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Abstract. Liquid-crystalline phases in all-DNA systems have been extensively studied in the past and
although nematic, cholesteric and columnar mesophases have been observed, the smectic phase remained
elusive. Recently, it has been found evidence of a smectic-A ordering in an all-DNA system, where the
constituent particles, which are gapped DNA duplexes, resemble chain-sticks. It has been argued that in the
smectic-A phase these DNA chain-sticks should be folded as a means to suppress aggregate polydispersity
and excluded volume. Nevertheless, if initial crystalline configurations are prepared in silico with gapped
DNA duplexes either fully unfolded or fully folded by carrying out computer simulations one can end
up with two different phases having at the same concentration and temperature the majority of gapped
DNA duplexes either folded or unfolded. This result suggests that these two phases have a small free
energy difference, since no transition is observed from one to the other within the simulation time span.
In the present manuscript, we assess which of these two phases is thermodynamically stable through a
suitable protocol based on thermodynamic integration. Our method is rather general and it can be used
to discriminate stable states from metastable ones of comparable free energy.

1 Introduction

Liquid-crystalline phases of both short [1–10] and
long [11–22] B-DNA duplexes in aqueous solution have
been widely investigated in the past. Mesophases, which
include nematic, cholesteric and columnar hexagonal
phases, emerge at sufficiently high concentration and for
short duplexes they are understood in terms of end-to-end
stacking interactions between duplex terminals, which in-
duce the formation of semi-flexible linear aggregates [1].
Among liquid crystals (LC) based on DNA the smectic
phase was elusive. Even if it was initially proposed by
Strzelecka et al. [23] for 50 nm DNA duplexes, right af-
ter Livolant et al. [15,24] disproved this result by showing
that columnar ordering preempts the formation of smec-
tic layering in this system. More recently, it has been pro-
vided both experimental and numerical evidence of this
phase by studying a slightly different system, i.e. short
gapped B-DNA duplexes (gDNADs) [5]. The experimen-
tal evidence of a smectic-A type phase has been obtained
by introducing a single-stranded DNA spacer between two
double-stranded duplexes. The resulting DNA construct is
thus a gDNAD which resembles a nunchaku, i.e. a chain-
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stick, which is the typical weapon of Japanese martial arts,
such as Kung-fu and Ju-Jitsu. Monte Carlo simulations
were carried out by using a suitable coarse-grained model,
which has been developed building on a model proposed
some years ago for short DNA duplexes [25–28]. Employ-
ing this coarse-grained model —which will be illustrated
in sect. 2.1— in ref. [5] MC simulations in the constant
pressure ensemble have been carried out. The initial con-
figuration was generated as a crystalline lattice of fully
folded gDNADs —i.e. employing a particular conforma-
tional isomer— in a orthorhombic lattice and the equation
of state shows a clear evidence of smectic-A phase where
gDNADs are folded (in ref. [5] such a phase has been called
Sm-fA, where f stands for folded). In principle, a smectic
phase, where gapped duplexes are mostly unfolded (Sm-
uA), can also be attained, although this phase should be
entropically unfavored, due to the entropic cost of building
up a layered structure of linear chains with length poly-
dispersity and the larger excluded volume of the unfolded
conformation. Other conformations than the fully folded
and fully unfolded ones can be excluded since they are not
compatible with smectic ordering. In ref. [5] to address
the thermodynamic stability of the Sm-fA phase with re-
spect to the Sm-uA, MC simulations carried out under
thermodynamic conditions appropriate for the emergence
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Fig. 1. Coarse-grained model of a gDNA used in the MC sim-
ulations.

of the smectic phase and starting with a random distri-
bution of folding angles were performed. These simula-
tions, although a fully equilibrated final state could not be
achieved within the very long simulation time span, due to
the very slow folding kinetics, suggests that the final equi-
librium state is the Sm-fA. In this paper, we provide an
unambiguous and conclusive proof of the thermodynamic
stability of the Sm-fA phase resorting to thermodynamic
integration [29,30] between the Sm-fA phase and the Sm-
uA. For the crystalline phase thermodynamic integration
can be used to calculate the absolute value of the free en-
ergy by switching on a suitable external potential, which
couples the system to an Einstein crystal [31–34]. Here,
building on some ideas first proposed in refs. [35,36], we
follow a different approach where the system is coupled
to external potentials which preserve the symmetry of the
system and which allow to go from a partially ordered
state (a mesophase) to a fully disordered phase without
any intervening phase transition. Our method could be
used both to calculate absolute values of free energy or
free energy differences. In the former case one needs to
evaluate the free energy of a gas to have free energy abso-
lute values.

