
def
= −E∇ · EJYBG. (12)

We see that the excess chemical potential plays the role of an
effective potential between the A particles and the B particle
(the sink). Interestingly, we see that the DDFT hypothesis
amounts to deriving a continuity equation for the one-particle
density corresponding to a generalized current

EJYBG = −D
[
E∇ρ1 + βρ1 E∇ (V + µex)

]
. (13)

More generally, equation (12) can be regarded as a DDFT
extension of the time-dependent Smoluchowski equation for a
non-ideal fluid. Under the aforementioned hypotheses H1 and
H2, it can be employed to study the time-dependent encounter
between two particles in a non-ideal fluid.

2.2. The encounter rate and the stationary density profile

In this work, we are not interested in the time-dependent
problem, as we aim at calculating the encounter rate and the
stationary one-particle density profile ρ1(r) for the non-ideal
fluid of A particles. For the sake of clarity, we restrict
ourselves here to the case V = 0, i.e. no external potential.
Note that this strictly forbids to consider the case A = B, that
is, encounter between identical particles in a monodisperse
fluid. In fact, self-consistency would prescribe in this case
V(r) = v2(r). In order to solve for the A–B encounter rate κ ,

3
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we integrate once the equation E∇ · EJYBG = 0 with the
boundary conditions (3), which gives

κ

4πDr2 =
∂ρ

∂r
+ βρ(r)

∂

∂r
[µex({ρ})] , (14)

where the integration constant κ is nothing but the encounter
rate. Equation (14) can be integrated formally, to yield

ρ(r) =

(
κ

κS

)
ρS(r)− β

∫ r

R
ρ(r′)

dµex(r′)

dr′
dr′, (15)

where κS and ρS(r) = ρ∞(1−R/r) are the Smoluchowski rate
and density profiles, respectively.

In principle, the excess chemical potential depends on
the density profiles ρ(r) in a non-local fashion, reflecting
the presence of many-body spatial correlations [18]. In
the spirit of the local density approximation (LDA), we
assume that changes in the chemical potential at a certain
position are only determined by the local density, that
is, µex(r) = µex(ρ(r)). As a direct consequence of this
approximation, one can transform the integration on r
into a thermodynamic integration on the density. If we
introduce the r-dependent and bulk packing fractions, φ(r) =
4πa3ρ(r)/3 and φ∞ = limr→∞φ(r) = 4πa3ρ∞/3, we obtain
the following integro-differential equation for the stationary
profiles:

φ(r) =

(
κ

κS

)
φS(r)− β

∫ φ(r)

0
φ′

dµex(φ
′)

dφ′
dφ′. (16)

Taking the limit r→∞ of equation (16), one can derive the
expression for the rate as a function of the packing fraction(

κ

κS

)
= 1+

β

φ∞

∫ φ∞

0
φ′

dµex(φ
′)

dφ′
dφ′. (17)

Using a standard thermodynamic relation between the excess
chemical potential µex and the compressibility factor Z(φ) of
the fluid (appendix B)

Z(φ∞) = 1+
β

φ∞

∫ φ∞

0
φ′

dµex(φ
′)

dφ′
dφ′ (18)

the reaction rates and the density profiles can be reduced to

κ

κS
= Z(φ∞) (19a)

φ(r)

φs(r)
=

Z(φ∞)

Z(φ(r)).
(19b)

Equations (19a) and (19b) are the main analytical results
of the present communication. Interestingly, within the local
density approximation, the gradient of the excess chemical
potential can be rewritten as

∂µex(ρ(r))

∂r
=
∂µex

∂ρ

∂ρ

∂r

and relation (14) as

κ

4πD0r2 =
dρ
dr

(
1+ βρ(r)

dµex

dρ

)
, (20)

where we have introduced D0, the self-diffusion coefficient at
infinite dilution. Using the thermodynamic relation

β
d5
dρ
= 1+ βρ

dµex

dρ
(21)

that stems directly from equation (18) and from the definition
of the compressibility factor Z(φ)ρ = β5(ρ), one can rewrite
equation (14) for the steady-state Smoluchowski equation as

κ

4πr2 = D0
dρ
dr

d
dρ
[β5(ρ)] ≡ D(ρ)

dρ
dr
. (22)

Therefore, within LDA the effect of self-crowding can
be equivalently accounted for through an excess chemical
potential that plays the role of an effective potential
between the diffusing particle and the sink or via a
density-dependent collective diffusion coefficient of the form
D(ρ) = D0 d[β5(ρ)]/dρ as used in a precedent study [19].
The LDA gives then the correct framework to justify formally
the approach followed in [19].

