
PHYSICAL REVIEW RESEARCH 7, 013160 (2025)

Fragile-to-strong glass transition in two-dimensional vortex liquids
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The fragile-to-strong glass transition is a fascinating phenomenon that still presents many theoretical and
experimental challenges. A major one is how to tune the fragility of a glass-forming liquid. Here, we study
a two-dimensional (2D) system composed of vortices in a superconducting film, which effectively behaves as
a 2D glass-forming liquid. We show that the kinetic fragility in this system can be experimentally varied by
tuning a single parameter: the external magnetic field H applied perpendicularly to the film. This conclusion is
supported by the direct comparison between the analysis of experimental measurements in an amorphous MoGe
superconducting film and Monte Carlo simulations in a disordered XY model, that captures the universality class
of the two-step melting transition. We show that by increasing disorder strength, a fragile-to-strong transition is
induced, in close similarity with the experimental findings in a magnetic field. Our numerical results shed light
on the evolution of the dynamical heterogeneity from a fragile-to-strong glass, as due to the subtle interplay
between caging effects arising from hexatic order and strong random pinning.
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I. INTRODUCTION

The slowing down of the dynamics of a glass-forming
liquid as it approaches the glass transition is a fascinating
phenomenon that is still poorly understood. Kauzmann [1]
was the first to realize that if equilibrium could be main-
tained during cooling, at some temperature TK the entropy
of the liquid becomes as low as that of an ordered state.
However, the dynamics become so slow before TK can be
attained that equilibration is no longer possible and the sys-
tem becomes a glass at a temperature Tg > TK . How the
dynamics slow down differs from system to system [2].
Some liquids, termed ‘strong,’ display an Arrhenius behav-
ior, where the viscosity η(T ) is proportional to exp(B/T ),
which can be easily interpreted in terms of energy barriers.
In contrast, other liquids, termed ‘fragile,’ exhibit a much
more dramatic increase in η(T ), which is well described by
the Vogel-Fulcher-Tamman (VFT) law [3–5], i.e., η(T ) ∼
exp[B/(T − T0)]. Despite being a phenomenological law, the
temperature T0 at which the viscosity diverges indicates the
presence of a dynamical phase transition which is expected
to coincide with the thermodynamic transition occurring at
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TK [6,7]. This extraordinary increase in viscosity has of-
ten been attributed to dynamical heterogeneity which can
emerge as a result of particle-particle interactions. In colloids,
the observed fragility variation [8–10] has been microscop-
ically related to the particle potential softness [11–17] and
particle deformation [18]. In two-dimensional (2D) systems,
dynamical heterogeneity can also originate from the two-
step melting transition from the solid to the liquid phase,
as predicted by the Berezinskii-Kosterlitz-Thouless-Halperin-
Nelson-Young (BKTHNY) theory [19–24]. This is indeed
associated with increased hexatic correlations in the inter-
mediate liquid phase, which lacks long-range translational
order but retains orientational correlations [25–31]. Along
with colloids, type-II superconducting (SC) films offer a
promising platform to study the fragility of two-dimensional
glass-forming liquids and shed light on its microscopic origin.
When a magnetic field H is applied perpendicularly to the SC
film, and it exceeds a critical threshold called Hc1, it starts to
penetrate in the form of quantized superconducting vortices
which behave as interacting classical particles, see Fig. 1(a).
Each vortex carries a quantum flux �0 = h/2e, where h is
Planck’s constant and e is the electric charge; the magnitude
of the applied field thus determines the vortex density induced
in the system, with nv = H/�0. These vortices effectively
behave as 2D Coulomb charges whose free energy landscape
is ultimately determined by the interplay between their in-
teraction potential, whose coupling constant is set by the
superfluid density ns, and the quenched disorder, which may
arise from atomic-scale point defects and acts as a pinning
force. At low temperatures and weak disorder, a vortex solid
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FIG. 1. (a) Schematic representation of vortex supercooled liquid forming in a SC thin film. The black arrows indicate the magnetic flux
quanta entered into the system, leading to the formation of vortices in the gauge-invariant SC phase, indicated as orange circular arrows.
(b) Angell’s plot for the viscosity of the 2D vortex lattice forming in an amorphous MoGe thin film. The vortex viscosity is obtained from
the low-temperature resistivity ρ(T ) = �0H/ηv (T ) for different values of the applied perpendicular magnetic field H (T ). The experimental
data for the resistivity are those presented in [32]. As one can see, by increasing the applied field the system transitions from a fragile to a
strong glass. (c) The extracted dynamic fragility of the glass-forming vortex liquid. (d) Snapshot of a portion of the spin grid numerically
simulated. The vortices emerge as topological excitations of the superconducting phase and are shown here as orange dots. (e) Angell’s plot
for the viscosity obtained via Monte Carlo simulations on a 2D vortex lattice for different disorder strengths σ and fixed magnetic field H . By
increasing σ the system transitions from a fragile to a strong glass behavior. (f) Kinetic fragility of the simulated 2D vortex liquid as a function
of the quenched disorder strength σ . For both panels (b) and (e), the dashed lines correspond to a VFT fit of the data.