2 Methods

2.1 Model

As already noted, the model of a gDNAD which we used
in the present manuscript is identical to the one employed
in ref. [5], but we will describe it in the following for the
sake of completeness. A gDNAD is modeled in a coarse-
grained manner as two irreversibly bonded hard cylinders
with length L = 16nm and thickness D = 3nm (so that
the aspect ratio X0 = L/D = 5.33), as shown in fig. 1.
The diameter of the cylinders has been chosen larger than
the steric diameter of B-DNA which is around 2 nm to ac-
count for gDNA electrostatic repulsion. The latter choice
can be justified by noting that, under typical experimen-
tal conditions for observing DNA mesophases, the Debye

screening length is expected to be of few angstroms, i.e.
electrostatic interactions are strongly screened.

Each cylinder is decorated with two interacting sites
labelled with A and B in fig. 1. Site B is the center of the
orange sphere of diameter σ and it is located along the
symmetry axes of the cylinder at a distance L/2 + σ/2
from its geometrical center. If r is the distance between
two B sites belonging to the same gDNA (for B sites of
distinct gDNAs uP = 0), these sites interact through the
following potential uP :

uP (r) =

{
0, if r < σ,

∞, otherwise.
(1)

Site A is the center of the small green sphere of diame-
ter δ and it is placed on the symmetry axis of the cylinder
at a distance equal to L/2 + 0.15D/2 from the center.
Sites A belonging to distinct gDNA interact through the
following square well potential uSW :

uSW (r) =

{
u0, if r < δ,

0, otherwise,
(2)

where δ = 0.16D. Sites A model hydrophobic attraction
between DNA terminals and their geometry is the same
one used in ref. [37]. The attraction strength is set to
βu0 = 8 which is the value used in ref. [5] and which
provides a stacking free energy in line with values pre-
viously determined from the phase behaviour [25,26,37]
and cholesteric properties [27] of self-assembling ultrashort
DNA duplexes. We note that the attraction between A
sites, i.e. between DNA terminal ends, is the same end-
to-end stacking force of hydrophobic origin, which drives
the formation of liquid crystal phases of short DNA du-
plexes [1,25,3].

Interacting sites B serve to model the single-stranded
DNA which holds together the two double-stranded parts
of the gDNAD. We note that the choice for the geometry
and interaction potential of the B sites ensures full flexi-
bility of the gDNAD. In the following we will make use of
reduced temperature T ∗ = TkB/u0 and reduced pressure
P ∗ = βPvhc, where vhc is the volume of each cylinder
forming the gDNAD.

2.2 Monte Carlo simulations

Monte Carlo simulations were performed in the NPT en-
semble. The system is composed of N = 840 gDNADs
which have been modeled as discussed in sect. 2.1. The
simulation box of volume V was orthorhombic and the
three edges are allowed to change independently in the
MC simulation to ease the accommodation of smectic and
crystal phases. We applied standard periodic boundary
conditions. In the following ρ = N/V will be the num-
ber density of gDNADs and φ = 2ρvhc will be the system
volume fraction.

We built two equations of states by carrying out a
series of NPT-MC simulations at different pressures start-
ing from two difference crystalline configurations, where in
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Fig. 2. Starting configurations for MC simulations: (a) crys-
tal of unfolded gDNADs and (b) crystal of folded gDNADs.
Two hard cylinders belonging to same duplex are colored in
different colors (blue and green) to make folded and folded
configurations more apparent.

one case all gDNADs are fully folded (labelled as fK, see
fig. 2(b)) while in the other case they are fully unfolded
(labelled as uK, see fig. 2(a)). During these simulations we
equilibrated the system for at least 8 × 106 MC steps and
we performed a production run lasting 9× 106 MC steps.

