
20

Algorithm 1010: Boosting Efficiency in Solving Quartic

Equations with No Compromise in Accuracy

ALBERTO GIACOMO ORELLANA and CRISTIANO DE MICHELE, Dipartimento di Fisica,

“Sapienza” Università di Roma, Italy

Aiming to provide a very accurate, efficient, and robust quartic equation solver for physical applications, we

have proposed an algorithm that builds on the previous works of P. Strobach and S. L. Shmakov. It is based on

the decomposition of the quartic polynomial into two quadratics, whose coefficients are first accurately esti-

mated by handling carefully numerical errors and afterward refined through the use of the Newton-Raphson

method. Our algorithm is very accurate in comparison with other state-of-the-art solvers that can be found in

the literature, but (most importantly) it turns out to be very efficient according to our timing tests. A crucial

issue for us is the robustness of the algorithm, i.e., its ability to cope with the detrimental effect of round-off

errors, no matter what set of quartic coefficients is provided in a practical application. In this respect, we

extensively tested our algorithm in comparison to other quartic equation solvers both by considering spe-

cific extreme cases and by carrying out a statistical analysis over a very large set of quartics. Our algorithm

has also been heavily tested in a physical application, i.e., simulations of hard cylinders, where it proved its

absolute reliability as well as its efficiency.

CCS Concepts: • Mathematics of computing → Solvers; Nonlinear equations; Computations on poly-

nomials;

Additional Key Words and Phrases: Quartic equation, factorization into quadratics, Newton-Raphson scheme,

numerical solver design, performance

ACM Reference format:

Alberto Giacomo Orellana and Cristiano De Michele. 2020. Algorithm 1010: Boosting Efficiency in Solving

Quartic Equations with No Compromise in Accuracy. ACM Trans. Math. Softw. 46, 2, Article 20 (May 2020),

28 pages.

https://doi.org/10.1145/3386241

1 INTRODUCTION

The need for solving a quartic equation often arises in the scientific literature. From the Scopus
database, by searching for the words “quartic equation,” the resulting number of papers since
the year 1869 is close to 400. If one looks at the distribution of these papers by subject area, as
shown in Figure 1, it is not surprising that the overwhelming majority of the papers are in physics,
mathematics, engineering, and computer science, but it is quite surprising to find papers that resort
to the solution of a quartic equation in medicine, social sciences, and psychology.

Authors’ addresses: A. G. Orellana and C. De Michele, Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro,

2, Rome, I-00185, Italy; emails: orellana.167635@studenti.uniroma1.it, cristiano.demichele@uniroma1.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0098-3500/2020/05-ART20 $15.00

https://doi.org/10.1145/3386241

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

https://doi.org/10.1145/3386241
mailto:permissions@acm.org
https://doi.org/10.1145/3386241

20:2 A. G. Orellana and C. De Michele

Fig. 1. Distribution by subject area of papers, where “quartic” and “equation” words can be found in the text,
from Scopus database (https://www.scopus.com).

In most of these papers, roots of a very large number of quartics have to be accurately calculated.
For example, in [60], 2D simulations of hard ellipses are carried out and the overlap test of two
ellipses is based on the solution of a quartic equation. Hence, the efficiency of the quartic solver
is crucial for simulation timings, but the accuracy of the calculated roots is also very important
to prevent unphysical microscopic states of overlapping particles. The need for a very accurate
and very efficient (i.e., very fast) quartic solver emerges also in many applications in robotics [40],
GPS navigation systems [22, 44, 61], aeronautics [20], steganography [36], acoustics [21], electrical
engineering [59], astrophysics [11, 18], particle physics [50], and laser ray tracing [32]. Concerning
computer simulations, a very efficient algorithm for simulating hard cylinders that relies on the
solution of a quartic equation has been recently proposed by us [43].

The exact analytical solution of quartics dates back to the 16th century; it was discovered by
the Italian mathematician Lodovico Ferrari [1, 12, 46]. Although this analytical solution is rather
efficient and easy to implement, it cannot be used in practice because it is prone to numerical
errors [24]. Many methods have been suggested in the past to overcome the limitations of the
original analytic solution [5, 7, 15, 24, 41, 49, 52, 53, 57]. In [15, 41, 49, 57], alternative analytic
solutions are proposed that still suffer from the same numerical problems (due to cancellation
errors) as the original Ferrari’s solution [24]. A different approach in [24], pursuing an iterative
method, applies rescaling and deflation of the quartic polynomial, followed by a standard Newton-
Raphson approach. The latter method is rather accurate but in terms of efficiency is still much
slower than analytic solutions.

Many iterative methods have also been developed that aim to calculate all the roots of a general
polynomial [6, 8, 25, 29, 31, 38, 39, 45], but their efficiency is not comparable with that of the

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

https://www.scopus.com

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:3

methods specifically designed for quartics. As a paradigmatic example we consider in the present
article the method based on the calculation of the eigenvalues of a companion matrix as described
in [45]. The latter method turned out to be much slower than the other algorithms we considered.
The same conclusions are drawn in [24] for the popular Jenkins-Traub algorithm [30, 31].

Since analytic solutions are numerically inaccurate and accurate methods are much slower than
analytic solutions, to carry out simulations of hard cylinders, it was imperative for us to have an
algorithm that was both accurate and fast (see the related discussion in the conclusions). Here,
building on the idea of a decomposition of the quartic equation into two quadratics, which is
inherent in all the classical methods since Cardano (1545) and which is taken up in many papers [2,
4, 5, 7, 9, 13, 14, 23, 26, 51–53], we propose a quartic equation solver that is easy to implement, has
an efficiency comparable to that of analytic solutions, and is numerically robust, i.e., very resilient
to round-off errors. In our method, the coefficients of the two quadratics into which the quartic is
decomposed are first accurately estimated by carefully handling numerical errors, and then they
are refined by the Newton-Raphson method [52]. A detailed description of the algorithm will be
provided in Section 2.

In Section 3, we test our quartic solver in comparison with the following five state-of-the-art
equation solvers, which have been chosen among the ones discussed so far: Flocke’s algorithm
(FLO) as discussed in [24]; Strobach’s algorithm (STR) proposed in [53]; Ferrari’s solution (FER) of
quartic equations as described, for example, in [1, 33]; another algorithm proposed by Strobach
(FQS) in [52]; and finally a quartic equation solver (HQR) discussed in the Numerical Recipe
book [45]. The FLO iterative algorithm is based on the use of the Newton-Raphson method and
according to the accuracy tests provided in [24] is rather accurate. The iterative methods are typi-
cally slower than the analytic solutions, and this suggests that better results in terms of efficiency
can be achieved. Our approach is mainly based on the STR algorithm, which is also rather effi-
cient. Anyway, when we first implemented the STR algorithm, we found that it provided roots
with very large errors for some specific quartics (see Section 3 for more details). The FER analytic
algorithm is based on the venerable analytic solution of Lodovico Ferrari, and as also discussed
in [49], it strongly suffers from numerical errors, thus providing very inaccurate roots. This algo-
rithm has to be intended as a paradigmatic example of analytic approaches; in fact, our tests show
that Shmakov’s particular method [49] (which is the most accurate analytic method proposed so
far) is as inaccurate as the FER algorithm. The algorithm FQS proposed in [52] calculates the roots
of the quartic by refining the FER analytic solution; it is rather efficient, but we obtained very
large errors in some specific cases, as well as for the STR algorithm. Finally, the HQR algorithm is
an iterative method based on the calculation of a companion matrix of the quartic equation. This
approach is general and not specific for quartics since it can be used to find roots of polynomials
with real coefficients of arbitrary degree. The drawback of its generality is that it is rather slow and
here it has been employed as a paradigmatic example of iterative methods devoted to the solution
of polynomials with real coefficients of arbitrary degree.

We test all these algorithms in some specific extreme cases and we carry out an extensive sta-
tistical analysis over a very large set of randomly generated quartic polynomials. This statistical
analysis aims to assess the robustness of the quartic solvers, that is, to test whether they are able
to keep numerical errors below an acceptable threshold for every arbitrary choice of the quartic
coefficients within a realistic domain (i.e., by choosing the quartic coefficients that are expected
to occur in realistic practical applications). We also evaluate the efficiency of our algorithm by
carrying out timing tests for all the quartic equation solvers considered.

Finally, in Section 4, conclusions will be drawn.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:4 A. G. Orellana and C. De Michele

2 METHODS

In this section, we describe in detail our quartic equation solver, which mainly builds on the works
of Peter Strobach and Sergei L. Shmakov in [53] and [49], respectively. In [53], an alternative
derivation of Shmakov’s particular method is provided attempting to minimize numerical errors.
Here, we propose a slightly different derivation of Shmakov’s approach from the one in [53] with
the aim of improving both accuracy and efficiency.

In [53], a quartic equation is solved analytically by exploiting the LDLt decomposition. The main
issue of this derivation is that the LDLt decomposition cannot be straightforwardly used under
some conditions (i.e., for any quartic) and here we propose a strategy to overcome this limitation.
Since our method is based on an analytic solution, it is not iterative. All the analytic calculations are
carefully carried out to alleviate numerical errors, and in addition we exploit the Newton-Raphson
method to refine some results. We expect our method to have an efficiency comparable to purely
analytic methods and at the same time a much better accuracy.