3. Simulation scheme

In order to test the validity of the LDA we introduce
an alternative to the event-driven Brownian dynamics
(EDBD) [20, 21] scheme used in [10]—a dynamic Monte
Carlo approach that makes it possible to study diffusing
particles that have attractive interactions in addition to their
hard-core repulsion.

The use of a different simulation scheme, however, is a
delicate issue. For EDBD, we have shown that the choice
of the time step would alter profoundly the nature of the
Smoluchowski process simulated [10]. If the time step is
too large, deviations can be strong as the absorption process
becomes dependent on inertial effects7. In particular, we have
shown in [10] that for large time steps EDBD reproduces the
results of the full (underdamped) Fokker–Planck dynamics.
This validation was a necessary step, required to control
possible artefacts resulting from the type of time integrator
chosen in the numerical simulations. For a dynamic Monte
Carlo, a similar validation in the framework of an encounter
reaction process is also necessary and will be discussed in
section 3.1.

3.1. Dynamic Monte Carlo (DMC)

The simulation set-up consists of a cubic box with periodic
boundary conditions. Reactants of radius a are initially placed
uniformly inside the box and let diffuse. When a particle
encounters the sink, a sphere of radius b located at the centre
of the box, it is absorbed and consequently reinserted in a
buffering layer at the box edges. The reinserted particles are
immobilized in the buffering layer until their overlap with
neighbouring diffusers vanish. To speed up the reinsertion
process, a repulsive interaction between the diffusers and the

7 We address inertial effects on bi-molecular encounters in detail in a
separate paper.
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Figure 1. Simulated density profiles (top and bottom left panels, symbols) and reaction rates (bottom right panel, symbols) of ideal
(non-interacting) diffusers as a function of the bare diffusivity D0 =

1
61r2 compared to the corresponding Fokker–Planck (FP) solutions

(lines). For sufficiently small 1r the dynamic Monte Carlo simulations (DMC) are in perfect agreement with the Fokker–Planck solution
and the overdamped Smoluchowski density profile ρs(r) and reaction rate κs are recovered. The arrows mark explicitly the values of D0
corresponding to the reported density profiles. The filled symbol corresponds to 1r = 0.1 which has been used in the rest of the paper. The
horizontal dotted line corresponds κ/κs = 0.95.

reinserted particles is added. This reinsertion process ensures,
after a suitable transient, constant-flux boundary conditions.
Particles moves are accepted according to standard Metropolis
criteria with displacement 1r and an acceptance rate ac(1r).

In the dynamic Monte Carlo scheme, an MC cycle is
converted into real time as proposed in [22, 23]. We consider
a cycle as an attempt to move N particles by standard Monte
Carlo (MC), N being the total number of particles. In this case,
we can use the conversion rate

1τ =
1t

cycle
=
1r2 ac(1r)

6D0
(23)

where ac(1r) is the average acceptance rate, D0 the
infinite dilution diffusion constant and 1r is the maximum
displacement. For a sufficiently small 1r, one Monte Carlo
step corresponds to the time given by the acceptance ratio
ac(1r) [22, 23].

3.1.1. Non-interacting ideal diffusers. As first validations
of the dynamical Monte Carlo scheme for diffusion reaction,
we computed the encounter rate and density profile for the
ideal case. In this case, all Monte Carlo moves are accepted
since the particles are simply point-like, therefore ac(1r) =
1. The diffusivity D0 =

1
61r2 of the particles is controlled

by changing the maximum displacement 1r that can be
given to a particle at each Monte Carlo move [22, 23].
In this way one can probe the reaction rate and density
profiles from underdamped conditions down to the purely
diffusive Smoluchowski regime. We have shown recently that
inertial effects can play an important role if the dynamics
is not completely overdamped [10], in agreement with the
Fokker–Planck (FP) solution of the Smoluchowski problem
derived by Harris [24].