forms as a 2D Bragg glass [33] and the system is super-
conductive. The SC transition to a metallic phase coincides
with the melting of the vortex solid into a vortex liquid. In
a recent work [32], this framework was applied to study the
melting of a weakly pinned 2D vortex lattice in amorphous
MoGe SC thin films. The first vortex configurations in this
compound were captured via scanning tunneling microscopy
almost 20 years ago [34–36]. Yet, it was only in 2019 that
the two-step melting transition, via an intermediate hexatic
liquid phase, was experimentally characterized by combining
transport measurements and scanning tunneling spectroscopy
[37,38]. The subsequent theoretical analysis of transport data
in an extended region of H and T has introduced a novel
paradigm for interpreting magnetotransport measurements.
That analysis relies on the fact that at low currents and temper-
ature, the linear resistivity is directly related to the dynamics
of vortices being

ρ(T ) = (h/2e)2nv

Dv (T )a

kBT
, (1)

with a the linear size of the vortex, Dv (T ) the vortex dif-
fusion coefficient, and kB the Boltzmann constant. By using
the Stokes-Einstein relation as a working definition for the
vortex viscosity η−1

v = Dv (T )a
kBT , Eq. (1) can be also written as

ρ(T ) = (h/2e)2nv/ηv (T ). In Ref. [32], the linear resistivity
ρ(T ) was analyzed in the so-called “thermally assisted flux
flow” (TAFF) regime, i.e., at low currents and temperatures,
where vortices overcome the energy potential barriers U via
their thermal energy. In standard cases, the TAFF regime leads
to an Arrhenius law for the resistivity ρ(T ) = ρ0 exp(−U/T ).
In Ref. [32], we reported deviations from this standard behav-
ior. By fitting ρ(T ) via the VFT law, we extracted T0 as a
function of H . That allowed the identification of fragile-glass
signatures in the hexatic phase and a crossover from fragile
to strong glass behavior by increasing H , as signalled by the
vanishing of T0 and the restoration of an Arrhenius thermally
activated motion.

Nevertheless, a theoretical model explaining the observed
experimental behavior was missing, and many of the ques-
tions that this experiment raised, related to the role played
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by disorder, magnetic field, and vortex interactions, remained
unanswered.

Here, we provide a new theoretical analysis of the exper-
imental data. We present Angell’s plot of the experimental
vortex viscosity and extract the fragility of the vortex liquid
as a function of H , see Figs. 1(b) and 1(c). This result demon-
strates how 2D vortex liquids forming in thin SC films offer
an unprecedented opportunity to study the fragile-to-strong
glass transition by varying a single parameter within the same
physical system. At the same time, we propose a theoretical
model able to explain the fragile-to-strong glass transition
experimentally observed in terms of an effective increase of
quenched disorder with H . Monte Carlo numerical simula-
tions on a 2D XY model in the presence of a perpendicular
magnetic field show how, by varying the level of quenched
disorder, parametrized by σ , the vortex liquid fragility de-
creases similar to what is experimentally observed by varying
H . The numerical results are summarized in Figs. 1(e) and 1(f)
Our work presents a novel analysis of the experimental phase
diagram discussed in Ref. [32] while addressing the more
general question about the fate of the fragile-glass signatures
of the hexatic phase by increasing the disorder strength.

This work aims at building a bridge between the soft matter
community and the community working on superconductivity
and strongly correlated systems.

II. EXPERIMENTAL DATA

Starting from the TAFF resistivity measured at different
magnetic fields in an amorphous MoGe thin SC film [32],
we extract the vortex viscosity as ηv (T ) = (h/2e)2nv/ρ(T )
and plot it in Fig. 1(b) according to Angell’s plot prescription
[39]. Conventional glass-forming liquids, at temperatures far
from glass transition, typically have a viscosity η∞ of the
order of 10−2 Pa · s. At the glass critical temperature, when
their relaxation time is of the order of 100 s, their viscosity
reaches values of the order of 1014 Pa · s. This means that
the viscosity changes by 16 orders of magnitude from the
high-temperature regime to the glass critical point. Accord-
ing to this convention, here we define the glass transition
temperature Tg as the temperature at which the viscosity be-
comes 16 orders of magnitude larger than the extrapolated
viscosity at large temperatures, i.e., ηg = 1016 × ηv (T →
∞) = 107 Pa · s. In Fig. 1(b), different values of the applied
magnetic field are shown to demonstrate the transition from
a fragile to a strong vortex glass by increasing the magnetic
field H . Note that in Ref. [32], the experimental resolution for
the resistivity was ρmin = 3.6 × 10−4 m�/cm corresponding
to ηmax ∼ 10−6 Pa · s. Although experimentally the regime
of viscosity close to the conventional ηg is not accessible
(i.e., ηmax � ηg), the difference between fragile and strong
behavior clearly emerges from the data.