For the sake of completeness, we include the description of all the numerical techniques that
we employed, such as the analytic calculation of the dominant root of a cubic equation and the NR
method of solving nonlinear sets of equations.

2.1 A Quartic Equation Solver

Consider a general quartic polynomial in its monic form, i.e.,

P (x) = x4 + ax3 + bx2 + cx + d, (1)

which can be also written in matrix form as follows:

P (x) = ytM0y, (2)

where M0 is the following symmetric matrix:

M0 =
����

1 1
2a

1
6b

1
2a

2
3b

1
2c

1
6b

1
2c d

���� (3)

and

y =
���
x2

x
1

��� . (4)

We note that the following symmetric matrix

M1 =
���

0 0 1
2

0 −1 0
1
2 0 0

��� (5)

is such that

ytM1y = 0 (6)

so that the matrix

M = M0 + ϕM1, (7)

where ϕ ∈ R, yields the same quartic polynomial as Equation (2), i.e.,

P (x) = ytMy. (8)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:5

In the spirit of LDLt decomposition [25], if we define the matrices:

L =
���

1 0 0
l1 1 0
l3 l2 1

��� D =
���
d1 0 0
0 d2 0
0 0 d3

��� , (9)

the matrix M′ = LDLt is symmetric, as is M, and hence we can calculate l1, l2, l3, d1, d2, d3 by
requiring that M = M′, which constitutes the following set of six equations in six unknowns,
i.e.:

l1 =
a

2
(10)

c

2
= d2l2 + l1l3 (11)

l3 =
b

6
+
ϕ

2
(12)

d1 = 1 (13)

2

3
b = d2 + l

2
1 + ϕ (14)

d = d3 + d2l
2
2 + l

2
3 , (15)

whose explicit solution is

l1 =
a

2
(16)

l2 = −
ab − 6c + 3aϕ

8b − 3a2 − 12ϕ
(17)

l3 =
1

6
(b + 3ϕ) (18)

d1 = 1 (19)

d2 =
1

12
(8b − 3a2 − 12ϕ) (20)

d3 = 12
det(M)

8b − 3a2 − 12ϕ
, (21)

where

det(M) =
1

4

[
ϕ3 +

(
ac − b2

3
− 4d

)
ϕ − 2

27
b3 +

1

3
abc − c2 − a2d +

8

3
bd

]
. (22)

The decomposition of the matrix M into the LDLt form can be achieved as long as a solution of
Equations (10) through (15) exists. According to Equations (16) through (21), this solution exists if
d2 � 0 (the special case d2 = 0 will be discussed below).

To ensure optimal numerical accuracy of the solution provided by Equations (16) through (21),
some care must be taken. For calculating l1 and l3, we can safely use Equations (16) and (18), but
still l2 and d2 can be affected by cancellation errors. To make the effect of numerical errors on l2
and d2 less severe, some special care is required in their calculation. Since ϕ can be an arbitrary
real number, we can choose ϕ as the real root ϕ0 of largest absolute value (i.e., the dominant root)
of the following depressed cubic equation:

det(M) = 0, (23)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:6 A. G. Orellana and C. De Michele

which is the same cubic resolvent proposed in [49]. The choice of ϕ as a root of Equation (23)
ensures that the quartic equation can be factorized in the product of two quadratic equations, as
will be shown in the following. Among the three possible roots, the largest one (i.e., the dominant
root) has been chosen since it is expected to be relatively well conditioned with respect to the other
two.

A method to find the largest root of Equation (23) very accurately is discussed in Section 2.2. As
a consequence of Equation (23), if d2 � 0, d3 = 0 and Equation (15) becomes

d = d2l
2
2 + l

2
3 . (24)

We can thus calculate l2 and d2 from Equations (14), (11), and (24), i.e.,

d2 =
2

3
b − ϕ − l2

1 (25)

l2 =
δ2

2d2
(26)

l2δ2

2
= d − l2

3 , (27)

where δ2 = c − al3.
Since we have three equations that are satisfied by the two unknowns l2 and d2, we have three

ways to estimate them, i.e.,

d (1)
2 =

2

3
b − ϕ − l2

1 l (1)
2 =

δ2

2d (1)
2

d (2)
2 =

δ2

2l (2)
2

l (2)
2 = 2

d − l2
3

δ2

d (3)
2 =

2

3
b − ϕ − l2

1 l (3)
2 = 2

d − l2
3

δ2

(28)

Assuming that we discard the solutions for which the denominator is 0, the most accurate esti-
mate of l2 and d2 will be the one that most accurately satisfies all the Equations (25) through (27);
i.e., if we define the function

ϵl (l2,d2) = ϵ0 + ϵ1 + ϵ2, (29)

where

ϵ0 =

{
|d2 + l

2
1 + 2l3 | if b = 0

|(d2 + l
2
1 + 2l3 − b)/b | otherwise

ϵ1 =

{
|2d2l2 + 2l1l3 | if c = 0
|(2d2l2 + 2l1l3 − c)/c | otherwise

ϵ2 =

{
|d2l

2
2 + l

2
3 | if d = 0

|(d2l
2
2 + l

2
3 − d)/d | otherwise,

(30)

we can choose the l2 and d2 pair that minimizes ϵl . This procedure is intended to mitigate the effect
of cancellation errors that can occur in the calculation of both l2 and d2.

Having an accurate estimate for l1, l2, l3, and d2, if we plug the matrix M′ into Equation (8), one
has

P (x) = (ytL)D(Lty) = d3 + d2 (l2 + x)2 + d1 (l3 + l1x + x
2)

2
, (31)

but, if d2 � 0, from Equation (23) it follows that d3 = 0, and thus we have

P (x) = d2 (l2 + x)2 + d1 (l3 + l1x + x
2)

2
. (32)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:7

Hence, the quartic equation

P (x) = x4 + ax3 + bx2 + cx + d = 0 (33)

now reads

(l3 + l1x + x
2)

2
= −d2 (l2 + x)2 (34)

since d1 = 1.
Taking the square root of both sides of Equation (34), one ends up with two quadratic equations:

p1 (x) = x2 + α1x + β1 = 0

p2 (x) = x2 + α2x + β2 = 0, (35)

where the coefficients α1, β1, α2, and β2 depend on l1, l2, l3, and d2 and whose explicit evaluation
will be discussed below. Since the four roots, which can be obtained by solving Equation (35),
are the four roots of the quartic polynomial, from the fundamental theorem of algebra one has
that

P (x) = p1 (x)p2 (x). (36)

For the calculation of α1, β1, α2, and β2, we can consider three distinct cases depending on the
value of d2.

Case 1 (d2 < 0). In this case, one has

α1 = l1 +
√
−d2 (37)

β1 = l3 +
√
−d2 l2 (38)

α2 = l1 −
√
−d2 (39)

β2 = l3 −
√
−d2 l2. (40)

Since these coefficients can be affected by cancellation errors, we need to find a strategy to im-
prove their estimate. By plugging Equation (35) into Equation (36) and equating the coefficients of
the resulting polynomial to those of the polynomial in Equation (1), one has the following set of
equations:

β1β2 − d = 0 (41)

β1α2 + α1β2 − c = 0 (42)

β1 + α1α2 + β2 − b = 0 (43)

α1 + α2 − a = 0. (44)

If |β2 | ≤ |β1 |, we use the estimate of β1 in Equation (38) and from Equation (41) we calculate β2,
i.e.,

β2 =
d

β1
; (45)

otherwise, if |β2 | > |β1 |, we use the estimate of β2 in Equation (40) and we calculate β1 from Equa-
tion (41), i.e.:

β1 =
d

β2
. (46)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:8 A. G. Orellana and C. De Michele

Concerning α1 and α2, if |α1 | ≤ |α2 |, we assume that the value of α2 from Equation (39) is accurate,

and from Equations (42), (43), and (44) we can calculate three different estimates α (i)
1 (with i =

1, 2, 3) of α1, i.e.:

α (1)
1 =

c − β1α2

β2

α (2)
1 =

b − β2 − β1

α2

α (3)
1 = a − α2. (47)

If β2 = 0 or α2 = 0, we discard the corresponding estimate for α1 and we choose the estimate α (i)
1

by which we may better reconstruct the coefficients of the quartic polynomial in Equation (1); i.e.,
given the function

ϵq (α1, β1,α2, β2) = ϵa + ϵb + ϵc , (48)

where

ϵa =

{
|α1 + α2 | if a = 0
|(α1 + α2 − a)/a | otherwise

(49)

ϵb =

{
|β1 + α1α2 + β2 | if b = 0
|(β1 + α1α2 + β2 − b)/b | otherwise

(50)

ϵc =

{
|β1α2 + α1β2 | if c = 0
|(β1α2 + α1β2 − c)/c | otherwise,

(51)

we choose theα (i)
1 that minimizes ϵq and we setα1 = α (i)

1 . If |α1 | > |α2 |,we considerα1 trustworthy,

and from Equations (42), (43), and (44) we can calculate the following three estimates α (i)
2 , with

i = 1, 2, 3 of α2:

α (1)
2 =

c − α1β2

β1

α (2)
2 =

b − β2 − β1

α1

α (3)
2 = a − α1. (52)

Again, if β1 = 0 or α1 = 0, we discard the corresponding estimates, and we select the one that
minimizes the function ϵq .