The density profiles are presented for two representative
1r in figure 1. In the limit where 1r is small compared to
the typical distance in the system ('a + b), the overdamped
Smoluchowski regime holds and the Smoluchowski density
profile, equation (4), is perfectly reproduced by our dynamical
Monte Carlo scheme, as presented in figures 1(a)–(c). For
larger 1r the agreement between the Monte Carlo results
and the Smoluchowski solutions is less satisfactory (see
figure 1(d)).

In figure 1(d), we also present the results for the ratio
between the numerically computed reaction rate and the ideal
rate κS, equation (5), for different values of D0. Recently,
we have shown that inertial effects can play an important
role, if the dynamics is not completely overdamped [19]. This
can be seen by comparing the Fokker–Planck (FP) solution
of Smoluchowski problem [24] with the numerical results
equation, also shown in figure 1(c). For a short enough
MC step, the numerical results effectively reproduce the
Smoluchowski rate with an accuracy below 5%. For larger
values of 1r, however, the numerical rate is smaller than in
the ideal case and does not follow the FP solution. This is an
important difference with respect to our previous event-driven
Brownian dynamics (EDBD) results, which showed a better
agreement with the FP solution. In the present paper we are
not interested in inertial effects. In cases where these effects
are relevant, different theoretical approaches may be followed,
such as the one recently proposed in [25].

Summarizing, provided 1r is small enough, we can
use the dynamic MC scheme to investigate numerically the
reaction rates. For all the results presented in the rest of the
paper, dynamic MC has been used with 1r = 0.1 which is
represented by a filled symbol in figure 1(d).

5
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4. Numerical tests of the local density approximation

In this section, we want to test the results of the solution of the
DDFT equations within the LDA approximation presented in
equations (19a) and (19b) for the Smoluchowski stationary
problem. The main strength of these equations is the fact that
we can express the stationary density profile and the reaction
rate in terms of an equation of state (EOS). This result should
provide a first improvement on the ideal case, equations (4)
and (5), and we shall test this correction with the help of
numerical simulations for two different model systems. The
first model will be purely repulsive while the second one will
present some attractive interactions.

For the purely repulsive case, we investigate the simple
hard sphere model (HSM). This model has been widely used
in this context and we have also used it before [10]. For the
HSM, we will use the Carnahan–Starling (CS) EOS that has
been proved to be reliable up to significantly high densities.

For the attractive case, we used the square well (SW)
model with a short-ranged interaction. The properties of SW
fluids can be well described using the optimized equation
of state based on a fourth-order free-energy expansion
introduced in [27].

4.1. Hard sphere case

In a previous study we inferred the density dependence
of the rate κ/κS = Z(φ∞) equivalent to equation (19a) by
introducing an effective density-dependent mobility in the
single-particle Smoluchowski equation [10] and compared
it with the results of event-driven Brownian dynamics
simulations for hard sphere diffusers, finding excellent
agreement with the numerics for b� a. We have shown above
that the LDA results are equivalent to the one obtained by this
effective density-dependent mobility. The use of the DDFT,
however, comes from first-principle considerations and it can
be the base for future extensions that could possibly go beyond
LDA. For this reason, we will discuss again the case of HS
here. There is also another reason to discuss again the rate
of HS. Since dynamic Monte Carlo is a completely different
approach with respect to event-driven Brownian dynamics,
we can use the rate of the theory, that already proved to be
quantitatively correct, as a stringent test of its validity.

Looking at figure 2(b), it is evident that the reaction
rate for a system with b = 1 and a = 1/2 does increase
according to the compressibility factor Z(φ) of the hard
sphere solution, as expected from the LDA derivation and the
EDBD simulations of [10]. For b ≤ a, the rate was found to
saturate and to become even a nonmonotonic function of φ
concurrently to the emergence of spatial oscillations in the
density profile that set in near the sink [10]. The description
of this particular regime would require a theory beyond the
LDA, incorporating a non-local coupling between the density
and the local excess chemical potential. This is beyond the
scope of the present paper.