The two equations of states obtained from these two
series of MC simulations are shown in fig. 3, where the one
in fig. 3(a) has been obtained from the initial configuration
in fig. 2(a) and that in fig. 3(b) from the initial configura-
tion in fig. 2(b). At high concentration the system can be
found in a crystalline phase where the gDNADs are either
unfolded (uK in fig. 3(a)) or folded (fK in fig. 3(b)). By
reducing the pressure, i.e. lowering the concentration, the
system exhibits a lamellar liquid-crystalline ordering. In
the smectic phase of fig. 3(a) the majority of gDNADs are
unfolded and this phase has been called Sm-uA, while in
that of fig. 3(b) the majority of gDNADs are folded and
this one has been called Sm-fA. The possibility of obtain-
ing from simulations two different phases under the same

Fig. 3. Equation of state obtained from the two initial con-
figurations shown in fig. 2 where gDNADs are either fully un-
folded (a) or fully folded (b). In (a) the blue circle identifies
the state point U , while in (b) the orange circle identifies the
state point F .

thermodynamic conditions suggests that their free energy
difference has to be small. Indeed, one of the two phases
is metastable but being unable to undergo a transition to
the more stable phase means that an high free energy bar-
rier separates them. The latter point will be also discussed
thoroughly later on.

A snapshot of the two different smectic phases ob-
tained from our MC simulations for P ∗ = 4 is shown in
fig. 4.

In fig. 5 we show the angle distribution p(θ), where θ is
the angle formed by the two cylinders forming a gDNAD
as shown in fig. 1. From figs. 4 and 5 it can be clearly
seen that in the Sm-fA phase most of gDNADs are un-
folded, while in the Sm-uA they are mostly unfolded, as
also confirmed by the angle distribution shown in fig. 5.

2.3 Thermodynamic integration

To assess which of the two equations of state shown in
figs. 3(a) and (b) is the one thermodynamically stable, we
compute through thermodynamic integration the Gibbs
free energy difference ΔG between two state points at the
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Fig. 4. Snapshots of (a) folded (Sm-fA) at φ = 0.497 and (b)
unfolded (Sm-uA) at φ = 0.482 smectic phases.

same temperature and pressure. We chose the two state
points U (see fig. 3(a)) and F (see fig. 3(b)) at P ∗ = 4
and T ∗ = 0.125, which correspond to the Sm-uA phase
(φ = 0.482) and to Sm-fA phase (φ = 0.497), respectively
and we build a suitable reversible path joining these two
points in the phase diagram as shown in fig. 3 along which
we evaluate the free energy change. Note that the chosen
value of the reduced temperature T ∗ ensures that the in-
teraction strength βu0 = 8.

Along the reversible path, which we construct, both
isothermal and Hamiltonian thermodynamic integration
are needed [38,30]. Along an isotherm joining two states
A and B the Gibbs free energy variation ΔG is

ΔG =
∫ B

A

P (ρ)
ρ2

dρ +
P (B)
ρ(B)

− P (A)
ρ(A)

. (3)

In the case of Hamiltonian integration the Hamiltonian
changes according to a parameter λ and goes from a state
A (λ = 0) to a state B (λ = 1) and ΔG can be expressed

Fig. 5. Angle distribution for the unfolded and folded smectic
state whose snapshots are shown in fig. 4.

as follows:

ΔG = G(B) − G(A) =
∫ B

A
Hλdλ, (4)

where

Hλ =
〈

dH
dλ

〉
N,P,T,λ

. (5)

The Hamiltonian H0 of our system can be written as
follows:

H0 = VHS +
∑
i<j

∑
a=1,2

∑
b=1,2

uSW (rab
ij ) +

∑
i

uP (ri), (6)

where VHS is the hard-core potential acting between cylin-
ders, rab

ij is the distance between the reversible interacting
B sites belonging to cylinders i and j and ri is the distance
between two A sites belonging to the same gDNAD.