Case 2 (d2 > 0). In this case, the p1 and p2 coefficients are

α1 = l1 + i
√
d2 (53)

β1 = l3 + i
√
d2 l2 (54)

α2 = l1 − i
√
d2 (55)

β2 = l3 − i
√
d2 l2. (56)

Note that there are no cancellations errors in carrying out the sums for calculating α1, β1, α2, and
β2 from Equations (53) through (56) since in all cases one addend is a real number and the other is
a purely imaginary complex number; hence, we can safely use these estimates without any special
care.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:9

Case 3 (d2 = 0). From Equations (20) and (21) we have

d3 (ϕ0) =
det(M)

d2 (ϕ0)
; (57)

therefore, if d2 (ϕ0) = 0, d3 is not defined and we cannot resort to Equation (34) for calculating the
quartic roots. A different strategy must be devised.

We start by noting that (i) according to Equation (11), limϕ→ϕ0
d2 (ϕ)l2 (ϕ) is not infinite, and that

(ii) according to Equation (57), limϕ→ϕ0
d3 (ϕ) is also not infinite (because ϕ0 is a root of both d2 (ϕ)

and det[M(ϕ)] polynomials). In view of (i) and (ii), Equation (15) implies that limϕ→ϕ0
l2 (ϕ) is not

infinite, so that we conclude that limϕ→ϕ0
d2 (ϕ)l2 (ϕ) = 0. Then from Equation (31), one has

P (x) = lim
ϕ→ϕ0

(ytL)D(Lty) = d3 + (l3 + l1x + x
2)

2
, (58)

where from Equation (15) d3 = d − l2
3 and l1 and l3 have the same values as those we have already

calculated using Equations (16) and (18). The four roots of the quartic equation can be found by
solving the equation

d3 + (l3 + l1x + x
2)

2
= 0. (59)

By taking the square root of both sides of Equation (59), one ends up with the two quadratic
equations, which are identical to Equation (35) except that in this case the coefficients of p1 (x) and
p2 (x) are

α1 = l1

β1 = l3 +
√
−d3

α2 = l1

β2 = l3 −
√
−d3, (60)

where all of them have to be real, i.e., d3 ≤ 0; otherwise, one would obtain complex root pairs
that are not conjugate. The same conclusion about the sign of d3 can be drawn by the following
reasoning. Since ϕ0 is a root of both det(M) and d2 (ϕ), from Equation (57) one has that

d3 (ϕ0) = lim
ϕ→ϕ0

det(M)

d2 (ϕ)
= −1

4
(ϕ0 − ϕ1) (ϕ0 − ϕ2), (61)

where ϕ1 and ϕ2 are the two other roots of Equation (23). We can consider two possible cases
depending on whether the roots ϕ1 and ϕ2 are (i) real or (ii) complex conjugate. In the case (i),
since we chose ϕ0 to be the dominant real root (i.e., the real root with the largest absolute value)
of Equation (23), ϕ0 − ϕ1 and ϕ0 − ϕ2 are both positive or both negative and one necessarily has
that d3 ≤ 0. In the case (ii), ϕ2 = ϕ∗1 and

d3 (ϕ0) = −1

4

(
ϕ2

0 − 2 Re(ϕ1)ϕ0 + |ϕ1 |2
)
, (62)

which is a quadratic function in ϕ0 with downward concavity. The maximum value of this qua-
dratic function is 1

4 {[Re(ϕ1)]2 − |ϕ1 |2}, which is negative ∀ϕ1, and hence we conclude again that
d3 (ϕ0) ≤ 0.

The coefficients β1 and β2 can be affected by cancellation errors. To improve their estimate, if
|β1 | > |β2 |, then we trust β1 and set

β2 =
d

β1
, (63)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:10 A. G. Orellana and C. De Michele

while if |β2 | > |β1 |, β2 is considered reliable and set

β1 =
d

β2
. (64)

We note that if d2 � 0 but d2 ≈ 0, the estimates of l2 and d2 through Equations (25) and (26) can
be significantly affected by cancellation errors. According to Equation (25), where d2 is expressed
as a sum of 2b/3, −ϕ, and −l2

1 , and to the discussion of termination criteria for finding zeros of
polynomials in [28], we can consider d2 ≈ 0 if the following condition holds:

d2 ≤ ϵm max{|2b/3|, |ϕ0 |, l2
1 }, (65)

where ϵm ≈ 2.22045 × 10−16 in double precision. Hence, if the condition in Equation (65) is fulfilled,
we suggest proceeding according to the following steps:

(1) Let’s define

S1 = {α (1)
1 , β

(1)
1 ,α

(1)
2 , β

(1)
2 } (66)

as the set of coefficients that have been obtained in either Case 1 or Case 2 (depending on
the sign of d2).

(2) Calculate the set of coefficients

S2 = {α (2)
1 , β

(2)
1 ,α

(2)
2 , β

(2)
2 } (67)

according to Case 3.
(3) Given the following function, which quantifies the accuracy of a set of coefficients α1, β1,

α2, and β2 (where the most accurate set is the one that better reconstructs the coefficients
a, b, c , and d of the quartic polynomial),

ϵ̃q (α1, β1,α2, β2) = ϵa + ϵb + ϵc + ϵd , (68)

where ϵa , ϵb , ϵc are as in Equations (49) through (51) and

ϵd =

{
|β1β2 | if d = 0
|(β1β2 − d)/d | otherwise;

(69)

we find its value for the set S1 and S2 and choose the set that provides the smallest ϵ̃q .

Note that if d = 0, the quartic has one root that is exactly 0 and the other three roots can be better
obtained by solving the following cubic equation: x3 + ax2 + bx + c = 0. This check could be done
at the very beginning of the computation.

Before calculating the roots of p1 (x) and p2 (x) (i.e., the roots of the quartic equation), it is ad-
visable to refine the coefficients α1, β1, α2, and β2 by using the Newton-Raphson (NR) method to
solve Equations (41) through (44). The NR method will be extensively discussed in Section 2.3.
Recalling that the roots of the quartic equation are obtained by finding the roots of p1 (x) and p2 (x)
(see Equations (35) and (36)), if the coefficients αi and βi are real (as in Case 1 or Case 3 above), the
four roots x1, x2, x3, and x4 of the quartic equation can be calculated as follows [45]:

(1) Set k = 1.
(2) Calculate Δ = α2

k
− 4βk .

(3) Set t = 2(k − 1).
(4) If Δ < 0, calculate the two roots xt+1 and xt+2 as

xt+1 = −
αk

2
+

1

2

√
−Δ i

xt+2 = −
αk

2
− 1

2

√
−Δ i, (70)

and if k = 2, terminate; otherwise, set k = 2 and go to step (2).

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:11

(5) If Δ ≥ 0, calculate

ηM =
⎧⎪⎨⎪⎩−

αk

2 −
√

Δ
2 if αk ≥ 0

−αk

2 +
√

Δ
2 otherwise.

(71)

(6) Calculate

ηm =
⎧⎪⎨⎪⎩

0 if ηM = 0
βk

ηM
otherwise.

(72)

(7) The two real roots xt+1 and xt+2 are

xt+1 = ηM

xt+2 = ηm . (73)

(8) If k = 2, terminate; otherwise, set k = 2 and go to step (2).

If the coefficients αi and βi with i = 1, 2 are complex (as in Case 2), the two roots x (i)
1 and x (i)

2
of each quadratic polynomial pi (x) can be calculated as described in the following [53]. If we
define

η =

{
γ1 if |γ1 | > |γ2 |
γ2 otherwise,

(74)

where

γ1 = −
αi

2
+

√
α2

i

4
− βi (75)

γ2 = −
αi

2
−

√
α2

i

4
− βi , (76)

then the two roots of pi (x) are

x (i)
1 = η

x (i)
2 =

βi

η
. (77)

We note that, since the quartic polynomial has real coefficients, the roots x (2)
1 and x (2)

2 must be the

complex conjugates of x (1)
1 and x (1)

2 , i.e., x (2)
1 = (x (1)

1)
∗

and x (2)
2 = (x (1)

2)
∗
. This means that we can

carry out the calculations in Equations (75), (76), and (77) just for i = 1. The four roots x1, x2, x3,
and x4 of the quartic equation are then

x1 = x (1)
1

x2 = x∗1

x3 = x (1)
2

x4 = x∗3 . (78)

An alternative method to solve a quadratic equation with complex coefficients is suggested
in [45]. We also implemented it, but we did not find any significant difference in the accuracy
from our tests discussed in Section 3.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:12 A. G. Orellana and C. De Michele

2.2 Dominant Root of the Depressed Cubic

In Section 2.1, ϕ0 is the dominant root of the following depressed cubic equation:

det[M(ϕ)] = ϕ3 + дϕ + h = 0, (79)

where

д = ac − 4d − b2

3
(80)

h =
(
ac + 8d − 2

9
b2

) b

3
− c2 − a2d . (81)

Minimization of numerical errors in the calculation of ϕ0 can be achieved by a shift of x [49, 53],
i.e., by performing the transformation x ′ = x − s (with s ∈ R), so that Equation (33) becomes

P (x ′) = x ′4 + a′x3 + b ′x2 + c ′x ′ + d ′, (82)

where the coefficients in Horner form of this shifted quartic are

a′ = a + 4s

b ′ = b + 3s (a + 2s)

c ′ = c + s[2b + s (3a + 4s)]

d ′ = d + s{c + s[b + s (a + s)]}. (83)

It can be seen that the associated depressed cubic equation, i.e.,

ϕ3 + д′ϕ + h′ = 0, (84)

with

д′ = a′c ′ − 4d ′ − b ′2

3
(85)

h′ =
(
a′c ′ + 8d ′ − 2

9
b ′2

) b ′
3
− c ′2 − a′2d ′ (86)

is the same as the one in Equation (79), i.e.,д = д′ andh = h′. This can easily be proved by plugging
into Equations (85) and (86) the coefficients a′, b ′, c ′, and d ′, which are defined in Equation (83).
Note that, even if д = д′ and h = h′, the calculation of д′(s) and h′(s) through Equations (85) and
(86) provides an effective way to mitigate the detrimental effect of cancellation errors in the calcu-
lation of the dominant root of Equation (84) if a judicious choice of s is made. In [53], it is suggested
that the best strategy is to choose s so that b ′(s) is either exactly 0 or an absolute minimum, i.e.,
to choose s in such a way that{

b ′(s) = b + 3as + 6s2 = 0 if 9a2 − 24b ≥ 0
db′

ds
= 3a + 12s = 0 otherwise,

(87)

where we use the root of smallest magnitude in the quadratic equation, so that

s =
⎧⎪⎨⎪⎩

−2b

3a+sgn(a)
√

9a2−24b
if 9a2 − 24b ≥ 0

−a
4 otherwise.