More interesting is the comparison between of the
LDA predictions with the numerical results. To this aim,
the LDA density profile were obtained solving numerically

Figure 2. Density profiles φ(r) (a) and reaction rate κ/κS (b) for
mixtures of hard sphere particles (b = 1, a = 1/2) as a function of
their packing fraction φ. (a) From top to bottom: φ = 0.351, 0.275
and 0.149. The solutions of equations (19a) and (19b) (solid lines)
are compared with the dynamic Monte Carlo simulations (symbols)
and with the Smoluchowski density profiles φS(r) and reaction rate
κS (dashed lines).

equation (19b) with the CS equation of state as input.
Figure 2(a) shows that LDA provides an excellent description
of the distribution of diffusing particles around the absorbers,
at least up to φ = 0.35,8 and it improves significantly over
the Smoluchowski result, i.e. equation (4). At higher packing,
density structuration emerges at short distances from the
absorber for the size ratio b/a = 2 considered here, in
agreement with our previous observations [10]. The packing
fraction at which non-local effects emerge is not easy to be
determined a priori and depends on the size ratio between
the reactants and the sink. The size ratio discussed in this
paper guarantees that the LDA is substantially correct for
a large range of densities where crystallization or kinetic
arrest might play a relevant role. These densities. however,
are well above the typical crowding conditions that are
encountered in biological conditions. The new solution tends
to saturate more rapidly than the ideal case (dashed lines in
figure 2(a)) to the bulk value. This suggests the existence of
a decoupling of the sink and bulk regions with respect to the
non-interacting case. Long-range correlations induced in the
whole fluid by the presence of a local absorbing region are
more rapidly quenched away from the sink when increasing
the bulk density. These numerical results for hard sphere
particles confirm the ones presented in [10] and demonstrate
the validity of the LDA for the description of both the reaction
rate and the density profile in a crowded environment of hard
sphere diffusers that are competing to reach a spherical target
of large size.

4.2. Square well case

In order to test further the range of validity of the LDA
approach and as a first step towards the case of diffusing
particles with more general interactions encountered in
biological systems or colloidal suspensions, we extend this
study to particles with attractive interactions. We implemented

8 We drop the∞ subscript for the sake of clarity.
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Figure 3. Left panel: reaction rate for mixtures of square well diffusers as a function of their packing fraction φ and attraction strength usw.
The DMC results (filled symbols) follow closely the (φ, usw) dependence of the rate as predicted by equation (19a) (lines), thus validating
the LDA description of the reaction rate for a large range of density and stickiness of the diffusers. The compressibility factors computed
from the Carnahan–Starling equation of state for hard spheres (dotted lines) and from the optimized EOS of [27] for square well interactions
(dashed lines) are shown together with the results of isobaric NPT simulations (crosses). Right panel: liquid–gas coexistence curve and
critical point of the square well model used to model the attraction between the diffusers (triangles from [28]). Other parameters are:
a = 1, b = 1/2 and 1r = 0.1.

the DMC scheme to compute the reaction rate of SW
diffusers. The interaction potential of additive hard sphere
particles with short-range SW interaction is defined as

U(r)

kBT
=


∞ if x < d

−usw d < x < λ d

0 x > λ d,

(24)

with d = 2a = 1. usw and λ define the strength and the range
of the interaction respectively. In the following the interaction
strengths usw will be expressed in units of kBT and distances
in units of d = 1. The temperature is fixed to unity, T = 1.
The liquid-gas critical point for the square well particles
of range λ = 1.5 investigated here is located at (φc,Tc) =

(0.157, 1.219) [28], corresponding to an interaction strength
of usw = 1/1.219. We studied this mixture for attraction
strengths ranging from the hard sphere high-temperature limit
(usw = 1/100) down to temperatures close to the critical one
(usw = 1/2). In order to solve equations (19a) and (19b) to
compute respectively the LDA reaction rate and the density
profile, the only input is an EOS for the SW. In the present
work, we opted for an optimized equation of state for square
well fluid based on a fourth-order free-energy expansion that
has been introduced recently [27]. Before using this result for
the reaction problem, we tested it by Monte Carlo simulation
results obtained in the isobaric ensemble (NPT). We calculate
Z(φ) for the interactions strengths we are interested in and for
several densities. The results are presented in figure 3. This
optimized EOS is manifestly highly accurate in the density
and temperature regime of interest in this study.