To build a suitable thermodynamic path connect-
ing the latter two states we employed the following
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4 correction terms to the original Hamiltonian H0:

H(s)(λs) = Csλsu0

∑
i

cos
(

2πziNp

Lz

)
, (7)

H(n)(λn) = Cnλnu0

∑
i

∑
a=1,2

[1 − cos(ui,a · ẑ)] , (8)

H(f)(λf ) = Cfλfu0

∑
i

ui,1 · ui,2, (9)

H(p)(λp) = −λp

∑
i<j

∑
a=1,2

∑
b=1,2

uSW (rab
ij ), (10)

where we set Cn = 1, Cs = 3 and Cf = 5 and it is assumed
that the nematic axis is along the z-axis. The constants
Cγ with γ = s, n, f have been chosen to ensure a sufficient
strength of the associated external fields, e.g. when λf = 1
by setting Cf = 5 ensures that all gDNADs are perfectly
folded despite thermal fluctuations. The correction H(s)

will induce, on varying λs, a transition to a smectic phase
where B sites are placed onto layers perpendicular to the
z-axis [30], while H(n) will force the alignment of the cylin-
ders along the z-axis on increasing the parameter λn [39].
The Hamiltonian correction H(f) on increasing the param-
eter λf induces the folding of each gDNAD in the system
and finally the correction H(p) on changing λp from 0 to
1 completely switches off the attraction potential between
A sites. By applying the above corrections to the original
Hamiltonian H0 we induce the formation of an ideal folded
smectic phase from state F . From this state, we carry out
MC simulations in the NPT ensemble from the pressure of
the latter “ideal” (i.e., with all particles almost perfectly
aligned and layered) folded smectic phase down to very
low pressures (and densities). The key idea of our proce-
dure is that at low concentrations we can safely switch off
all the fields, thus inducing the formation of an isotropic
phase without encountering a first-order phase transition.
After that, we turned back on all the corrections terms
in eqs. (7)–(10), but, differently to what done before, the
parameter λf is now varied from 0 to −1 in order to have
gapped duplexes in unfolded configurations.

The detailed procedure to evaluate the Gibbs free en-
ergy difference between states F and U consists in splitting
the whole integration path into the following intermediate
steps, which are labelled as Si with i = 1, . . . , 8.

S1: The smectic field in eq. (7) is gradually switched on
and the system goes from state F to an ideal smectic
state.

S2: Hamiltonian correction terms in eqs. (8), (9) and (10)
are gradually and simultaneously (i.e., we vary λ =
λf = λn = λp) switched on, so that eventually all
gDNADs are perfectly folded and aligned.

S3: The pressure is reduced until the system reaches very
low concentrations.

S4: All fields are gradually switched off thus obtaining an
isotropic phase of gDNADs (I).

S5: All Hamiltonian corrections are gradually and simul-
taneously switched back on, where in the correction
term H(f), λf now changes from 0 to −1 to induce the
formation of unfolded configurations.

Fig. 6. The behavior of Hλ as a function of λs during steps S1

(with gDNADs mostly folded) and S8 (with gDNADs mostly
unfolded) where the smectic field is switched on and off, re-
spectively. All simulations are performed in the NPT ensemble
at a pressure of P ∗ = 4.

S6: The pressure is increased until the system reaches the
same pressure of state U .

S7: Hamiltonian correction terms in eqs. (8), (9) and (10)
are gradually and simultaneously (i.e., we vary λ =
−λf = λn = λp) switched off.

S8: The smectic field (i.e., the correction term in eq. (7))
is gradually switched off and eventually the system is
in the state U .

In all steps S1, . . . , S8 we used NPT-MC simulations and
each step Si brings the system from state Pi−1 to state
Pi with P0 = F , P5 = I and P8 = U . Note that each
state depends on temperature T , pressure P and the set
of parameters {λα | α ∈ {s, n, f, p}}. According to the
above steps the whole path along which thermodynamic
integration is carried out can be expressed as follows:

F → P1 → P2 → P3 → P4 → P5 → P6 → P7 → U .

3 Results and discussion

In the following we will discuss the results from simula-
tions for all the steps S1, . . . ,S8 into which we split the
whole reversible path used for the thermodynamic inte-
gration. Figure 6 shows the behavior of Hλ as a function
of λs when the smectic field is first switched on in step S1

and then switched back off in S8. The Gibbs free energy
difference going along these two paths is 0.37NkBT .

