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Abstract. The hard cylinder model decorated with attractive patches proved to be very useful recently in
studying physical properties of several colloidal systems. Phase diagram, elastic constants and cholesteric
properties obtained from computer simulations based on a simple hard cylinder model have been all
successfully and quantitatively compared to experimental results. Key to these simulations is an efficient
algorithm to check the overlap between hard cylinders. Here, we propose two algorithms to check the hard
cylinder overlap and we assess their efficiency through a comparison with an existing method available in
the literature and with the well-established algorithm for simulating hard spherocylinders. In addition, we
discuss a couple of optimizations for performing computer simulations of patchy anisotropic particles and
we estimate the speed-up which they can provide in the case of patchy hard cylinders.

1 Introduction

Coarse-grained models which comprise hard rigid bodies
decorated with attractive sites (also called sticky spots)
have been widely used over the last years to study col-
loidal systems [1–5]. While hard rigid bodies without at-
traction were crucial to assess the theoretical possibility of
entropy-driven phase transitions such as the liquid-to-solid
of hard spheres [6] and isotropic-to-nematic [7,8] ones, ag-
gregation introduces a further level of complexity. Indeed,
attractive interactions between hard particles allow their
self-assembly, i.e. the spontaneous formation through free
energy minimization of reversible aggregates.

A prominent self-assembly process is the formation of
linear aggregates induced by the presence of two attrac-
tive sites on colloidal particles of anisotropic shape. Ex-
amples are provided by micellar systems [9–11], forma-
tion of fibers and fibrils [12–15], solution of short (with
6 to 20 base pairs) [16–18], long (with 102 to 106 base
pairs) [19–22] and gapped [23] B-form DNA duplexes, fila-
mentous viruses [24–27], chromonic liquid crystals [28] and
inorganic nanoparticles [29]. In all these systems linear
aggregates are sufficiently stiff to give rise to liquid crys-
talline (LC) phases, such as nematic, smectic and colum-
nar phases, thus making their phase diagram rather rich.

Many theoretical approaches have been developed to
study the isotropic-nematic transition as a result of re-
versible physical polymerization and collective ordering
into the nematic LC phase in these systems [30–34]. The

� Contribution to the Topical Issue “Advances in Computa-
tional Methods for Soft Matter Systems” edited by Lorenzo
Rovigatti, Flavio Romano, John Russo.

a e-mail: cristiano.demichele@uniroma1.it

hard cylinder (HC) model complemented with two attrac-
tive sites proved to be crucial to assess the validity of these
theories [32, 33] through Metropolis Monte Carlo simula-
tions. The bottleneck of these simulations is the test of
overlap of two hard cylinders, therefore an efficient algo-
rithm to perform this overlap check is key for the efficiency
of these simulations.

After a brief description, in sect. 2.1, of HC mod-
els which we use in the present study, we describe in
sect. 2.2 two novel algorithms for testing HCs overlap.
In sect. 3.1 we assess their consistency and in sect. 3.2
we compare their performance i) with the algorithm pro-
posed in ref. [35] (which is based on the same ideas of the
one used in ref. [36]) and ii) with a standard algorithm to
simulate hard spherocylinders (HSCs). We also illustrate
in sects. 2.3.1 and 2.3.2 two useful tricks, namely bound-
ing boxes (BBs) and multiple linked cell lists (MLLs), for
speeding up simulations of patchy anisotropic particles,
whose performance will be discussed in sect. 3.3. In sect. 4
the conclusions will be drawn.

2 Methods

2.1 Models

In all the simulations which we carried out for testing
BBs and MLLs we used the patchy HC model shown in
fig. 1(a). Cylinders have length L and diameter D and
their aspect ratio is defined as X0 = L/D. Each HC is
also decorated with two attractive sites on its bases. These
two attractive sites are located along the symmetry axis
of the HC at a distance X0D/2 + 0.0091D from its center
of mass.
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Fig. 1. Models used in our MC simulations. The patchy HC
model (a) has been used to check the performance of MLLs
and BBs methods, while HC without patches (b) have been
used to test the efficiency of algorithms A1, A2 and A3.

Sites belonging to distinct particles interact via a
square-well (SW) potential βuSW , such that βuSW =
−βu0, if r < δ and βuSW = 0, if r > δ, where r is the
distance between interacting sites, δ = 0.273D is the in-
teraction range (which corresponds to the diameter of the
yellow spheres in fig. 1(a)) and βu0 is the ratio between
the binding energy and the thermal energy kBT with kB

the Boltzmann constant. We will make use of the adimen-
sional temperature T ∗ = kBT/u0. Note that the patch
position and size ensure that no branching occurs in the
system. In sect. 3.2, where we test the efficiency of the
three algorithms discussed in the present study, we will
employ HC without patches (see fig. 1(b)) to carry out
MC simulations.