(88)

Having set the coefficients д′ and h′ of Equation (84), we are left with the task of finding its domi-
nant root. An analytic and accurate solution of a generic cubic equation is provided in Section 5.6

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:13

of [45]. Here we only need the dominant real root (i.e., the real root with largest absolute value);
hence, given

Q = −д
′

3

R =
h′

2
, (89)

the dominant root ϕ0 of Equation (84) can be obtained according to the following two possible
cases:

Case 1: R2 < Q3. If we define

θ = arccos �� R√
Q3

�� , (90)

where we assume that the function arccos(x) returns values in the range [0,π], the dominant root
is

ϕ0 =
⎧⎪⎨⎪⎩
−2
√
Q cos

(
θ
3

)
if θ < π

2

−2
√
Q cos

(
θ+2π

3

)
otherwise.

(91)

Case 2: R2 ≥ Q3. In this case the dominant root ϕ0 is

ϕ0 = A + B, (92)

where

A = − sgn(R)

(
|R | +

√
R2 −Q3

) 1
3

and

B =

{
0 if A = 0
Q/A otherwise.

(93)

The above analytical estimate of the dominant root cannot handle large absolute values of Q or R
(i.e., in double precision |Q | > 10102 or |R | > 10154); hence, in this case, one can recast Equations (91)
and (92) and express them in terms of the ratio Q/R to reduce the risk of overflows.

Given

K =
⎧⎪⎪⎨⎪⎪⎩

1 −Q
(

Q
R

)2
if |Q | < |R |

sgn(Q)
[(

R
Q

)2 1
Q
− 1

]
otherwise,

(94)

the roots of the depressed cubic can be obtained according to the following three possible cases if
|Q | or |R | are large.

Case 1: R = 0. The dominant root ϕ0 is simply

ϕ0 =

{
0 if д′ > 0√
−д′ otherwise.

(95)

Case 2: K < 0. The dominant root ϕ0 can be obtained according to Equation (91), where θ is
replaced by

θ = arccos

(
R

Q

1
√
Q

)
.

Case 3: K ≥ 0 . Use Equations (92) to calculate ϕ0 but replace A with

A =
⎧⎪⎪⎨⎪⎪⎩
− sgn(R)

[
|R |

(
1 +
√
K
)] 1

3 if |Q | < |R |

− sgn(R)
(
|R | +

√
|Q | |Q |

√
K
) 1

3 otherwise.
(96)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:14 A. G. Orellana and C. De Michele

We can further improve the estimate of ϕ0 by employing the Newton-Raphson method, i.e.,

(1) Set x = ϕ0.
(2) Calculate f = (x2 + д′)x + h′.
(3) If | f | < ϵm max{|x3 |, |д′x |, |h′ |}, then terminate.
(4) Calculate δ f = 3x2 + д′.
(5) If δ f = 0, terminate.
(6) Set xo = x and fo = f and

(7) Update x as follows: x ← x − f

δ f
.

(8) Calculate the new value of f ; i.e., set f = (x2 + д′)x + h′.
(9) If f = 0, terminate.

(10) If | f | > | fo |, set x = xo and terminate.
(11) Go to step (4).

If with the above procedure one obtains a dominant root of the depressed cubic that is infinite
or an undefined/unrepresentable number (NAN, which stands for not a number), one can employ
a simple polynomial rescaling. Given a very large number kq (in our code we use kq = 7.16 × 1076,
which is suitable for double floating-point numbers), rescaled polynomial coefficients as , bs , cs ,
and ds are calculated as follows:

as = a/kq

bs = b/k
2
q

cs = c/k
3
q

ds = d/k
4
q . (97)

These coefficients are then used to calculate the roots of the corresponding rescaled polynomial,
i.e.,

Ps (x) = x4 + asx
3 + bsx

2 + cs + ds , (98)

as described in Section 2.1, and the roots of the original polynomial in Equation (1) can finally be
obtained by multiplying each root of the rescaled polynomial by the factor kq .

If by employing the above polynomial rescaling one still obtains a dominant root of the de-
pressed cubic that is infinite or NAN, a polynomial rescaling of the depressed cubic can be at-
tempted too. We consider a very large number kc (in our code we use kc = 3.49 × 10102, which
is suitable for double floating-point numbers) and the coefficients д′ and h′ in Equation (84) are
replaced with д′s and h′s , which are calculated as follows:

д′s = a′sc
′
s −

4d ′s
kc
−
b ′s

2

3
(99)

h′s =

(
a′sc
′
s +

8d ′s
kc
−

2b ′s
2

9

)
b ′s
3
− c ′s

c ′s
kc
− a′s

2d ′s , (100)

where

a′s =
a′

kc

b ′s =
b ′

kc

c ′s =
c ′

kc

d ′s =
d ′

kc
. (101)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:15

These coefficients are then used to calculate the dominant root of the following depressed cubic:

ϕ3 + д′sϕ + h
′
s = ϕ3 +

д′

k2
c

ϕ +
h′

k3
c

= 0. (102)

The dominant root of the original cubic polynomial is then recovered by multiplying the dominant
root of the latter equation by kc .

2.3 Newton-Raphson Method for Refining the Coefficients of p1 and p2

As already anticipated, the coefficients α1, β1, α2, and β2 can be improved by employing a Newton-
Raphson method to solve Equations (41) through (44) [52]. Given an initial guess for

z =

������
α1

β1

α2

β2

������
(103)

such as the one obtained in Section 2.1, the NR algorithm, which we employed, is the following:

(1) Calculate the vector F:

F =

������
β1β2 − d

β1α2 + α1β2 − c
β1 + α1α2 + β2 − b

α1 + α2 − a

������
. (104)

(2) Calculate the quantity et as follows:

et = ϵa + ϵb + ϵc + ϵd , (105)

where ϵa , ϵb , ϵc , and ϵc are as in Equations (49) through (51) and (69).
(3) If et = 0, terminate.

(4) If J =
∂F(α1,β1,α2,β2)
∂(α1,β1,α2,β2) , i.e., J is the Jacobian matrix of F, calculate its inverse J−1, which can

be written as follows:

J−1 =

1

det(J)

������
C1 C2 C3 −β1C2 − α1C3

α1C1 +C2 −β1C1 −β1C2 −β1C3

−C1 −C2 −C3 α2C3 + β2C2

−α2C1 −C2 β2C1 β2C2 β2C3

������
, (106)

where C1 = α1 − α2, C2 = β2 − β1, C3 = β1α2 − α1β2, and

det(J) = β2
1 − β1[α2 (α1 − α2) + 2β2] + β2[α1 (α1 − α2) + β2].

(5) If det(J) = 0, terminate.
(6) Store the actual value of z, i.e.,

zo = z. (107)

(7) Update z as follows:

z← z − J−1F. (108)

(8) Calculate the new value of F and et according to Equations (104) and (105), respectively.
(9) If et = 0, terminate

(10) If the new value of et is greater than the old one, set z = zo and terminate.
(11) Go to step (2).

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:16 A. G. Orellana and C. De Michele

We also limit the maximum number of possible iterations to eight, although we observe that no
more than two to three iterations are needed at most.

2.4 Quartic Equations with Complex Coefficients

Our algorithm can be straightforwardly generalized to solve quartic polynomials with complex
coefficients. The few needed changes are the following ones:

(i) For the estimate of ϕ0 in Section 2.2, one can always use the smallest-magnitude complex
root of the quadratic equation b ′(s) = 0 (see Equation (87)) and the dominant root of the
complex depressed cubic can be obtained as discussed in [45]

(ii) For the calculation of the coefficients of p1 (x) and p2 (x) in Section 2.1, we always proceed
according to either Case 3 if d2 = 0 or Case 1 if d2 � 0 and in the latter case |d2 | must be
replaced by d2 (where we are not taking the absolute value as before) in Equation (37)
through (40).

(iii) Since the coefficients of p1 (x) andp2 (x) are complex, their roots can be calculated accord-
ing to Equation (77). Before calculating the roots of p1 (x) and p2 (x), we suggest using the
Newton-Raphson method, as described in Section 2.3, to refine the coefficients α1, β1, α2,
and β2.