Figure 7 shows the behavior of Hλ as a function of λ
when all fields, except the smectic one, are first switched
on in step S2 and then switched back off in step S7. The
change in the Gibbs free energy along these two paths
is a bit smaller than the previous case, being equal to
−0.07NkBT .

Finally, fig. 8 shows the behavior of the pressure P
against φ along the isotherms which bring the system from
state P4 to the low pressure state I (= P5) first and then
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Fig. 7. Hλ as a function of λ in steps S2 and S7, where λ =
λn = λp = λf in step S2 and λ = λn = λp = −λf in step S7.
All simulations are performed in the NPT ensemble at P ∗ = 4.

Fig. 8. Equation of state obtained in steps S3 and S6.

back to pressure P ∗ = 4 (state P6). The Gibbs free energy
difference along these two paths is 0.25NkBT .

Finally, fig. 9 shows the behavior of Hλ as a function of
λ in steps S4 and S5, in this case the free energy variation
along these two paths is −0.30NkBT . Note that this value
is comparable in magnitude to that obtained in steps S1

and S8, since the range of values in the y-axis of fig. 9 is
much larger than that in fig. 6.

We can conclude that the difference in Gibbs free en-
ergy going from state F to state U has comparable con-
tributes from all integration steps. Overall the free energy
difference between these two states is

βΔG

N
=

βG(U)
N

− βG(F)
N

=
β

N

(∫ I

F
Hλdλ +

∫ U

I
Hλdλ

)

= 0.25 ± 0.05, (11)

where in each MC run the error has been carefully esti-
mated using the method of block averages and then the
overall error has been computed by considering error prop-

Fig. 9. Hλ during steps S4 and S5 of thermodynamic integra-
tion.

agation which results from the integrals in eqs. (4) and (3)
evaluated along the reversible path joining states F and U .

It can be seen that the difference is positive, i.e.:

G(F) < G(U) (12)

therefore we conclude that the folded smectic state F
is thermodynamically stable while the unfolded one U is
metastable.

We note that the Gibbs free energy difference obtained
from thermodynamic integration between states F and U
is rather small [38]. For the sake of comparison, the very
small free energy difference between the HCP (metastable)
and the FCC (stable) crystals of hard spheres amounts to
about 0.001NkBT [40–43] and the HCP phase can remain
stable over a very long time [44]. Such a small value of the
free energy difference between F and U states suggests
that a large free energy barrier has to separate these two
states. Within the classical nucleation theory the rate of
nucleation R can be expressed as [45]

R ∝ exp
(
−ΔG∗

kBT

)
, (13)

where

ΔG∗ ∝ γ3

(Δμ)2
, (14)

γ is the surface tension between the two phases F and U
and Δμ = ΔG/N is the difference between the chemical
potential per particle of the two phases. Since in our case
ΔG can be considered small, eq. (14) suggests that a large
free energy barrier ΔG∗ can be expected to separate these
two states, and the nucleation rate in eq. (13) is likely
to be small. Accordingly, if the U phase forms during a
simulation, it will be unlikely for it to undergo a transition
to the stable phase F , as we observed in our simulations.

Now, we would like to estimate this free energy dif-
ference for any other value of the pressure at T ∗ = 0.125
where both phases can be obtained from simulations. To
start, note that, if one has the equation of state for a
given temperature T , the Gibbs free energy of a state
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Fig. 10. Gibbs free energy difference between the Sm-uA and
Sm-fA ΔG as a function of pressure for T ∗ = 0.125 obtained
from eq. (16).

(Pn, T ) can be obtained from that of a state (Po, T ) along
an isotherm by using eq. (3), i.e.:

G(Pn, T )
N

=
G(Po, T )

N
+

∫ ρn

ρo

P (ρ)
ρ2

dρ +
Pn

ρn
− Po

ρo
, (15)

where ρo and ρn are the number densities of the two states
(Po, T ) and (Pn, T ) respectively. From the latter equation
the Gibbs free energy difference between the two smectic
phases for any value of pressure P can be expressed as

ΔG(P )
N

=
ΔG(Po)

N
+

∫ ρu(P )

ρu(Po)

Pu(ρ)
ρ2

dρ+
P

ρu(P )
− Po

ρu(Po)

−
[∫ ρf (P )

ρf (Po)

P f (ρ)
ρ2

dρ +
P

ρf (P )
− Po

ρf (Po)

]
, (16)

where ρu and Pu are the density and pressure of the un-
folded phase obtained from its equation of state and ρf

and P f are the same quantities but for the folded phase.
To perform the integrals in eq. (16) we conveniently fit the
equation of state to a quadratic polynomial. The result-
ing Gibbs free energy difference between the two smectic
phases as a function of the pressure P ∗ is shown in fig. 10.