From the experimental values of the vortex viscosity, we
then extract the value of the vortex kinetic fragility which
measures the steepness of the temperature dependence of the
liquid viscosity at the glass transition Tg [40,41]

mA = d[log(ηv (T )/ηg)]

d[Tg/T ]
|T =Tg. (2)

The resulting kinetic fragility mA as a function of the
magnetic field is shown in Fig. 1(c). In real glass-forming
systems, the kinetic fragility varies over one order of mag-
nitude ranging from 17 in strong glasses like silica to 200 in
fragile glasses [39]. A comparable variation is found for the
kinetic fragility of a vortex-supercooled liquid by varying a
single external knob H .

Note that our conclusions do not depend on the value of
ηg used to define the glass. Indeed, as shown in Fig. S3 of
the Supplemental Material [42], by using ηg = 105ηv (T →
∞) = 10−4 Pa · s the Angell plot shows qualitatively the
same transition from fragile to strong. On the other hand, the
absolute values of the kinetic fragility depend on the choice of
ηg. This is why our choice, based on the standard convention
used for glassy systems, also enables a quantitative compari-
son between the fragility of the vortex lattice and that found
in glass literature.

III. THEORETICAL MODEL

To understand the origin of the fragile-to-strong glass tran-
sition observed in 2D vortex liquids, we perform Monte Carlo
(MC) numerical simulations on the 2D XY model whose
Hamiltonian on a discrete lattice without disorder and at zero
field reads

HXY = −J
∑

i,μ=x̂,ŷ

cos(θi − θi+μ). (3)

This model is the paradigmatic theoretical model for type-II
superconductors that undergo a vortex-driven phase transition
[43]. It describes the Josephson-like interaction between the
nearest-neighbor SC islands with phase θi and fixed SC den-
sity ns ∝ J , so that vortices appear as topological excitations
of the phase field, see Fig. 1(d). Studying this model for the
SC phase provides us with the major gain of accessing both
the superconducting response of the system and the dynamics
of the vortex lattice, without the need to model an ad hoc
vortex-vortex interaction.

At zero external magnetic field, the SC phase transition
belongs to the Berezinskii-Kosterlitz-Thouless (BKT) uni-
versality class [19–21], where vortices and antivortices are
thermally nucleated and their unbinding at the critical point
destroys the superconducting order.

Here, we study a 2D XY model in the presence of a perpen-
dicular magnetic field and quenched disorder so that Eq. (3)
becomes

HXY = −
∑

i,μ=x̂,ŷ

Jμ
i cos

(
θi − θi+μ + Fμ

i

)
. (4)

The SC phase of the condensate on the site i, θi, is mini-
mally coupled to the external magnetic field via the Peierls
substitution Fμ

i = 2π
�0

∫ ri+μ

ri
Aμ

i · drμ. The presence of a finite

perpendicular magnetic field Hẑ = �∇ × �A frustrates the ferro-
magnetic coupling between neighboring sites inducing in the
system a finite number of vortices with a vorticity defined by
the sign of Hẑ. Each vortex carries a quantum of flux �0, so
that the total number of vortices in the ground state is Nv =
f L2, where L is the linear size of the system and the filling
fraction f = Ha2/�0 is given by the magnetic flux passing
through a unitary plaquette of linear size a = 1. Differently
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from the f = 0 case, the phase transition is now driven by
the melting of the 2D vortex lattice whose nature strongly
depends on the filling fraction f and quenched disorder.
Similarly to a previous work [44], the presence of a quenched
disorder is embedded in the Josephson couplings Jμ

i between
nearest-neighboring sites i and i + μ̂, with μ̂ = x̂, ŷ. For each
link i, i + μ̂, Jμ

i is extracted randomly from a Gaussian distri-
bution with mean J̄ = 1 and variance σ . The disorder strength
is thus controlled by σ . This choice of quenched disorder
induces a vortex pinning similar to the magnetic pinning dis-
cussed in Ref. [45]. Indeed, an inhomogeneous ns leads to a
spatially inhomogeneous kinetic inductance creating regions
in space where it is energetically more convenient to accom-
modate circulating supercurrents.

Finally, in the experiments the disorder is nominally fixed
and the tuning parameter is the perpendicular magnetic field.
Yet previous studies showed that increasing the magnetic
field has the same effect as increasing the effect of quenched
disorder. As largely discussed in Refs. [33,46–48], for mod-
erate fields, the elastic constant associated with the vortex
displacements does not significantly changes with H while the
quenched pinning potential behaves as V nv ∼ V H where V
is a characteristic vortex-pinning energy. Therefore, to avoid
spurious effects due to the incommensurability between the
vortex lattice and the numerical square grid [32], see Fig. 1(d),
we chose to keep the total number of vortices constant while
varying the level of quenched disorder. Notice that increasing
the magnetic field also decreases the superfluid density. Al-
though this effect is not explicitly included in the model, it can
be described by an increase of the ratio σ/J , corresponding
to an increase of the disorder strength at fixed J . Both of the
above effects indicate that increasing the vortex density results
in an increase of the effect of quenched disorder.