2.2 Overlap of hard cylinders

In computer simulations of HCs the most time-consuming
part is the test of their overlap. In the next three sec-
tions we describe three algorithms: a first algorithm (A1)
which is exactly the one proposed in ref. [35] except for
a small fix, a second algorithm (A2) which is a simplified
and faster variant of A1 and, finally, a third algorithm
(A3) where the most time-consuming part of A1 and A2
is completely new.

2.2.1 Algorithm A1

In this section, for reader’s convenience, we outline the al-
gorithm which has been proposed in ref. [35] and which we

Fig. 2. Each HC is made of a rim and two disks, hence three
different possible overlap configurations between two HCs can
be identified: disk-disk (a), rim-disk (b) and rim-rim (c).

implemented as a reference for the two novel algorithms
which we propose in this paper. We also suggest a small
change to the algorithm in ref. [35] to fix convergence prob-
lems which emerged using the original implementation.

Let us consider two hard cylinders of length L and
diameter D, which will be labelled 1 and 2. C1 and C2 will
be their centers of mass and û1 and û2 their orientations.
If HCs are parallel, i.e. if û1 · û2 = ±1, then they overlap
if the following conditions are true:{∣∣ΔC‖

∣∣ < L,

|ΔC⊥| < D,
(1)

where{
ΔC‖ = (C2 − C1) · û1,

ΔC⊥ = (C2 − C1) − |(C2 − C1) · û1| û1.
(2)

Otherwise, if û1 · û2 �= ±1, the overlap test will be
articulated in three main steps, namely:

1) The disk-disk overlap is checked by considering all
the possible pairs of bases of the two cylinders (see
fig. 2(a)).

2) If in the previous step no overlap is detected, one
checks all possible rim-disk overlaps (see fig. 2(b)).

3) If in the previous two steps, no overlap is found, one
has to finally check for rim-rim overlaps (see fig. 2(c)).

Now we describe in details the three steps just enu-
merated.

2.2.2 Disk-disk overlap

Let us consider two disks 1 and 2 of diameter D, whose
centers of mass are D1 and D2. Disk 1 can be any of the
two disks belonging to cylinder 1 and disk 2 can be any
of the two disks of cylinder 2. Each disk lies on a given
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plane and the straight line Γ is the intersection of such
two planes. Be P1 and P2 the two points on Γ which are
closest to D1 and D2, i.e. the two points which can be
obtained by minimizing the quantity |P1 − D1| with the
constraints (P1 − D1) · û1 = 0 and (P1 − D2) · û2 = 0,
which yields:

P1 =
1

|N|2 [(D1 · N)N + (D1 · û1) (û2 ∧ N)

− (D2 · û2) (û1 ∧ N)] , (3)

P2 =
1

|N|2 [(D2 · N)N + (D1 · û1) (û2 ∧ N)

− (D2 · û2) (û1 ∧ N)] . (4)

A necessary condition for the two disks to overlap is the
following one:

|P1 − D1| < D/2,
(5)

|P2 − D2| < D/2.

Note that both conditions in eqs. (5) must be true. If both
conditions in eqs. (5) occur, then the straight line Γ inter-
sects the circumference of disk 1 in two points symmetri-
cally with respect to segment P1D1, choose one of these
two points and call it S1. Similarly, the straight line Γ
intersects the circumference of disk 2 in other two points
symmetrically with respect to segment (P2 −D2). Let us
pick one of this two points and call it S2. The two disks 1
and 2 overlap if and only if the following condition occurs:

|P1 − P2| ≤ |S1 − P1| + |S2 − P2| , (6)

where

|S1 − P1| =

√
D2

4
− |P1 − D1|2,

(7)

|S2 − P2| =

√
D2

4
− |P2 − D2|2.

2.2.3 Disk-rim overlap

If no disk-disk overlap is found, one has to check for rim-
disk overlaps. Let us consider the disk 1 whose center is
D1 and the rim of cylinder 2. Be U the point on the axis
of cylinder 2 which is at the closest distance from D1, i.e.

U = C2 + [(D1 − C2) · û2] û2. (8)

There is no overlap if either the sphere enclosing disk 1
does not intersect the rim of cylinder 2, i.e. |D1−U| > D
or the center of the disk is located inside the region which
can be obtained by prolonging cylinder 2 along its axis,
i.e. if the following conditions are fulfilled:⎧⎪⎪⎨

⎪⎪⎩
|D1 − U| ≤ D

2
,

|(D1 − C2) · û2| >
L

2
.

(9)

On the contrary, one has an overlap if the center of disk
1, D1, is inside cylinder 2, i.e.⎧⎪⎪⎨

⎪⎪⎩
|D1 − U| ≤ D

2
,

|(D1 − C2) · û2| ≤
L

2
.

(10)

If checks done so far do not establish whether the two
cylinders overlap or not, an iterative scheme can be used.
Be A a point on the axis of cylinder 2 and T a point
onto the circumference of disk 2, such that the distance
between A and T is at a minimum. T can be determined
by minimizing the quantity |T − A| with the constraints
|T − D1|2 = D2

4 and (T − D1) · û1 = 0, thus obtaining:

T = D1 ±
D

2
A − D1 − [(A − D1) · û1]û1√

|(A − D1) ∧ û1|2
. (11)

Hence, there is overlap if:⎧⎪⎪⎨
⎪⎪⎩

∣∣T‖
∣∣ ≤ L

2
,

|T⊥| ≤
D

2
,

(12)

where
T‖ = (T − C2) · û2

and
T⊥ = (T − C2) − [(T − C2) · û2] · û2.