It can be seen that the free energy difference ΔG in-
creases on increasing P . This behavior can be understood
by considering that the folded configuration of gDNAD
has a smaller excluded volume than the folded one and
the resulting entropic difference scales as ρ2.

Since the Helmholtz free energy is

A = G − PV (17)

we can estimate from G its value at T ∗ = 0.125 on varying
ρ as well as the free energy difference ΔA on changing the
density. The result of these calculations is shown in fig. 11
for a range of concentration where both smectic phases
can exist. As expected, one can conclude that at a given
concentration, where both phases can be obtained from

Fig. 11. Helmholtz free energy difference between the Sm-uA
and Sm-fA as a function of pressure for T ∗ = 0.125. The solid
line (ΔA) is the estimate obtained from G according to eq. (17),
while the dashed line (ΔAex) is the free energy estimate based
on excluded volume effects in eq. (18).

simulations, the Sm-fA phase is stable and the Sm-uA
one is metastable.

Figure 11 shows also that free energy difference A in-
creases on increasing concentration due to excluded vol-
ume effects, thus confirming what observed for ΔG on
changing P .

The free energy Avex(φ, T ), accounting only for ex-
cluded volume effects, can be roughly expressed as fol-
lows [25]:

βAvex

N
=

βAid

N
+ η(φ)

φ

4vhc
vexcl, (18)

where α ∈ {f, u}, Aid is the ideal gas contribution, vexcl

is the average excluded volume in the system and η(φ) is
the Parsons-Lee factor, i.e.

η(φ) =
4 − 3φ

4(1 − φ)2
(19)

which accounts for higher-order terms in the virial ex-
pansion. Using the same method discussed in ref. [5], the
excluded volumes in the smectic phase vf

excl and vu
excl of

perfectly folded and unfolded conformations, respectively,
can be calculated. It turns out that vf

excl = 12.3D3 and
that vu

excl = 17.0D3. If we assume that in a Sm-uA state
all gDNADs are fully unfolded while in a Sm-fA at the
same concentration and temperature they are all fully
folded, one has that vexcl = vu

excl in the unfolded state
and vexcl = vu

excl in the unfolded state. Hence, an esti-
mate of the free energy difference ΔAvex between these
two states can be provided, i.e.

βΔAvex

N
= η(φ)

φ

4vhc

(
vu

excl − vf
excl

)
. (20)

In fig. 11 we show ΔAvex as a function of φ. Although
we obtained eq. (18) by employing the Parsons-Lee ap-
proximation, which is known to be quite crude at larger
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concentrations [25], the values of ΔAvex are comparable
with those obtained from eq. (17), thus suggesting that
excluded volume effects contribute significantly to the sta-
bility of the Sm-fA phase. We also observe that ΔAvex is
expected to overestimate excluded volume effects, since in
the Sm-fA (Sm-uA) only a fraction of gDNADs is fully
folded (unfolded).

In addition, bond formation between gDNADs, which
is neglected in eq. (18), must also contribute to the stabil-
ity of the Sm-fA phase. The reason is twofold, on the one
hand in the Sm-fA phase double bonding between two
gDNADs stabilizes folded conformations. On the other
hand, the aggregation of gDNADs induces the formation
of semi-flexible chains, whose length distribution is ex-
pected to be exponential [25], thus ending up with a poly-
disperse set of chains in the system. As a consequence, the
Sm-uA phase requires a higher entropic cost to form than
the Sm-fA phase.