The code in C language for solving a quartic equation with complex coefficients is also provided
with the manuscript.

3 RESULTS AND DISCUSSION

In this section, we provide a thorough test of our quartic equation solver in comparison with
several existing approaches that are available in the literature. We carried out accuracy tests for
specific sets of quartics in Section 3.1, statistical tests on a very large set of quartics in Section 3.2,
and timing tests in Section 3.3 to assess the efficiency of our quartic equation solver. In the accuracy
tests, we consider a set of 24 quartics as shown in Table 1. In each case from 1 to 22, we choose
a specific set of roots and we build the quartic coefficients accordingly, while in cases 23 and 24
we provide the quartic coefficients directly. In the accuracy tests from 1 to 22, the roots display
various extreme situations, such as widely spread, clustered (i.e., very closely spaced), or even
multiple (triple or quadruple) roots. In case 23, the coefficients have been chosen to yield d2 = 0 in
our quartic solver, while case 24 is designed to have widely spread quartic coefficients. Statistical
tests were performed by generating a very large set of quartic equations to mimic a typical practical
situation, such as the calculation of intersection points between a disk and a cylindrical rim [43].
The results obtained from our solver were compared with the ones from the following five quartic
equation solvers, already briefly discussed in the Introduction:

FLO This algorithm is described in detail in [24]. The author kindly provided an updated
Fortran version of the source code, which we used for our tests. We translated this
version to the C language and we checked that our implementation provides the same
results as the Fortran version in all tests that we considered in the present study.

STR The source code of this algorithm, which is discussed in [53], is available in Fortran. We
translated this code to C language and we checked that our implementation provides
the same results as the Fortran version (as we did for FLO algorithm).

FER We also considered the analytic solution of Equation (33) as reported, for example, in [1,
33]. In [49], it is observed that none of the analytic solutions, such as the ones discussed
in [1, 15, 33, 41, 49, 57], would completely suit the needs of stable computations and a
novel analytic solution is proposed to overcome this limitation. We tested the latter

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:17

Table 1. Set of 24 Quartics Used for the Accuracy Tests

Case Roots Note
1 109, 106, 103, 1 Four widely spaced real
2 2.003, 2.002, 2.001, 2 Four closely spaced small real
3 1053, 1050, 1049, 1047 Four large real
4 1014, 2, 1, −1 One large, three small real
5 −2 × 107, 107, 1, −1 Two large, two small real
6 107, −106, 1 ± i Two large real, two small complex
7 −7, −4, −106 ± 105i Two small real, two large complex
8 108, 11, 103 ± i One large and small real, two medium complex
9 107 ± 106i , 1 ± 2i Two large, two small complex
10 104 ± 3i , −7 ± 103i Four complex, mixed size real and imag. parts
11 1.001 ± 4.998i , 1 ± 5.001i Four closely spaced complex
12 103 ± 3i , 103 ± i Four complex, equal real, small imag. parts
13 2 ± 104i , 1 ± 103i Four complex, small real, large imag. parts
14 1000, 1000, 1000, 1000 Quadruple root
15 1000, 1000, 1000, 10−15 Triple and one small root
16 1 ± 0.1i , 1016 ± 107i Four complex widely spaced
17 10000, 10001, 10010, 10100 Four closely spaced large real
18 40000 ± 300i , 30000 ± 7000i Four quite large complex
19 1044, 1030, 1030, 1 Four very widely spaced real
20 1014, 107, 107, 1 Four widely spaced real
21 1015, 107, 107, 1 Four widely spaced real
22 10154, 10152, 10, 1 Two very large real roots

Case Quartic Coefficients Note
23 a = 1, b = 1, c = 3

8 , d = 10−3 Four distinct roots with d2 ≈ 0

24 a = −
(
1 + 1

S

)
, b = 1

S
− S2

c = S2 + S , d = −S with S = 1030 Widely spaced coefficients

For the first 12 tests we set the roots of the quartics and we calculate the coefficients accordingly. For tests 23 and 24

we specified the coefficients of the quartics.

novel method carefully and, even if it is as efficient as the FER approach, it turned out
to be much less accurate in our accuracy and statistical tests reported in Sections 3.1
and 3.2, respectively. For this reason, we decided to show only the results obtained by
the FER analytic solution.

FQS We also coded this algorithm in C for comparison according to the prescriptions that
can be found in [52].

HQR This algorithm, described in [45], is not specifically designed for quartic equations,
since it can be used to find roots of polynomials of arbitrary degree. Another general
purpose algorithm, i.e., the popular Jenkins-Traub algorithm [31], has already been
tested in [24] and it is not expected to perform better than HQR in terms of accuracy
and efficiency.

We used gcc to compile our C codes with the -O3 optimization flag and we used double-precision
floating-point arithmetic (machine accuracy is ≈ 2.22 × 10−16). Timing and accuracy tests were
performed on a Macbook Pro 13” laptop with an Intel 3.3GHz dual-core i7 processor, while for
statistical tests we used a Linux server with four Intel Xeon E5–4620 v2 2.60GHz octa-core proces-
sors. For timing tests on the Macbook Pro 13” laptop we used both the Apple LLVM version 9.0.0

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:18 A. G. Orellana and C. De Michele

Table 2. Maximum Relative Error of All the Algorithms Considered for the Cases from 1 to 22 in Table 1

Case
Maximum Relative Error εmax of Calculated Roots

OQS FLO STR FER FQS HQR
1 0 1.2 × 10−16 0 1.6 × 10−8 0 5.2 × 10−15

2 8.8 × 10−7 3.6 × 10−6 8.8 × 10−7 2.9 × 10−3 2.6 × 10−6 2.2 × 10−6

3 1.3 × 10−16 3.9 × 10−16 NAN NAN NAN 8.3 × 10−16

4 0 0 3.2 × 10−3 0.5 0 6.1 × 10−11

5 0 1.9 × 10−16 0 7.8 × 10−3 0 4 × 10−15

6 0 1.2 × 10−16 0 0 0 1.1 × 10−15

7 0 0 2.4 × 10−15 1.6 × 10−7 0 2.2 × 10−15

8 0 0 1.1 × 10−13 0 0 2.9 × 10−12

9 0 0 1.6 × 10−15 6.4 × 10−3 0 6 × 10−15

10 0 1.5 × 10−17 0 1.5 × 10−13 4.4 × 10−18 2.4 × 10−13

11 9.4 × 10−14 2.9 × 10−13 1.6 × 10−13 1.4 × 10−13 8.9 × 10−14 3 × 10−13

12 0 0 0 1.9 × 10−3 1.4 × 10−3 4.6 × 10−8

13 0 0 0 0 0 5.5 × 10−16

14 0 0 1.5 × 10−8 0 0 1.6 × 10−4

15 2 × 10−16 0 2 × 10−16 1 9 × 10−12 7 × 10−6

16 10−9 1.5 × 10−8 3.5 × 10−8 3 × 107 10−9 1.6 × 10−8

17 2.5 × 10−7 3.9 × 10−7 1.4 × 10−6 1.6 × 10−3 7 × 10−8 1.3 × 10−6

18 2.7 × 10−16 2.7 × 10−16 8.6 × 10−16 8.9 × 10−12 0 1.8 × 10−13

19 1.4 × 10−16 1.4 × 10−16 NAN NAN NAN 1
20 1.3 × 10−8 2.2 × 10−16 1.8 × 10−8 5.2 × 10−2 1.3 × 10−8 7.4 × 10−8

21 1.1 × 10−16 1.3 × 10−8 2.2 × 10−8 4.2 × 10−1 1.1 × 10−16 6.6 × 10−8

22 1.1 × 10−16 2 × 10−15 NAN NAN NAN 1

(clang-900.0.39.2) of gcc (apple-gcc) and the gnu gcc version 7.2.0 (gnu-gcc), while on the Linux
server we used gcc version 4.8.4. The random numbers in Sections 3.2 and 3.3 were generated by
using the C function drand48() with the use of the same seed for testing all algorithms.

3.1 Accuracy Test

In Table 1, we show all the cases considered with a brief descriptive note. In the cases from 1 to 22,
we use Vieta’s formulas to calculate—using quadruple precision to minimize the effect of round-off
errors—the quartic polynomial coefficients in Equation (33), i.e.:

a = −(x1 + x2 + x3 + x4)

b = x1 (x2 + x3) + x2 (x3 + x4) + x4 (x1 + x3)

c = −x1x2 (x3 + x4) − x3x4 (x1 + x2)

d = x1x2x3x4, (109)

where x1, x2, x3, an x4 are the four roots of the quartic polynomial.
For each set of roots {xc

i } calculated by a quartic equation solver, we calculated the maximum
relative error, i.e.:

εmax = max
i

{ |xc
i − xi |
|xi |

}
, (110)

which is shown in Table 2 for all quartic solvers we considered. Our quartic solver (OQS) performs
very well, providing exact solutions in 11 cases and keeping the relative error at a minimum in the

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:19

Table 3. Roots Obtained from All the Algorithms Considered in Cases 23 and 24 Shown in Table 1

Case
Calculated Roots

OQS FLO STR

23

−0.25 + 0.82835034123894i −0.25 + 0.828350341238939i −0.25 + 0.559016994374947i

−0.25 − 0.82835034123894i −0.25 − 0.828350341238939i −0.25 − 0.559016994374947i

−0.497314148060048 −0.497314148060049 −0.25 + 0.559016994374947i

−0.00268585193995149 −0.00268585193995149 −0.25 − 0.559016994374947i

24

−1030 −1030 −7.80368846212467 × 1057

1030 1030 1.66666666666667

1 1 1

10−30 10−30 10−30

FER FQS HQR

23

−0.25 + 0.828350341238939i −0.25 − 0.82835034123894i −0.25 + 0.828350341238939i

−0.25 − 0.828350341238939i −0.25 + 0.82835034123894i −0.25 − 0.828350341238939i

−0.497314148060048 −0.497314148060048 −0.497314148060049

−0.00268585193995152 −0.00268585193995149 −0.00268585193995149

24

NAN NAN −1030

NAN NAN 1030

NAN NAN 1

NAN NAN 0

Note that in these two cases the exact roots are not provided since the coefficients of the quartics are specified.

other cases. The FQS algorithm at first glance seems also to perform well but in cases 3, 19, and 22
is not able to handle large roots (giving NANs), and in case 12 the relative error is rather large.