In the following, we will show how it is precisely the
effective increase in quenched disorder that drives the 2D
vortex liquid from a fragile to a strong glass. Note that this
is very different from systems without a disordered pinning
potential, such as colloids or structural glasses, where on the
contrary the increase in particle density decreases the kinetic
fragility of the glass [49].

IV. NUMERICAL RESULTS

The MC simulations of the model (4) are carried out
on a square grid of lattice spacing a = 1, linear size L =
56, and periodic boundary conditions. We fix the exter-
nal magnetic-field intensity to f = 1/L, resulting in Nv =
f L2 = 56 vortices. For each temperature and disorder level,
we compute the mean value and the statistical error of a
given observable by averaging both on the MC steps and
on Nsamples independent realizations of disorder. More de-
tails on the MC simulations are reported in the Supplemental
Material [42].

As already mentioned, by treating vortices as topological
excitations of the phase field, the model (4) allows us to study
both the vortex lattice ordering and the superfluid response
of the system. Furthermore, in this work, we characterize the
static and dynamic properties of the vortex lattice for each
level of disorder studied. This allows us to assess the fragility
of the lattice as a function of the quenched disorder and

gain insights on the experimental phase diagram discussed in
Ref. [32].

A. Static properties

To assess the superconducting phase transition we compute
the superfluid stiffness Jμ

s , defined as the system response
to a uniform twist of the gauge-invariant phase (θi − θi+μ +
Fμ

i ) → (θi − θi+μ + Fμ
i ) + 	μ along a given direction μ

Jμ
s = − 1

L2

∂2 ln Z (	μ)

∂	2
μ

∣∣∣∣∣
	μ=0

, (5)

where Z (	μ) is the partition function of the model (4). We
compute the superfluid stiffness (see Eq. S2 in the Supplemen-
tal Material [42] for its explicit expression) along both x̂ and ŷ
and we label Js = (〈Jx

s 〉 + 〈Jy
s 〉)/2. Here and in what follows,

〈. . . 〉 stays both for the thermal average over the MC steps
and the Nsamples = 15 independent disorder configurations (see
Supplemental Material [42] for more details).

The temperature dependence of Js is shown in Fig. 2(a)
for different levels of disorder, including the clean case where
σ = 0. By increasing the disorder strength, the zero tempera-
ture value of the superfluid stiffness Js(T = 0) stays almost
unchanged, while the critical temperature at which Js �= 0
strongly decreases with σ . At the same time, by increasing
σ the thermalization of the system becomes more challenging
as reflected by the large error bars and the slightly negative
values of Js approaching the critical temperature Tc.

The vortex pinning induced by the quenched disorder com-
petes with the vortex-vortex interaction affecting the vortex
lattice order. To investigate the impact of quenched disorder
on the hexatic order, we compute the six-fold orientational
order parameter G6. To this aim, we first determine the posi-
tion of the vortices from the gauge-invariant phase circulation
around each unitary plaquette of the square spin grid (see
Eq. (S1) in the Supplemental Material for more details [42]),
and we identify the nearest neighbors of each vortex via a De-
launay triangulation of the vortex lattice. Finally, we compute
the local orientational order ψ6 j relative to the jth vortex as

ψ6 j = 1

Nj

Nj∑
k=1

e6iθ jk , (6)

where Nj is the number of its nearest neighbors, and θ jk is the
angle that the bond connecting the two neighboring vortices j
and k forms with respect to a fixed direction in the plane.

The orientational order parameter G6 is then obtained from
�6 = 1

Nv

∑Nv
j=1 ψ6 j

G6 = 〈�6〉, (7)

and its corresponding susceptibility as

χ6 = 〈
�2

6

〉 − 〈�6〉2. (8)

The temperature dependence of G6 and χ6 for different
disorder strengths are shown in Figs. 2(b) and 2(c). At low
disorder levels, the temperature where G6 becomes finite (i.e.,
where the system undergoes a hexatic-to-isotropic liquid tran-
sition) weakly depends on σ , in agreement with previous
results on 2D colloidal systems with random pinning [50–52].
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FIG. 2. Static properties of the model (4) with linear size L = 56 and uniform filling fraction f = 1/L for different disorder strengths, as
encoded in the standard deviation σ for the Gaussian distribution of the couplings. (a) Temperature dependence of the superfluid stiffness Js.
The vertical dashed lines indicate the values of T0 extracted from the VFT fit of the vortex diffusion coefficient at each disorder level. (b), (c)
Temperature dependence of the orientational order parameter G6 and its susceptibility χ6. The vertical dot-dashed lines indicate Thex � 0.05,
extracted for σ < 0.05 from the peak of the hexatic susceptibility. The error bars are indicated as shaded regions around the lines.