4 Conclusions

In this work we studied a simple coarse-grained model
of DNA nanonunchakus which has been shown to ex-
hibit both numerically and experimentally a smectic-A
phase [5]. Depending upon the initial configuration used in
the simulations, two different smectic-A phases can be ob-
tained under identical thermodynamic conditions, where
in one phase (Sm-fA) the particles are mostly folded and
in the other (Sm-uA) they are mostly unfolded. In ad-
dition, we found that none of the two phases undergoes
a transition to the other one during the simulation time
span. Therefore, if one prepares the system in a crystalline
state where all gDNADs are mostly folded or mostly un-
folded, two different equations of state are obtained. By
carrying out MC simulations we devised a protocol to
estimate for a given temperature the free energy differ-
ence between any two smectic state points belonging to
these two equations of states at the same concentration or
pressure. In our approach we introduce suitable external
potentials (which induce the formation of “ideal” smec-
tic and nematic states) and interaction potentials (which
force a specific gDNAD conformation and switch off their
attraction), so that the system can go along a suitable
path, joining the two states, whose free energy difference
has to be estimated, without any intervening first-order
phase transition. Our calculations provide evidence that
the folded smectic phase is stable while the unfolded phase
is metastable, thus confirming what proposed in ref. [5].
Due to hydrophobic attraction between blunt ends of
gDNADs, unfolded conformations make smectic-type or-
dering unfavorable, since these interactions would induce
the formation of a polydisperse set of linear semi-flexible
aggregates, thus increasing the entropic cost of forming
a smectic layering. Moreover, an almost fully folded con-
formation of gDNADs suppresses the formation of linear
polydisperse aggregates, as the ones emerging from an un-
folded conformation, and reduces the excluded volume be-
tween gDNADs, so that smectic layering becomes ther-
modynamically more convenient. The present numerical

calculations based on MC simulations confirm this sce-
nario and suggests that the larger driving force towards
the formation of the Sm-fA phase is given by excluded vol-
ume effects. The inability of the system to spontaneously
undergo a transition from the Sm-fA to Sm-uA phase is
possibly ascribed to their small free energy difference.

The numerical protocol based on the thermodynamic
integration proposed here is rather general and it can be
employed to assess the thermodynamic stability of any
thermodynamic phase competing with metastable phases
of similar free energy. When different phases obtained
under the same thermodynamic conditions have a small
free energy difference, by carrying out computer simula-
tions, that start from different initial conditions, all of
such phases can be obtained in principle. Under these cir-
cumstances, it is required to study the thermodynamic
stability of these phases through an affordable approach,
since a spontaneous transition to the most stable phase is
unlikely to occur within the limited simulation time span.
Our protocol overcomes this difficulty by allowing the di-
rect calculation of the free energy difference between any
pair of phases of similar free energy.

We can envisage many applications of our method,
for example by changing the length of the spacer or of
the two sticks which form each gDNADs new mesophases
could emerge and possibly it will be required to verify
their thermodynamic stability. Another system where our
protocol could be applied can be provided by clathrate
hydrates [46,47]. Hydrates clathrates are crystalline
compounds composed of water (host) molecules and gas
(guest) atoms or molecules [48,49]. Clathrate hydrates
of methane are present on earth in permafrost areas and
ocean shelves. They are believed to be the dominant
methane-bearing phase in the nebula from which the
outer planets and satellites are formed, hence their
properties are also needed to model astronomical bodies
in the outer solar system [50]. The interest in these
materials stems also from the risk of their formation in
oil and gas pipelines and their potential application as
gas transportation media in soft conditions, i.e. close to
atmospheric pressure and room temperature. Clathrate
hydrates can be commonly found in two different struc-
tures, which are called type I (sI) and type II (sII) [51].
The unit cell of clathrate sI contains two small dodecahe-
dral water cages and six bigger tetrakaidecahedral cages,
while the unit cell of sII contains 16 512 cages and eight
large hexadecahedral cages (for a graphical representation
of these two structures see fig. 1 in ref. [48]). The two
structures sI and sII are known to have a small free
energy difference [52], hence it would be valuable to
have a convenient method to assess their thermodynamic
stability over a large range of pressures at a given tem-
perature. Our protocol can be in fact used to calculate
the Gibbs free energy difference of these two structures
over a range of pressures and temperatures, where they
can both remain stable in computer simulations.

In conclusion, we are confident that beyond the present
case study our approach could be a valuable tool to study
the thermodynamic stability of phases, which can be ob-
tained from computer simulations.
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