The FLO algorithm is surely rather accurate and it seems to handle all cases well, although
overall it is a bit less accurate than OQS. Nevertheless, FQS and OQS can easily exhibit opposite
behavior by just slightly changing the values of the roots as shown by cases 20 and 21. We note
that in all cases where OQS produces exact results and FLO does not, the accuracy of the latter is
in any case below machine accuracy. In addition, in case 15, FLO reconstructs the roots exactly,
while OQS exhibits a finite relative error. The STR and FQS algorithms do not handle large roots
well and STR is not sufficiently accurate in case 4. The HQR algorithm is clearly not on par with
OQS and FLO in terms of accuracy, but overall the accuracy is acceptable. HQR exhibits a large
error in case of quadruple roots (case 14), which are rather unlikely in practical applications, such
as simulation of HCs [43]. HQR also does not handle well the large roots of cases 19 and 22.

Finally, the analytic solution FER, as expected, is rather inaccurate and thus useless for practical
applications.

Both the FLO and OQS algorithms employ polynomial rescaling as discussed in Section 2.2;
hence, they are able to handle quartics with very large roots as shown in case 22.

Concerning cases 23 and 24, the results are shown in Table 3 for all the quartic solvers. In case 23,
all algorithms exhibit a consistent behavior except for STR, which seems not to handle well the fact
that d2 ≈ 0. Case 24 is more problematic since very widely spread coefficients cause FER and FQS
to fail badly and STR to provide two largely wrong roots. The HQR algorithm also calculates the
tiniest root wrongly. On the contrary, the OQS and FLO algorithms also confirm their very good
accuracy in both of these two extreme cases. Note that in these two cases, the exact roots are not
known, since the coefficients of the quartics are specified; anyway, the roots obtained by OQS and
FLO are almost identical (i.e., with a maximum relative error εmax less than 10−15) to the ones that
can be obtained by the NSolve function of Wolfram Mathematica using a working precision of 16.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:20 A. G. Orellana and C. De Michele

Table 4. Analytical Expressions Used to Generate the Roots Used for the Statistical Analysis

Sample
Roots

Note
x1 x2 x3 x4

A ξ1 ξ2 ξ3 ξ4 Four small real
B ξ1 ξ2 ξ3 + ξ4i x∗3 Two small real, two small complex
C ξ1 + ξ2i x∗1 ξ3 + ξ4i x∗3 Four small complex
D ξ1 ξ2 (ξ3 + ξ4i) 106 x∗3 Two small real, two large complex
E (ξ1 + ξ2i) 106 x∗1 (ξ3 + ξ4i) 106 x∗3 Four large complex

Quartic Coefficients
a b c d

F ξ1 ξ2 ξ3 ξ4 Four random quartic coefficients

ξi ∈ Re are uniform random variates on (−0.5, 0.5). The A, B, C, and D samples each consist of 2 × 1011 sets of

four roots and each set of four roots is used to generate the quartic coefficients through Equation (109). Sample F
consists of 1.5 × 1011 sets of quartic coefficients.

Finally, we observe that, in principle, some improvements suggested in the methods, such as the
shift of x in the resolvent cubic (Section 2.2) or the use of the Newton-Raphson method (Section
2.2), could be regarded as useless. Anyway, by renouncing these improvements, the accuracy of
OQS significantly degrades. For example, without using the Newton-Raphson method and the x-
shift, the maximum relative error εmax of OQS in cases 2, 12, and 17 becomes 0.029, 0.015, and
0.0002, respectively, i.e., many orders of magnitude larger.

3.2 Statistical Analysis

To mimic a realistic application, we tested the quartic solvers over a very large set of randomly
generated quartic equations. We generated randomly six large sets A, B, C D, E, and F —which
in the following we call samples—of quartic equations as shown in Table 4. In the case of the
first five samples from A to E, the quartic coefficients are calculated using quadruple precision
from the randomly generated roots by using Equation (109), while in the case of sample F the
quartic coefficients are randomly generated. The samples B, D, and E are designed to reproduce
what happens in Monte Carlo (MC) simulations of hard cylinders (HCs), where the HC overlap
detection is based on the solution of a quartic equation [43].

For the samples A–E the statistical analysis was carried out by generating a set of 2 × 1011

roots, while sample F consists of 1.5 × 1011 quartics with randomly generated coefficients. For
the corresponding set of quartics we calculated the roots using all the solvers we considered and
we estimated the probability distribution P (εr el) of the relative error εr el of each calculated root,
where given the exact root xi and the calculated one xc

i , one has

εr el =
⎧⎪⎨⎪⎩
|xc

i
−xi |
|xi | if xi � 0

|xc
i | otherwise.

(111)

Since P (εr el) is a probability distribution, if one calculates Ntot roots, the number dN of them with
a relative error between εr el and εr el + dεr el (with dεr el � εr el) is

dN = NtotP (εr el)dεr el . (112)

From P (εr el) we calculated the cumulative distribution function F (εr el), i.e.,

F (εr el) =

∫ +∞

εr el

P (x) dx , (113)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:21

Fig. 2. Plot of the cumulative distribution function F (εr el) for samplesA (a) and B (b) for all the algorithms
considered in the present article. Insets show the same plots but using a linear scale on y-axis.

which is the probability of having a relative error greater than εr el . In the case of sample F , the
reference roots xi in Equation (111) have been calculated by using the HQR algorithm in quadruple
precision. We chose the HQR algorithm to calculate the reference roots since for this specific
sample it is expected to be rather reliable and we were able to easily implement it in quadruple
precision.

A preliminary observation about the use of the log-log scale for plots shown in Figures 2 through
4 is in order. If one uses a log-lin plot, as in the insets of these figures, large errors that are quite
unlikely cannot be detected, but these errors are the most critical ones for practical applications

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:22 A. G. Orellana and C. De Michele

Fig. 3. Plot of the cumulative distribution function F (εr el) for samples C (a) andD (b) for all the algorithms
considered in the present article. Insets show same plots but using a linear scale on the y-axis.

where robustness cannot be sacrificed. A first conclusion that can immediately be drawn from
the results of our statistical analysis is that again, the FER analytic solution is not able to handle
numerical errors properly, since, as it can be seen in Figures 2 through 4, very large errors are
very likely for all investigated samples. With sample F , only the algorithms OQS, HQR, and FLO
exhibit a consistent behavior since for them the largest observed relative error is smaller than
about 10−8. In passing, we note that solutions of sample F are more accurate than the ones of
the other samples. The reason for this result can be rooted in the fact that for this sample, closely
spaced roots, which are the ones that produce solutions with larger errors, are much less likely.
With this sample the algorithms HQR and OQS provide almost the same accuracy, while FLO

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:23

Fig. 4. Plot of the cumulative distribution function F (εr el) for samples E (a) and F (b) for all the algorithms
considered in the present article. Insets show same plots but using a linear scale on the y-axis.

shows a clear deviation in the tail of the distribution, which means that in this case, for the latter
algorithm large errors are a little more likely. The STR algorithm has some serious issues with all
samples since its F (εr el) below about 10−8 exhibits a very large shoulder (see Figures 2 through
-4). A similar behavior can be observed for the FQS algorithm with samples B and F , which are
shown in Figures 2(b) and 4(b), respectively. These shoulders in the tail of F (εr el) mean that for the
STR and FQS algorithms, very large errors are quite likely, thus questioning their use in practical
applications. For example, in MC simulation of 1, 000 HCs [43] at moderate concentrations lasting
5 × 107 steps, one could expect to calculate the roots of 5 × 1011 quartics, thus being very likely to
stumble on unacceptably large errors.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:24 A. G. Orellana and C. De Michele

Table 5. CPU Timings τexe/108 (Expressed in ns) with the Associated Absolute Error for
All the Tested Quartic Solvers Obtained as Averages over 10 Independent Runs

Opt. Level
Quartic Equation Solver

OQS FLO STR FER FQS HQR
compiler: apple-gcc

-O3 236 ± 1 579 ± 3 366 ± 3 154 ± 2 562 ± 1 1132 ± 4
-O0 476 ± 4 887 ± 2 589 ± 2 172 ± 1 1112 ± 6 2343 ± 3

compiler: gnu-gcc
-O3 252 ± 1 561 ± 2 384 ± 4 140 ± 1 580 ± 1 1028 ± 1
-O0 491 ± 1 902 ± 7 631 ± 7 177 ± 1 1168 ± 2 2577 ± 2

During each run, a set of 108 quartic polynomials from sample B is generated. We performed these

timing tests using both apple-gcc and gnu-gcc with (-O3) and without (-O0) optimizations.