As long as the hexatic phase exists, indeed, the hexatic critical
temperature, extracted from the peak in χ6, remains that of
the clean system being Thex � 0.05, see the dot-dashed lines
in Figs. 2(b) and 2(c). On the other hand, the zero-temperature
value of the hexatic order parameter, i.e., G6(T = 0), strongly
depends on σ , and it becomes vanishingly small at σ = 0.05,
where also the hexatic susceptibility χ6(T ) does not show a
clear peak. The vanishing of G6(T = 0) for a large-enough
value of σ signals the destruction of the hexatic phase and the
appearance of a disordered SC vortex solid.

B. Dynamical properties

To investigate further how the 2D melting transition
evolves by increasing the disorder strength, we look at the
dynamic properties of the system, focusing on its slowing
down as it approaches the superconducting phase from the
high-temperature liquid phase. We track the position of each
vortex (see the Supplemental Material for more details [42])
in time and space and extract several dynamical observables
for different temperatures and disorder levels.

The results for the vortex lattice dynamical autocorrelation
function, and the non-Gaussian parameter, which measures
the degree of dynamic heterogeneity, are discussed and shown
in Figs .S1 and S2 in the Supplemental Material [42]. Here,
we focus on the mean-square displacement 〈	r2(t )〉 and the
vortex viscosity ηv from which we can directly character-
ize the vortex lattice fragility as a function of the quenched
disorder. As before, 〈. . . 〉 indicates the average both over
the MC steps and Nsamples = 10 independent realizations of
disorder.

The resulting curves of 〈	r2(t )〉 for different temperatures
and disorder levels are shown in Figs. 3(a)–3(d). At large
temperatures, the system shows just two timescale regimes:
a subdiffusive regime at short times, for distance compara-
ble with the lattice spacing of the discrete numerical grid,
and the expected diffusive regime at larger times, where
〈	r2(t )〉 ∼ Dvt . However, for temperatures lower than Thex,
indicated in Figs. 3(a)–3(d) with a grey color, a second
subdiffusive regime appears, signaling the emergence of a
heterogeneous dynamic. At low disorder, where a hexatic

phase exists, the heterogeneity of the vortex dynamics can
be understood in terms of the quasi-long-range orientational
order between vortices that prevents them from moving
isotropically in the system.

That is also the case for σ = 0.05, see Fig. 3(d), where
a second subdiffusive regime also emerges around T � 0.05
despite the presence of a vanishingly small orientational order
parameter, see Fig. 2(c). The non-Gaussian parameter α2(t )
(see Fig. S2 of the Supplemental Material [42]) also con-
firms the presence of heterogeneous dynamics at this disorder
strength. This should be understood as a crossover regime,
where a pinning-induced cage takes the place of the hexatic
cage forming at lower disorder levels. Eventually, this will
result in a transition to a strong glass behavior at increasing
disorder, as will be evident from the following analysis of the
vortex viscosity.

From the large-time asymptotic behavior of 〈	r2(t )〉
we extract the vortex diffusion coefficient as Dv =
1
4 limt→∞ 〈	r2(t )〉/t and compute the vortex viscosity via
ηv = kBT

Dva . Notice that the time is in units of Monte Carlo steps
and, as is customary, we assume that the long-time (glassy)
fictitious MC dynamics coincide with the physical dynamics
upon a suitable scaling factor [53]. Because of this, dynamical
quantities such as the diffusion constant or the vortex viscosity
are meaningful only as relative values.

The temperature dependence of ηv , renormalized by ηg, are
shown for different disorder levels in Figs. 3(e)–3(h).

At low disorder, similarly to the clean case, see Fig. 3(e),
the vortex viscosity significantly deviates from the Arrhenius
behavior at low temperature following instead the phe-
nomenological VFT law

ηv = η∞ exp

(
B

T − T0

)
, (9)

where η∞ = η(T → ∞).
As the level of disorder increases, the deviation becomes

less pronounced, resulting in smaller values of T0 which even-
tually vanishes at even larger σ .

Note that being T0 the temperature at which the vortex
viscosity diverges, one would expect it to coincide with the
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FIG. 3. Upper panels: Vortex mean-square displacement 〈	r2(t )〉 at different temperatures and for three different disorder levels: (a) σ = 0,
i.e., clean case; (b) σ = 0.01; (c) σ = 0.025; and (d) σ = 0.05. For σ < 0.05, the grey-colored temperature indicates the critical temperature
at which the hexatic liquid phase appears. For σ = 0.05, it signals the appearance of a second subdiffusive regime indicative of emerging
heterogeneous dynamics despite the lack of a marked hexatic ordering as signalled by the absence of a peak in χ6(T ) for this disorder
level, see Fig. 2(c). Lower panels: Temperature dependence of the natural logarithm of the vortex viscosity, ηv = kBT/Dv , renormalized by
η∞ = ηv (T → ∞), for three different disorder levels: (e) σ = 0, i.e., clean case; (f) σ = 0.01; (g) σ = 0.025; and (h) σ = 0.05. The dashed
lines in the panels (e)–(h) indicate the fit of ηv (T ) obtained using the VFT functional form, i.e., ηv (T ) = A exp( B

