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The correlation between the fast cage dynamics and structural relaxation is
investigated in a model polymer system. It is shown that the cage vibration
amplitude, as expressed by the Debye-Waller factor, and the relaxation time ��
collapse on a single universal curve with a simple analytic form when the
temperature, the density, the chain length and the monomer–monomer
interaction potential are changed. For the physical states with the same �� the
coincidence of the mean-square displacement, the intermediate scattering
function and the non-Gaussian parameter is observed in a wide time window
spanning from the ballistic regime to the onset of the Rouse dynamics driven by
the chain connectivity. The role of the non-Gaussian effects is discussed.

Keywords: glass transition; polymers dynamics; molecular dynamics simulation

1. Introduction

There is growing interest in the relation between the fast vibrational dynamics and the
long-time structural relaxation occurring in viscous systems and supercooled liquids close
to their glass transition [1–20]. This resulted in studies of the vibrational dynamics of both
glasses [6,13–17] and fluid systems [9,12,20].

Recently, the universal correlation between the amplitude of the caged dynamics, as
expressed by the Debye-Waller (DW) factor, and the structural relaxation time �� has been
evidenced by simulations and experiments on several physical systems including molecular
liquids, polymers and metallic alloys in a wide range of fragility [20]. It was found that the
shape of the related scaling function is also controlled by the non-Gaussianity of the
kinetic unit displacement [20]. The present paper presents new numerical results to
provides further insight into the actual weight of non-Gaussian effects.

2. Theory

The glass transition has been pictured as the freezing of a liquid in an Aperiodic Crystal
Structure (ACS) where the viscous flow is due to activated jumps over energy barriers
�E/ kBTa

2/hu2i where a is the displacement to overcome the barrier and hu2i is the DW
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factor of the liquid, i.e. the amplitude of the rattling motion within the cage of the nearest
neighbours atoms [3]. The ACS picture leads to the Hall-Wolynes (HW) equation, ��,
�/ exp(a2/2hu2i), a relation which has been derived by others too [5,12,21]. The HW
equation relies on the condition that �� exceeds the vibrational time scales. When the HW
equation is compared with the experiments, one notes strong deviations from the predicted
linear dependence between log �� and 1/hu2i [12]. To generalize the HW equation, one
considers a distribution p(a2) of the square displacement to overcome the energy barriers
[20]. Following the central limit theorem, the Gaussian form is adopted, pða2Þ ¼
N � exp½�ða2 � a2Þ2=2�2a2 � where N is the normalization constant, a2 and �a2 are the
average and the standard deviation respectively. Note that, since �E/ a2, this choice
corresponds to a Gaussian distribution of energy barriers. The distribution is taken to be
independent of the state parameters because the average displacement of the kinetic unit
within �� is weakly dependent on �� [22]. In contrast, the DW factor depends on the state
parameters [7,8]. If one averages the HW expression over p(a2), one obtains the following
generalized HW expression (GHW):

�� ¼ �0 exp
a2

2hu2i
þ

�2
a2

8hu2i2

 !
: ð1Þ

Equation (1) neglects the very weak DW-dependence of �0. If the linear temperature
dependence of the DW factor is assumed, GHW reduces to other results reported for
supercooled liquids [23], polymers [24] or models of glassy relaxation [25,26].

3. Model

A coarse-grained model of a linear freely-jointed polymer is used. Non-bonded monomers
interact via a generalized Lennard-Jones pair potential Up,q(r) with Up,q(r)¼ �(q� p)�1�
[p(�*/r)q� q(�*/r)p]þUcut with �*¼ 21/6�. The parameters p and q control the stiffness
of the attractive and the repulsive part, respectively. All quantities are in reduced units:
length in units of �, temperature in units of �/kB, and time in units of �

ffiffiffiffiffiffiffiffiffi
m=�
p

, where m and
kB are the monomer mass and the Boltzmann constant, respectively. The energy unit is
given by the depth of the potential well �. We also set m¼ kB¼ 1. The potential is cut and
shifted to zero by Ucut at r¼ 2.5. The potential Up,q(r) reduces to the usual Lennard-Jones
(LJ) potential by setting p¼ 6, q¼ 12. Bonded monomers interact with a potential which is
the sum of the FENE (Finitely Extendible Nonlinear Elastic) potential and the LJ
potential (see [20] for further details). This results in a bond length b¼ 0.97. Samples with
N’ 2000 monomers were used. Equilibration runs were performed in isothermal-isobaric
(NPT) or canonical (NTV) ensembles. Data were collected under microcanonical
conditions by integrating the equations of motion with a reversible multiple time steps
algorithm; i.e. the r-RESPA algorithm [27]. Physical states with different values of the
temperature T, the density �, the chain length M and the monomer-monomer interaction
potential Up,q(r) were studied. See [20] for further details.

4. Results and discussion

In this section the translational dynamics and the relaxation of the monomeric unit are
studied. Changing the state parameters (M, �,T, q, p) results in changes of both the DW
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factor and the relaxation time ��. It was found that, when different physical states have the

same relaxation time, both their translational dynamics, as expressed by the mean square

displacement (MSD), and their relaxation, as expressed by the self part of the intermediate

scattering function (ISF), are coincident from the ballistic regime up to the onset of the

connectivity effects (Rouse regime) at times rather longer than �� [20]. The resulting

clusters of curves are shown in Figure 1 for both MSD (hr2ðtÞi ¼ N�1
PN

1 hðriðtÞ � rið0ÞÞ
2
i)

and ISF (Fsðqmax, tÞ ¼ N�1
PN

1 hexp½�qmaxðriðtÞ � rið0ÞÞ�i, qmax refers to the maximum of the

static structure factor).
Figure 1 also shows the definition of �� via the equation Fs(qmax, ��)¼ 1/e.

The existence of clusters of physical states with similar dynamics over the wide time
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Figure 1. (a) MSD time-dependence in the selected cases (M, �,T, q, p): set A [(2, 1.086, 0.7, 7, 6),
(3, 1.086, 0.7, 7, 6), (10, 1.086, 0.7, 7, 6), (10, 1.033, 0.7, 8, 6)], set B [(2, 1.033, 0.6, 10, 6), (3, 1.039,
0.7, 11, 6), (3, 1.041, 0.7, 11, 6)], set C [(2, 1.033, 0.5, 10, 6), (3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6),
(10, 1.056, 0.7, 12, 6)], set D [(3, 1.086, 0.7, 12, 6), (5, 1.086, 0.7, 12, 6), (10, 1.086, 0.7, 12, 6)] and set E
[(2, 1.0, 0.7, 12, 11)]. The MSDs are multiplied by indicated factors. (b) Corresponding ISF curves.
Four sets of clustered curves (A through D) show that, if states have equal �� (marked with a star on
each curve), the MSD and ISF curves coincide from times rather longer than �� down to the
crossover to the ballistic regime at least. Adapted from [20].
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range from the vibrational regime to the long-time relaxation suggests that the latter are
correlated. To investigate this issue, it was noted that the location of the inflection point of
the MSD does not depend on the state point; i.e. it always occurs at the same time t¼ t* in
the log–log plot of MSD [20]. This gives the opportunity of a clear-cut definition of the
DW factor as hu2i� hr2(t*)i. The plot of �� vs hu

2
i leads to a master curve for the numerical

results well described by the GHW Equation (1) which fits the experimental results over
about eighteen orders of magnitude [20].

We investigated if, in addition to MSD and ISF, other quantities exhibit identical
time-dependence when evaluated for the clusters of states with identical �� values shown in
Figure 1. The results for the non-Gaussian parameter (NGF) �2(t)¼ (3hr4(t)i/5hr2(t)i2)� 1,
which quantifies the dynamical heterogeneity of the system at a given time t [28], are
shown in Figure 2.