The good agreement between the LDA results and the
DMC numerical simulation for the reaction rate for attractive
particles is also illustrated by figure 3. As expected, for
weak attractions, results similar to those obtained for HS are
recovered. In fact, the ratio κ/κS increases monotonically with
packing fraction. For stronger coupling, i.e. usw = 1/2, the

effect of the inter-particle attraction becomes relevant. The
reduced rate no longer grows monotonically, but presents
a weak decrease until φ = 0.2 and then it grows again.
We can conclude that the attraction among the diffusers
counterbalances the steric effects and, in the present case,
there is a large interval of packing fractions in which the
non-ideal rate does not depart significantly from the ideal
case. The LDA appears to hold also in the case of ‘sticky’
diffusers and the reaction rate of attractive reactants to be
governed by their compressibility factor for a large range
of density and ‘stickiness’ conditions, in agreement with
equation (19a).

We used the same EOS to solve the non-linear
equation (19b) for the density profile derived within the
LDA. In this case we focused on two attractive cases,
usw = 1/2, 1/5, where the effect of attraction is relevant.
As illustrated in figure 4, the LDA provides a very good
description of the Monte Carlo results for a large range of
attraction strengths and packing fractions. We note that by
increasing the stickiness of the particles, the system retains
memory of the sink on a larger length scale, the density profile
reaching a given density ρ∗ further away from the absorber the
larger is usw.

5. Conclusions

In this paper we have developed an approach based on a local
density approximation to describe diffusion-limited reactions
occurring in a fluid of interacting particles. The chosen setting
was the one commonly referred to as the target problem,
i.e. encounter reactions occurring between a particle of the
fluid and an immobilized sink (the target). A comparison of
our analytical treatment with the simple case of spherical
hard-core particles shows excellent agreement between theory
and simulations. The agreement is expected to hold as long
as the LDA holds, i.e. under the hypothesis that the size of

7
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Figure 4. Density profiles for mixtures of square well diffusers as a
function of their packing fraction φ and attraction strength usw. The
density profiles obtained from DMC simulations (symbols) are in
very good agreement with the numerical solution of equation (19b)
(solid lines) derived within the LDA. The dashed lines are the
Smoluchowski density profiles. Other parameters are:
a = 1, b = 1/2 and 1r = 0.1.

the Brownian particles is much smaller than that of the sink.
When this is not the case, oscillations in the stationary density
profiles in the fluid around the sink set in and the rate no
longer increases monotonically with the density [10]. This
simple observation flags the emergence of correlations that
we expect to play an important role. For example, it has
been well recognized that at high densities crowding can be
an important regulatory mechanism [29] and strongly alter
the mechanical properties of the cell [30]. Another important
source of correlation is represented by the nature of the
local environment where a process occurs in the cell. For
example, it has been recently argued that phase separation
could be a fundamental mechanism for the structuration and
compartmentalization of the cell [33]. While a lot has been
understood at the experimental level, a viable theoretical
approach still appears missing, as it is not an easy task to
take into account correlations and local fluctuations. Another
possible approach could be represented by kinetic theories.
As a matter of fact, it can be shown that LDA and Enskog
theory are equivalent [31]. This has been shown, for example,
in the framework of sedimentation of hard spheres. However,
it is clear that both approaches cannot go beyond a simple

local description. This notwithstanding, it has been argued
that this should not prevent them to describe crystallization
in the case of sedimentation [32]. However, the character of
locality has proved to be a limitation of the LDA and Enskog
approximations. We expect that the improvement to the theory
could be tackled both from DFT and from the Enskog theory,
but, in this paper, we have discussed only the former in
detail. In order to capture this effect, one needs to consider
non-local coupling between the density and the local excess
chemical potential. For systems of hard spheres, one way to
do this would be to employ Rosenfeld’s fundamental measure
theory as a means to approximate the excess free-energy
functional [34]. However, this route may prove extremely
computationally demanding and certainly falls beyond the
scope of the present paper.