T −T0
), while the continuous

lines indicate the Arrhenius fit, i.e., ηv (T ) = Ã exp( B̃
T ).

temperature, Tc,Js at which Js �= 0. At low disorder, σ <

0.025, we find a good agreement between Tc,Js and T0, see
Fig. 2 where T0 are indicated as vertical dashed lines. At
larger disorder, due to a significant increase of the relax-
ation time as reflected by larger error bars in the computed
Js(T ), it becomes harder to assess the coincidence between T0

and Tc,Js .
The vanishing of T0 as a function of the quenched disorder,

see Fig. 4, indicates a transition from a fragile to a strong
glass behavior which appears even more evident by looking at
the corresponding Angell’s plot of log10(ηv/ηg) versus Tg/T
shown in Fig. 1(e). Here, Tg is defined as the temperature at
which the viscosity reaches the threshold of ηg = η∞ × 1016,
with η∞ ∼ 10−2 from our MC simulations. The glass temper-
ature Tg is plotted alongside T0 as a function of the disorder
level in Fig. 4.

As already discussed, a more quantitative measure of the
deviation from Arrhenius’s behavior is provided by the kinetic
fragility mA, defined in Eq. (2), which is shown in Fig. 1(f).
Both Angell’s plot and the kinetic fragility obtained from our
MC simulations are in qualitative agreement with the experi-
mental Angell’s plot and kinetic fragility shown in Figs. 1(b)
and 1(c), respectively.

Hence, according to our numerical findings, the quenched
disorder plays a role analogous to that of the magnetic field
in the experiments, thus clarifying the nature of the fragile-to-
strong glass transition experimentally observed in Ref. [32].

In the experiments, at low magnetic field H , the effect of
the quenched disorder is small and a hexatic vortex liquid ap-
pears. That is characterized by a collective motion of vortices,
needed to preserve orientational correlations, which results
in a high kinetic fragility and a super-Arrhenius behavior.

FIG. 4. Temperature T0, obtained from the VFT fit in Eq. (9), as
a function of the disorder strength σ plotted together with the glass
critical temperature Tg defined as before as ηv (Tg) = η∞ × 1016.
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The effective increase of quenched disorder strength with H
destroys the hexatic liquid phase and the vortex motion loses
its collective character as the role of random pinning becomes
dominant. Eventually, the Arrhenius behavior is recovered and
the vortex liquid becomes a strong glass.

V. CONCLUSION

In this work, we provided a theoretical framework to ex-
plain the fragile-to-strong glass transition occurring in an
amorphous superconducting film by increasing the magnetic
field H applied perpendicularly to the film. Starting from the
resistivity data presented in Ref. [32], we extracted the vortex
liquid viscosity and its kinetic fragility. The analysis of the
experimental data, as shown in Fig. 1(b), demonstrates that
tuning a single external parameter H varies the vortex liquid
fragility.

To gain a deeper insight into the fragile-to-strong glass
transition, we studied an effective spin model for the SC phase
via Monte Carlo simulations. Since in SC thin films increasing
H corresponds to increasing the effective quenched disorder,
we studied the transition at fixed H by increasing the disorder
strength. We showed how the level of the effective quenched
disorder can determine the nature of the glass-forming liquid.
Indeed, alongside a progressive destruction of the orienta-
tional order, the increase of the disorder makes the glass
stronger. That can be understood in terms of disorder potential
energy barriers competing with the vortex-vortex interactions.
At low disorder, the glass-forming vortex liquid exhibits a
hexatic liquid phase resulting in a fragile glass behavior. By
increasing the disorder, the vortex liquid orientational order
get progressively disrupted by random pinning until the vortex
dynamic becomes the dynamic of individual vortices. That is
controlled by a single timescale associated with the disorder
potential so that the vortex supercooled liquid recovers an
Arrhenius-like activated dynamics. Interestingly, in the high-
disorder regime, we observed a logarithmic behavior in the
long-time decay of the intermediate scattering function (see
Fig. S1 of the Supplemental Material [42]), which reflects the
competition between two distinct mechanisms slowing down
the vortex relaxation, i.e., the (hexatic) caging and pinning
[54].

In the present work, we used a weak Gaussian distributed
quenched disorder. However, other kinds of disorder may
affect the vortex dynamics in different ways. Exploring how
different quenched disorders modify the observed fragile-to-
strong glass transition is an interesting question that we will
face in a future study.