Overall, OQS, FLO, and HQR seem to handle numerical errors well, with OQS more accurate
than the other two though. The gap in accuracy between OQS and HQR is particularly evident
with sample D, as shown in Figure 3(b). The FLO algorithm is fairly accurate with samples A,
B, and D, but its accuracy degrades slightly with samples C, E, and, more significantly, F (see
Figures 3(a), 4(a), and 4(b), respectively).

3.3 Timing Test

Our last test concerns the efficiency of the quartic equation solvers. We generated 10 sets of 108

quartics as we did for sample B in Section 3.2 for each quartic solver (see Table 4) and we recorded
the total execution time τtot for each set. The execution time τexe of each solver is thus τexe = τtot −
τ0, where τ0 is the execution time of a run during which we do not solve the quartic equation but
we only generate random roots and calculate the corresponding quartic coefficients. The resulting
timings τexe of all the algorithms—averaged over the 10 independent realizations—are shown in
Table 5 together with the associated absolute errors.

To check the dependency on compiler type and optimization level of our results, we recorded
timings with very high (-O3) and without (-O0) compiler optimizations turned on and we also
used two different compilers to generate the code for these tests (apple-gcc and gnu-gcc). For this
sample, it can be seen that OQS is almost on par with the analytic solution; it is about twice as
fast as the FLO algorithm and almost 5 times faster than the HQR solver. The STR algorithm also
performs quite well, being only 1.7 times slower than OQS, but we already noted that it is not
accurate enough and robust enough for practical applications.

We note that sample B has been chosen because this set of roots are similar to the ones that can
be obtained in [31]. Anyway, timings may depend on the sample used for the test, and hence we
also report in Table 6 timings for sample F , which includes all forms of quartics of the samplesA,
B, and C combined. With this sample the FLO and STR algorithms perform better and their timings
are closer to the ones obtained by the OQS algorithm, while the results for the other algorithms
do not change much. The FLO algorithm is generally slower than OQS, due to its additional time-
consuming coded features like polynomial rescaling and reordering of the resulting roots.

Despite the HQR algorithm being much slower than the other ones, we remind the reader that
it can be used for polynomials of arbitrary degree. Compared to other general purpose algorithms,
such as MPSolve [8] (MPS) or the one proposed in [6] (AUR), it proved to be more efficient. We
carried out some timing tests based on sample B and F for MPS and AUR (in its double shift
variant) methods, whose source codes are freely available. The MPS and AUR algorithms turned
out to be around 80 and 5 times slower than HQR, respectively. Performance benchmarks of AUR

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:25

Table 6. Same as for Table 5 but for Sample F

Opt. Level
Quartic Equation Solver

OQS FLO STR FER FQS HQR
compiler: apple-gcc

-O3 249 ± 1 481 ± 1 324 ± 1 167 ± 1 551 ± 1 1118 ± 7
-O0 467 ± 4 741 ± 7 524 ± 6 182 ± 3 1036 ± 12 2443 ± 16

compiler: gnu-gcc
-O3 251 ± 2 462 ± 8 363 ± 8 156 ± 2 521 ± 6 1031 ± 2
-O0 490 ± 10 771 ± 9 554 ± 2 186 ± 3 1050 ± 6 2620 ± 20

can also be found in [6] where, for polynomials with degree smaller than 10, the HQR algorithm
turns out to be about 5 times faster than AUR, thus confirming our results.

4 CONCLUSIONS

In this article, we propose a novel algorithm to solve a quartic equation based on the factorization
of the quartic polynomial into two quadratic factors and the use of the NR method to refine the
coefficients of quadratic polynomials.

Our method can be regarded as an analytic approach where all the calculations have been care-
fully done to alleviate the detrimental effect of cancellation errors. In this respect, there are at-
tempts to improve analytic methods by minimizing the effect of numerical errors as discussed
in [27], and it would be interesting to compare them against the present algorithm, which could
be a matter for a future publication.

Our solver is very accurate and robust according to our accuracy tests for a selected set of
extreme cases and to our statistical tests, which have been carried out over a very large sample of
quartics (up to 2 × 1011). Indeed, in comparison with the FLO and HQR algorithms, which are the
only viable alternatives in terms of accuracy and robustness, our solver performs better.

Our solver also proved to be very efficient, being almost on par with the analytic solutions, about
twice as fast as the FLO algorithm, and almost 5 times faster than the HQR algorithm. These fea-
tures of our solver make it very suitable for applications where robustness, accuracy, and efficiency
are all crucial.

In soft matter physics, coarse-grained models of molecules based on hard rigid bodies have been
commonly used over last years to study colloidal systems, i.e., water suspensions of particles, that
have a diameter of between approximately 1 and 1,000nm [19, 47, 48, 54, 58]. Models based on HCs
have been widely employed to study the physical properties of colloidal systems made of rod-like
particles [16, 17, 34, 35, 42], and simulations of HCs are rather demanding in terms of both accuracy
and efficiency, as discussed in [43].

In the latter article a novel algorithm for testing the overlap of two HCs, which is based on the
solution of the quartic equation, has been proposed. Since the check for the overlap of two hard
spherocylinders (HSCs) [3], intended as an alternative model for rod-like colloidal particles, can
be performed very efficiently [56], in the past they have been preferred to HCs for carrying out
computer simulations [10, 37, 55]. Anyway, thanks to the efficiency of our quartic equation solver,
simulations of HCs are almost as efficient as those of HSCs as shown in [43]. In [43], a stringent
test of robustness of OQS is also provided. An MC simulation of 980 HCs has been carried out,
which lasted 5 × 107 MC steps, and the resulting HC trajectories turned out to be identical to the
ones obtained by two other tested algorithms (see Figure 5 in [43]). Finally, our algorithm has also
been generalized to solve quartic polynomials with complex coefficients.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

20:26 A. G. Orellana and C. De Michele

In conclusion, due to its robustness, accuracy, and efficiency, we are confident that our quartic
equation solver will be a very valuable tool for a wide spectrum of scientific applications ranging
from physics, chemistry, and mathematics to engineering and computer science.

REFERENCES

[1] M. Abramowitz and I. A. Stegun. 1972. Handbook of Mathematical Functions (10th ed.). National Bureau of Standards,

New York.

[2] A. C. Aitken. 1952. XXIII.—Studies in practical mathematics. VII. On the theory of methods of factorizing polynomials

by iterated division. In Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences,

Vol. 63. Royal Society of Edinburgh, Edinburgh, 326–335. DOI:https://doi.org/10.1017/S0080454100007202

[3] M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder. 1993. Hard Convex Body Fluids. John Wiley & Sons, Inc., New

York, 1–166. DOI:https://doi.org/10.1002/9780470141458.ch1

[4] R. Alt and J. Vignes. 1982. Stabilizing Bairstow’s method. Comput. Math. Appl. 8, 5 (1982), 379–387.

[5] D. W. Arthur. 1972. Extension of Bairstow’s method for multiple quadratic factors. IMA J. Appl. Math. 9, 2 (1972),

194–197.

[6] J. Aurentz, T. Mach, R. Vandebril, and D. Watkins. 2015. Fast and backward stable computation of roots of polynomials.

SIAM J. Matrix Anal. Appl. 36, 3 (2015), 942–973.

[7] L. Bairstow. 1914. Investigations Relating to the Stability of the Aeroplane. Reports and Memoranda 154. National

Advisory Committee for Aeronautics.

[8] D. A. Bini and G. Fiorentino. 2000. Design, analysis, and implementation of a multiprecision polynomial rootfinder.

Numer. Algorithms 23, 2 (June 2000), 127–173.

[9] G. M. Birtwistle and D. J. Evans. 1967. On the generalisation of Bairstow’s method. BIT Numer. Math. 7, 3 (1967),

175–190.

[10] P. Bolhuis and D. Frenkel. 1997. Tracing the phase boundaries of hard spherocylinders. J. Chem. Phys. 106, 2 (1997),

666–687.

[11] K. M. Borkowski. 1987. Transformation of geocentric to geodetic coordinates without approximations. Astrophys.

Space Sci. 139, 1 (1987), 1–4.

[12] C. B. Boyer and U. C. Merzbach. 1991. A History of Mathematics (2nd ed.). Wiley, New York.

[13] K. W. Brodlie. 1975. On Bairstow’s method for the solution of polynomial equations. Math. Comp. 29, 131 (1975),

816–826.

[14] F. M. Carrano. 1973. A modified Bairstow method for multiple zeros of a polynomial. Math. Comp. 27, 124 (1973),

781–792.

[15] B. Christianson. 1991. Solving quartics using palindromes. Math. Gaz. 75, 473 (1991), 327–328.

[16] C. De Michele, T. Bellini, and F. Sciortino. 2012. Self-assembly of bifunctional patchy particles with anisotropic shape

into polymers chains: Theory, simulations, and experiments. Macromolecules 45, 2 (2012), 1090–1106. DOI:https://doi.

org/10.1021/ma201962x

[17] C. De Michele, L. Rovigatti, T. Bellini, and F. Sciortino. 2012. Self-assembly of short DNA duplexes: From a coarse-

grained model to experiments through a theoretical link. Soft Matter 8, 32 (2012), 8388–8398. DOI:https://doi.org/10.