Another important aspect that has been neglected in the
present context is the role of hydrodynamic interactions. As
a matter of fact, hydrodynamics has been recently shown to
play an important role in diffusion-related processes occurring
in crowded conditions [9]. The role of hydrodynamics is
indeed beyond the scope of the present paper. However,
effective computational and theoretical tools exist that could
be employed to this aim, such as those introduced recently
in [26, 35]. The goal of the present study was to develop
and test a novel analytic approach to describe the encounter
rate within a dense fluid. Therefore, we limited the study
to regions in the temperature–density plane that could be
accounted for precisely by the optimized equation of state
required as input in LDA approach. However, we would like
to stress that the present study could be effortlessly extended
to investigate numerically the effects on the reaction rate
of density fluctuations that appear in the close vicinity of
the liquid–vapour critical point. The dynamical Monte Carlo
scheme could indeed be used in that regime. From a practical
perspective, a different potential of interaction in terms of
range or shape might be more suited to avoid crystallization
in the system at high densities and low temperatures.

Another promising numerical experiment would be to
cool down the solution of diffusing agents below its critical
temperature and thus study the effect of phase separation on
the reaction rate. The difficulty would be here to simulate
in a meaningful way this non-equilibrium system. But this
might be particularly relevant as a first step to characterize
the influence of phase separation on reaction rate in colloidal
suspension or biochemical reactions in general.

In summary, our theoretical framework allows one to
compute encounter rates and stationary density profiles in
crowded media in the target approximation under a wide range
of conditions. Moreover, it provides a coherent reading frame
where to accommodate additional features for investigating
more realistic systems, including, e.g., complex inter-particle
potentials with attractive and repulsive forces and reactions
between molecules of different species.
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Appendix A. Derivation of one-body relative
Smoluchowski equation (equation (7))

In principle, equation (6) could be solved to calculate the
rate of bi-molecular encounters between A and B particles.
However, this is clearly impossible and some approximations
are required [36, 37]. The first approximation needed is
to assume that one of the two species (say B) is much
more diluted than the other, i.e. ρB � ρA, so that B–B
encounter events can be neglected on the typical timescales
of A–A and A–B encounters. In this case, the problem can be
considerably simplified by studying the encounter dynamics
of an isolated B particles surrounded by a sea of NA particles
of type A (in the following we shall drop the A subscript
for the sake of clarity). Hence, one has a reduced (N +
1)-body Smoluchowski equation for the probability density
P(y, {x1}, t):

∂P
∂t
= DB E∇y ·

[
E∇y P + βP E∇yUN+1

]
+ DA

NA∑
i=1

E∇xi ·

[
E∇xi P + βP E∇xiUN+1

]
. (A.1)

We wish to stress that the above assumption appears as an
almost necessary step, whatever the theoretical treatment of
diffusion-limited bi-molecular reactions. The logical step at
this point is to change coordinates to the rest-frame of the B
particle, i.e. ri = xi − y, so that

∇
2
xi
−→

∑
i,j

∇ri · ∇rj . (A.2)

In the new coordinate system, equation (A.1) reads

∂P

∂t
= (DA + DB)

N∑
i=1

E∇i ·

[
E∇iP+ βP E∇i U

]

+ DB

N∑
i=1

∑
j6=i

E∇i ·

[
E∇jP+ βP E∇j U

]
, (A.3)

where we have defined P =
∫

P d3y,U = UN+1(r1, r2, . . . ,

rN) and it is intended that the differential operators act on
the new relative coordinates {r}. As it has been already
remarked by Szabo [3], the surprising result is that, even if
equation (A.3) describes the relative diffusion of N particles
A in the rest-frame of an isolated B particle, the motion of the
latter causes the appearance of nasty cross-terms, that vanish
only in the limit of a stationary B, i.e. in the context of the
target problem.