A related question is the effect of different types of
quenched disorder on the configurational entropy Sc. Indeed,
quenched disorder may act by blocking out some particles,
reducing the number of possible states and thus decreasing
Sc [55,56] or by introducing frustration that conversely in-
creases the configurational entropy [57]. In the first case,
the Kauzmann temperature should increase with the disor-
der strength, while it should decrease in the second case.
In our model, T0 decreases with the increase of disorder.
However, the generality of this result, and its dependence
on the particular kind of disorder introduced, call for further
investigations.

In conclusion, our study identifies 2D vortex lattices
forming in type-II superconductors as an ideal platform to
investigate the fragile-to-strong glass transition. On the one
hand, they offer good control over the level of intrinsic disor-
der present in the sample, which can be increased by reducing
the film thickness or artificially engineered, e.g., by building
ordered nanopores geometries where the SC order parameter
is suppressed, see Refs. [58,59] and references therein. Most
importantly, the nature of the glass-forming liquid can be
controlled by an external parameter, i.e., the magnetic field,
enabling a systematic study of the interplay between disor-
der, orientational correlations, and vortex density. Beyond 2D
thin superconducting films, layered three-dimensional (3D)
superconductors may also provide new insights into the nature
of the glass transition, including the evolution of the vortex
lattice fragility through the 2D to 3D crossover.
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Benfatto, and D. Popović, Transport signatures of fragile glass
dynamics in the melting of the two-dimensional vortex lattice,
Phys. Rev. B 107, 014509 (2023).

[33] T. Giamarchi and P. Le Doussal, Elastic theory of flux lat-
tices in the presence of weak disorder, Phys. Rev. B 52, 1242
(1995).

[34] G. J. C. van Baarle, A. M. Troianovski, P. H. Kes, and J. Aarts,
STM imaging of vortex configurations in films of a-Mo3Ge
through a Au layer, Physica C: Superconductivity 369, 335
(2002).

[35] G. J. C. van Baarle, A. M. Troianovski, T. Nishizaki, P. H.
Kes, and J. Aarts, Imaging of vortex configurations in thin films
by scanning-tunneling microscopy, Appl. Phys. Lett. 82, 1081
(2003).

[36] I. Guillamón, H. Suderow, A. Fernández-Pacheco, J. Sesé, R.
Córdoba, J. M. De Teresa, M. R. Ibarra, and S. Vieira, Direct
observation of melting in a two-dimensional superconducting
vortex lattice, Nat. Phys. 5, 651 (2009).

[37] I. Roy, S. Dutta, A. N. R. Choudhury, S. Basistha, I. Maccari,
S. Mandal, J. Jesudasan, V. Bagwe, C. Castellani, L. Benfatto,
and P. Raychaudhuri, Melting of the vortex lattice through in-
termediate hexatic fluid in an a - MoGe thin film, Phys. Rev.
Lett. 122, 047001 (2019).

[38] S. Dutta, I. Roy, S. Mandal, J. Jesudasan, V. Bagwe, and P.
Raychaudhuri, Extreme sensitivity of the vortex state in a-
MoGe films to radio-frequency electromagnetic perturbation,
Phys. Rev. B 100, 214518 (2019).

[39] C. A. Angell, Relaxation in liquids, polymers and plastic
crystals—strong/fragile patterns and problems, J. Non-Cryst.
Solids, 131-133, 13 (1991).

[40] D. J. Plazek and K. L. Ngai, Correlation of polymer segmental
chain dynamics with temperature-dependent time-scale shifts,
Macromolecules 24, 1222 (1991).

[41] R. Böhmer and C. A. Angell, Correlations of the nonexpo-
nentiality and state dependence of mechanical relaxations with
bond connectivity in Ge-As-Se supercooled liquids, Phys. Rev.
B 45, 10091 (1992).

[42] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.7.013160 for details on the MC nu-
merical simulations, we explain how a vortex is detected in our
numerical spin model, and we provide the full expression for the
superfluid stiffness response function. Furthermore, we present
the numerical results for the dynamical autocorrelation func-
tion and the non-Gaussian parameter for all the disorder levels

013160-8

https://doi.org/10.1039/C5SM00640F
https://doi.org/10.1039/C7SM00739F
https://doi.org/10.1021/acs.macromol.9b01560
https://doi.org/10.1038/nature08457
https://doi.org/10.1073/pnas.1503741112
https://doi.org/10.1088/1742-5468/2016/08/084001
https://doi.org/10.1021/acsnano.7b01359
https://doi.org/10.1103/PhysRevB.95.104203
https://doi.org/10.1063/5.0014457
https://doi.org/10.1103/PhysRevLett.129.018003
https://doi.org/10.1038/s41567-019-0480-1
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevLett.92.035502
https://doi.org/10.1209/0295-5075/86/66004
https://doi.org/10.1088/0953-8984/23/19/194121
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1039/C5SM01520K
https://doi.org/10.1103/PhysRevLett.121.085703
https://doi.org/10.1103/PhysRevB.107.014509
https://doi.org/10.1103/PhysRevB.52.1242
https://doi.org/10.1016/S0921-4534(01)01271-0
https://doi.org/10.1063/1.1554481
https://doi.org/10.1038/nphys1368
https://doi.org/10.1103/PhysRevLett.122.047001
https://doi.org/10.1103/PhysRevB.100.214518
https://doi.org/10.1016/0022-3093(91)90266-9
https://doi.org/10.1021/ma00005a044
https://doi.org/10.1103/PhysRevB.45.10091
http://link.aps.org/supplemental/10.1103/PhysRevResearch.7.013160