1039/C2SM25845E

[18] J. Dexter and E. Agol. 2009. A fast new public code for computing photon orbits in a Kerr spacetime. Astrophys. J.

696, 2 (2009), 1616.

[19] J. P. K. Doye, A. A. Louis, I-C. Lin, L. R. Allen, E. G. Noya, A. W. Wilber, H. C. Kok, and R. Lyus. 2007. Controlling

crystallization and its absence: Proteins, colloids and patchy models. Phys. Chem. Chem. Phys. 9, 18 (2007), 2197–2205.

[20] C. D’Souza. 1997. An Optimal Guidance Law for Planetary Landing. American Institute of Aeronautics and Astronau-

tics, Reston, VA, 1376–1381. DOI:https://doi.org/10.2514/6.1997-3709

[21] T. F. W. Embleton, G. J. Thiessen, and J. E. Piercy. 1976. Propagation in an inversion and reflections at the ground. J.

Acoust. Soc. Am. 59, 2 (1976), 278–282.

[22] B. T. Fang. 1990. Simple solutions for hyperbolic and related position fixes. IEEE Trans. Aerosp. Electron. Syst. 26, 5

(1990), 748–753.

[23] T. Fiala and A. Krebsz. 1986. On the convergence and divergence of Bairstow’s method. Numer. Math. 50, 4 (1986),

477–482.

[24] N. Flocke. 2015. Algorithm 954: An accurate and efficient cubic and quartic equation solver for physical applications.

ACM Trans. Math. Softw. 41 (2015), 30:1–30:24.

[25] G. H. Golub and C. F. Van Loan. 1990. Matrix Computations (2nd ed.). John Hopkins University Press, Baltimore, MD.

[26] A. A. Grau. 1960. Solution of polynomial equation by Bairstow-Hitchcock method. Commun. ACM 3, 2 (1960), 74–75.

[27] Don Herbison-Evans. 1995. Solving quartics and cubics for graphics. In Graphics Gems V. Academic Press, 3–15.

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

https://doi.org/10.1017/S0080454100007202
https://doi.org/10.1002/9780470141458.ch1
https://doi.org/10.1021/ma201962x
https://doi.org/10.1021/ma201962x
https://doi.org/10.1039/C2SM25845E
https://doi.org/10.1039/C2SM25845E
https://doi.org/10.2514/6.1997-3709

Boosting Efficiency in Solving Quartic Equations with No Compromise in Accuracy 20:27

[28] M. Igarashi. 1984. A termination criterion for iterative methods used to find the zeros of polynomials. Math. Comp.

42, 165 (1984), 165–171.

[29] V. Pan J. M. McNamee. 2013. Numerical Methods for Roots of Polynomials - Part II (1st ed.). Vol. 16. Elsevier.

[30] M. A. Jenkins. 1975. Algorithm 493: Zeros of a real polynomial [C2]. ACM Trans. Math. Softw. 1, 2 (1975), 178–189.

[31] M. A. Jenkins and J. F. Traub. 1970. A three-stage algorithm for real polynomials using quadratic iteration. SIAM J.

Numer. Anal. 7, 4 (1970), 545–566.

[32] T. B. Kaiser. 2000. Laser ray tracing and power deposition on an unstructured three-dimensional grid. Phys. Rev. E 61

(2000), 895–905.

[33] G. A. Korn and T. M. Korn. 2000. Mathematical Handbook for Scientists and Engineers. Dover Publications.

[34] T. Kouriabova, M. D. Betterton, and M. A. Glaser. 2010. Linear aggregation and liquid-crystalline order: Comparison

of Monte Carlo simulation and analytic theory. J. Mater. Chem. 20 (2010), 10366–10383.

[35] X. Lü and J. T. Kindt. 2004. Monte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium

polymers. J. Chem. Phys. 120 (2004), 10328–10338.

[36] X. Luo, Q. Wang, C. Yang, and F. Liu. 2006. Detection of LTSB steganography based on quartic equation. In 2006 8th

International Conference Advanced Communication Technology, Vol. 2. 1199–1204. DOI:https://doi.org/10.1109/ICACT.

2006.206186

[37] S. C. McGrother, D. C. Williamson, and G. Jackson. 1996. A re–examination of the phase diagram of hard sphero-

cylinders. J. Chem. Phys. 104, 17 (1996), 6755–6771.

[38] J. M. McNamee. 1993. A bibliography on roots of polynomials. J. Comput. Appl. Math. 47, 3 (1993), 391–394.

[39] J. M. McNamee. 1999. An updated supplementary bibliography on roots of polynomials. J. Comput. Appl. Math. 110,

2 (1999), 305–306.

[40] O. Naroditsky, A. Patterson, and K. Daniilidis. 2011. Automatic alignment of a camera with a line scan LIDAR system.

In 2011 IEEE International Conference on Robotics and Automation. 3429–3434. DOI:https://doi.org/10.1109/ICRA.2011.

5980513

[41] S. Neumark. 1965. Solution of Cubic and Quartic Equations (1st ed.). Pergamon Press, Oxford.

[42] K. T. Nguyen, F. Sciortino, and C. De Michele. 2014. Self-assembly-driven nematization. Langmuir 30 (2014), 4814–

4819. DOI:https://doi.org/10.1021/la500127n

[43] A. G. Orellana, E. Romani, and C. De Michele. 2018. Speeding up Monte Carlo simulation of patchy hard cylinders.

Eur. Phys. J. E 41 (2018), 1–10. DOI:https://doi.org/10.1140/epje/i2018-11657-0

[44] M. Phatak, M. Chansarkar, and S. Kohli. 1999. Position fix from three GPS satellites and altitude: A direct method.

IEEE Trans. Aerosp. Electron. Syst. 35, 1 (1999), 350–354.

[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes - The Art of Scientific

Computing (3rd ed.). Cambridge University Press, Cambridge, UK.

[46] H. E. Salzer. 1960. A note on the solution of quartic equations. Math. Comput. 14, 71 (1960), 279–281.

[47] F. Sciortino. 2010. Primitive models of patchy colloidal particles. A review. Collect. Czech. Chem. Commun. 75 (2010),

349–358.

[48] F. Sciortino and E. Zaccarelli. 2017. Equilibrium gels of limited valence colloids. Curr. Opin. Colloid Interface Sci. 30

(2017), 90–96.

[49] S. L. Shmakov. 2011. A universal method of solving quartic equations. Int. J. Pure Appl. Math. 71, 2 (2011), 251–259.

[50] L. Sonnenschein. 2006. Analytical solution of t t dilepton equations. Phys. Rev. D 73, 5 (2006), 054015.

[51] M. Vander Stracten and H. Van de Vel. 1992. Multiple root-finding methods. J. Comput. Appl. Math. 40, 1 (1992),

105–114.

[52] P. Strobach. 2010. The fast quartic solver. J. Comput. Appl. Math. 234, 10 (2010), 3007–3024.

[53] P. Strobach. 2015. The Low-Rank LDLT Quartic Solver. (2015). DOI:https://doi.org/10.13140/2.1.3955.7440 AST-

Consulting Inc. Internal Technical Report.

[54] P. I. C. Teixeira and J. M. Tavares. 2017. Phase behaviour of pure and mixed patchy colloids – theory and simulation.

Curr. Opin. Colloid & Interface Sci. 30 (2017), 16–24.

[55] J. A. C. Veerman and D. Frenkel. 1991. Relative stability of columnar and crystalline phases in a system of parallel

hard spherocylinders. Phys. Rev. A 43, 8 (1991), 4334–4343.

[56] C. Vega and S. Lago. 1994. A fast algorithm to evaluate the shortest distance between rods. Comput. Chem. 18, 1 (1994),

55–59.

[57] M. D. Yacoub and G. Fraidenraich. 2012. A solution to the quartic equation. Math. Gaz. 96, 536 (2012), 271–275.

[58] Gi-Ra Yi, David J. Pine, and Stefano Sacanna. 2013. Recent progress on patchy colloids and their self-assembly. J.

Phys: Condens. Matter 25, 19 (2013), 193101.

[59] W. Zhang, D. Duan, and L. Yang. 2009. Relay selection from a battery energy efficiency perspective. In 2009 IEEE

Military Communications Conference (MILCOM’09). 1–7. DOI:https://doi.org/10.1109/TCOMM.2011.041111.100128

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

https://doi.org/10.1109/ICACT.2006.206186
https://doi.org/10.1109/ICACT.2006.206186
https://doi.org/10.1109/ICRA.2011.5980513
https://doi.org/10.1109/ICRA.2011.5980513
https://doi.org/10.1021/la500127n
https://doi.org/10.1140/epje/i2018-11657-0
https://doi.org/10.13140/2.1.3955.7440
https://doi.org/10.1109/TCOMM.2011.041111.100128

20:28 A. G. Orellana and C. De Michele

[60] X. Zheng and P. Palffy-Muhoray. 2007. Distance of closest approach of two arbitrary hard ellipses in two dimensions.

Phys. Rev. E 75, 6 (2007), 061709.

[61] J. Zhu. 1994. Conversion of earth-centered earth-fixed coordinates to geodetic coordinates. IEEE Trans. Aerosp. Elec-

tron. Syst. 30, 3 (1994), 957–961.

Received December 2018; revised February 2020; accepted February 2020

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 20. Publication date: May 2020.