We turn now to deriving the appropriate one-particle
Smoluchowski equation from the full N-body problem. The
standard procedure is to assume that the N-body potential
energy U may be expressed in terms of a two-body potential
acting on each B–A pair (an external potential for the fluid
of A particles), V(ri) and that the A–A interactions can be
accounted for by a sum of pair potentials v2(ri, rj), three-body
potentials v3(ri, rj, rk) and higher-order interactions [36],

U =
N∑

i=1

V(ri)+
1
2

N∑
i=1

∑
j6=i

v2(ri, rj)

+
1
6

N∑
i=1

∑
j6=i

∑
k 6=j6=i

v3(ri, rj, rk)+ · · · . (A.4)

Correspondingly, we introduce the one-body, two-body and
k-body densities

ρ1(r1, t) = N
∫

d3r2 · · ·

∫
d3rN P({r}, t)

ρ2(r1, r2, t) = N(N − 1)
∫

d3r3 · · ·

∫
d3rN P({r}, t)

· · ·

ρk(r1, r2, . . . , rk, t)

=
N!

(N − k)!

∫
d3rk+1 · · ·

∫
d3rN P({r}, t).

(A.5)

In order to derive the effective one-body Smoluchowski
equation, one should substitute the expansion (A.4) into
equation (A.3) and integrate over N − 1 degrees of
freedom with the requirement that the terms of the type∫
∂P/∂rj . . . d3rj yield a vanishing contribution [15]. We

will report the result in the approximation of pairwise-only
interaction, i.e. vk = 0 for k > 2. After some lengthy but rather
straightforward algebra, we get

∂ρ1(r, t)

∂t
= (DA + DB)

× E∇ ·

[
E∇ρ1 + β

(
ρ1 E∇V

+

∫
ρ2(r, r′, t) E∇v2(r, r′) d3r′

)]
+ βDB

[
E∇ ·

∫
ρ2(r, r′, t) E∇ ′V(r′) d3r′

+ E∇ ·

∫
ρ3(r, r′, r′′, t) E∇ ′v2(r′, r′′) d3r′ d3r′′

+

∫
ρ3(r, r′, r′′, t) E∇ ′ · E∇ ′′v2(r′, r′′) d3r′ d3r′′

]
, (A.6)

where superscripts in the nabla operators denote differentia-
tion with respect to the corresponding superscripted variables.
We note that, despite the pairwise approximation for the inter-
particle interactions, the cross-terms caused by the motion of
the target B particle generate three-body terms in the effective
one-body Smoluchowski equation. We see that, in order to
come up with a tractable equation, one is led to a further
assumption, namely DB � DA. Not only do the B particles
have to be much less densely distributed, but they should also

9



J. Phys.: Condens. Matter 25 (2013) 375104 F Piazza et al

diffuse much more slowly than the A particles. This amounts
of course to the equivalent size restriction b� a.

Appendix B. Compressibility factor from the
chemical potential (equation (18))

Here we derive equation (18) following the route described by
Widom [38]. The compressibility factor Z(φ) can be directly
computed as

Z = φ

(
d

dφ

(
βF

N

))
T;N

. (B.1)

Performing a thermodynamic integration on [0, φ] of
equation (B.1) we get the excess free-energy

βFex(φ)

N
=

∫ φ

0

Z − 1
φ′

dφ′. (B.2)

From Fex, we can derive the excess chemical potential

βµex
=
βFex

N
+ (Z − 1). (B.3)

From equation (B.2), one has

βµex(φ) =

∫ φ

0

Z(φ)− 1
φ′

dφ′ + (Z(φ)− 1). (B.4)

This equation can be inverted by multiplying both sides by φ
and then differentiating with respect to φ. One thus gets

βφ
dµex

dφ
=

d
dφ

[φ(Z − 1)] . (B.5)

Finally, equation (18) is obtained through a simple
thermodynamic integration.
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