FRAGILE-TO-STRONG GLASS TRANSITION IN … PHYSICAL REVIEW RESEARCH 7, 013160 (2025)

investigated. Finally, we show the experimental and numerical
Angell plots for a different choice of ηg.

[43] K. Fossheim and A. Sudboe, Superconductivity: Physics and
Applications (Wiley, New York, 2005).

[44] I. Maccari, L. Benfatto, and C. Castellani, Uniformly frustrated
XY model: Strengthening of the vortex lattice by intrinsic dis-
order, Condensed Matter 6, 42 (2021).

[45] A. M. Campbell and J. Evetts, Critical Currents in Supercon-
ductors (Taylor & Francis, London, 1972).

[46] T. Giamarchi and P. Le Doussal, Elastic theory of pinned flux
lattices, Phys. Rev. Lett. 72, 1530 (1994).

[47] T. Giamarchi and P. Le Doussal, Phase diagrams of flux lattices
with disorder, Phys. Rev. B 55, 6577 (1997).

[48] T. Giamarchi and S. Bhattacharya, Vortex phases, in High Mag-
netic Fields: Applications in Condensed Matter Physics and
Spectroscopy, edited by C. Berthier et al. (Springer, Berlin,
2002), p. 314.

[49] I. Saika-Voivod, P. H. Poole, and F. Sciortino, Fragile-to-strong
transition and polyamorphism in the energy landscape of liquid
silica, Nature (London) 412, 514 (2001).

[50] S. Deutschländer, T. Horn, H. Löwen, G. Maret, and P. Keim,
Two-dimensional melting under quenched disorder, Phys. Rev.
Lett. 111, 098301 (2013).

[51] E. N. Tsiok, E. A. Gaiduk, Y. D. Fomin, and V. N. Ryzhov, The
influence of random pinning on the melting scenario of two-
dimensional soft-disk systems, Mol. Phys. 117, 2910 (2019).

[52] N. Shankaraiah, S. Sengupta, and G. I. Menon, Orientational
correlations in fluids with quenched disorder, J. Chem. Phys.
151, 124501 (2019).

[53] L. Berthier and W. Kob, The Monte Carlo dynamics of a bi-
nary Lennard-Jones glass-forming mixture, J. Phys.: Condens.
Matter 19, 205130 (2007).

[54] T. Sentjabrskaja, E. Zaccarelli, C. D. Michele, F. Sciortino,
P. Tartaglia, T. Voigtmann, S. U. Egelhaaf, and M. Laurati,
Anomalous dynamics of intruders in a crowded envi-
ronment of mobile obstacles, Nat. Commun. 7, 11133
(2016).

[55] C. Cammarota and G. Biroli, Ideal glass transitions by random
pinning, Proc. Natl. Acad. Sci. USA 109, 8850 (2012).

[56] I. Williams, F. Turci, J. E. Hallett, P. Crowther, C. Cammarota,
G. Biroli, and C. P. Royall, Experimental determination of con-
figurational entropy in a two-dimensional liquid under random
pinning, J. Phys.: Condens. Matter 30, 094003 (2018).

[57] S. Chakrabarty, S. Karmakar, and C. Dasgupta, Dynamics of
glass forming liquids with randomly pinned particles, Sci. Rep.
5, 12577 (2015).

[58] S. Bose, A review of superconductivity in nanostructures - from
nanogranular films to anti-dot arrays, Supercond. Sci. Technol.
36, 063003 (2023).

[59] A. Verma, R. Vedin, J. Jesudasan, J. Lidmar, I. Maccari, and S.
Bose, BKT phase transition in nanoporous films of supercon-
ducting NbN, arXiv:2410.22704.

013160-9

https://doi.org/10.3390/condmat6040042
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevB.55.6577
https://doi.org/10.1038/35087524
https://doi.org/10.1103/PhysRevLett.111.098301
https://doi.org/10.1080/00268976.2019.1607917
https://doi.org/10.1063/1.5116734
https://doi.org/10.1088/0953-8984/19/20/205130
https://doi.org/10.1038/ncomms11133
https://doi.org/10.1073/pnas.1111582109
https://doi.org/10.1088/1361-648X/aaa869
https://doi.org/10.1038/srep12577
https://doi.org/10.1088/1361-6668/acc980
https://arxiv.org/abs/2410.22704