NGF vanishes if the monomer displacement is a Gaussian process. Figure 2 shows
that NGF increases between the end of the ballistic regime (t� 0.1) and roughly ��.
In principle, there are no reasons to infer from ISF and MSD any particular behaviors of
other quantities depending by moments of displacement distribution, e.g. such as NGF.
Despite this we account that physical states with coincident MSD and ISF (see Figure 1)
have equal NGF up to about �� too. For longer times, the NGF of physical states with
equal �� but different chain length differ also due to the onset of connectivity effects
(Rouse regime) [29,30].

It has already been shown that the magnitude of the non-Gaussian parameter is related
to the curvature of the GHW Equation (1) when the plot log �� vs hu

2
i
�1 is considered [20].

Indeed, the ratio of the quadratic and the linear terms of Equation (1) with respect to
hu2i�1, R � �2

a2
=ð4a2hu2iÞ increases with the height of NGF �2max and, if the latter

vanishes, R does the same [20]. The inset of Figure 2 shows the increase of �2max by
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Figure 2. Time-dependence of the the non-Gaussian parameter (NGF) for the same states listed in
caption of Figure 1. The stars denote the time t¼ ��. The plot shows that for states with equal �� not
only MSD and ISF coincide between t* and �� (see Figure 1) but also NGF does the same within the
statistical uncertainty. The inset shows the increase of the maximum of NGF with ��. The dashed
line is a parabolic guide for the eyes.
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increasing ��. If the non-Gaussian effects are missing, ISF reduces to Fg
s ðqmax, tÞ ¼

expð�ð1=6Þq2maxhr
2iÞ. The first correction to Fg

s ðq, tÞ due to the non-Gaussian effects
depends on NGF and reads [31]

Fsðq, tÞ ¼ exp �
1

6
q2hr2i

� �
1þ

1

2
�2ðtÞ

1

6
q2hr2i

� �
þO

1

6
q2hr2i

� �2
 !" #

: ð2Þ

Figure 3 compares the numerical results for ISF with the approximation Fsðqmax, tÞ. It
is seen that, when ��& 102, Fsðqmax, tÞ poorly approximates the numerical results, thus
showing that the non-Gaussian effects on the relaxation are not accounted for by the first
correction to Fg

s ðqmax, tÞ; i.e. they are not small. Thanks to Figure 3, we can state that non-
Gaussian terms became critically determinant to describe structural relaxation approach-
ing GT, in particular high order moments of displacement distribution increase. However,
in spite of the large deviations of Fsðqmax, tÞ from the exact results, the inset of Figure 3
shows that the relative error between �� and the approximated estimate �� (to be defined
by the equation Fsðqmax, ��Þ ¼ 1=e) is reasonable.

5. Conclusions

The correlations between the fast dynamics of the monomers within the cage of the first
neighbours and the long-time structural relaxation are studied. It is shown that physical
states with equal �� exhibit coincident MSD, ISF and NGF from the ballistic regime up to
the onset of the connectivity effects (Rouse regime) at times rather longer than ��. The first
correction to the Gaussian approximation of ISF disagrees from the numerical results for
��& 102 because high orders moments of displacement distribution critically increase.
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Figure 3. Comparison between the numerical ISF (continuous lines) of Figure 1 and the first
correction to the Gaussian approximation Fsðqmax, tÞ (dashed lines). The inset shows the relative
error between �� and the estimate ��, as drawn from Fsðqmax, ��Þ ¼ 1=e. Selected cases (M, �,T, q, p):
set A [(2, 1.086, 0.7, 7, 6)], set B [(2, 1.033, 0.6, 10, 6)], set C [(2, 1.033, 0.5, 10, 6)], set D [(2, 1.033,
0.5, 10, 6), (3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6), (10, 1.056, 0.7, 12, 6)], set D [(3, 1.086, 0.7, 12, 6)]
and set E [(2, 1.0, 0.7, 12, 11)].
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However, the relative error between �� and the approximated estimate �� stays within
reasonable bounds.
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