The latter condition means that there is overlap if and
only if point T is inside cylinder 2. An iterative scheme to
find A and T is the following one:

1) An initial guess Ai for A is calculated as follows: Ai =
C2 − [(C2 − D1) · û2] û2. In passing we note that in
ref. [35] a different and simpler guess for A is used,
which anyway does not ensure a proper convergence of
this iterative scheme.

2) From eq. (11) one defines the points T+ and T− as
follows:

T+ = D1 +
D

2
[A − D1 − ((A − D1) · û1)û1]√

|(A − D1) ∧ û1|2
,

T− = D1 −
D

2
[A − D1 − ((A − D1) · û1)û1]√

|(A − D1) ∧ û1|2
.

3) If T+⊥ < T−⊥, then one sets Tnew = T+, otherwise if
T+⊥ > T−⊥, then Tnew = T−;

4) A new value of A is set, i.e. A = Tnew‖û2 +C2, where
Tnew‖ = (Tnew − C2) · û2;

5) Continue starting from step 2) until the variation of
|T − A| is less than a given threshold.

2.2.4 Rim-rim overlap

If previous checks do not establish or exclude the overlap
of the two cylinders, rim-rim overlaps must be checked. Be
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V1 and V2 two points lying on the axis of cylinder 1 and
on that of cylinder 2, respectively, such that |V1 − V2|
is at a minimum. These two points can be calculated by
solving analytically the following system of equations:{

(V1 − V2) · û1 = 0,

(V1 − V2) · û2 = 0,

from which one obtains that

V1 (λ1) = C1 + λ1û1,

V2 (λ2) = C2 + λ2û2,

where, if C12 ≡ C1 − C2,

λ1 =
1

(û1 · û2)2 − 1
[C12 · û1 + (C12 · û2) (û1 · û2)] ,

λ2 =
1

(û1 · û2)2 − 1
[−C12 · û2 + (C12 · û2) (û1 · û2)] .

It can be seen that rim-rim overlap occurs if and only if:

|V1 − V2| ≤ D,

|λ1| ≤
L

2
,

|λ2| ≤
L

2
.

2.2.5 Algorithm A2

Rim-rim and disk-disk overlap checks are carried out as in
algorithm A1, while we suggest some modifications of the
disk-rim overlap check, which is the most time-consuming
part of algorithm A1.

First we note that in the rim-disk overlap check of
A1 both disks of each cylinder are checked for a possible
overlap with the rim of the other cylinder. Anyway, one
can check only the disk which is closest to the symme-
try axis of the other cylinder, thus halving the number
of checks to carry out. We also suggest to change the or-
der of checks as follows: first disk-disk and rim-rim checks
are performed and afterwards the disk-rim one. The lat-
ter order of overlap checks could be particularly benefi-
cial in denser phases, such as nematic, smectic or colum-
nar ones, where rim-rim and disk-disk overlaps are more
likely. Changing the order of disk-disk and rim-rim over-
lap checks does not provide any benefit though. Finally, we
propose a simplification of the iterative procedure which
is used in the disk-rim overlap check of A1.

As in the disk-rim overlap check of algorithm A1 we
first verify whether conditions in eqs. (9) and (10) are
fulfilled, if not we proceed as described in the following.
Let us consider one of the two disks of cylinder 1 and
the rim of cylinder 2, we propose the following simpler
approach to check their overlap (see fig. 3):

1) Calculate A0 = C2 +[(D1 −C2) · û2] û2. Set Ai = A0.

Fig. 3. Graphical representation of the first two steps of the
iterative procedure for checking the disk-rim overlap in algo-
rithm A2. An initial guess A0 is calculated by which point To

on the disk is built. From To one calculates Ai on the cylinder
axis and then by using Ai one builds a new point Tn on the
disk.

2) Calculate the component J‖ of vector J = Ai − D1

onto the plane of disk 1, i.e.

J‖ = J − (J · û1) û1.

3) If we have already calculated Tn once, then set To =
Tn.

4) Calculate the point Tn as the intersection of vector J‖
applied to C1 with the circumference of disk 1, i.e.

Tn = D1 +
1
2
DJ‖/|J‖|. (13)

5) If point Tn does not vary appreciably from To, i.e.

max
α

{
|Tn,α − To,α|

max{1, |Tn,α|}

}
≤ ε,

where Tn,α (To,α) is the component α (with α ∈
{x, y, z}) of vector Tn (To), then terminate, since con-
vergence has been reached (in our simulations we used
ε = 10−14).

6) Set Ai as the intersection of the line which passes
through Tn and which is perpendicular to û2, i.e.

Ai = C2 + û2 (Tn − C2) · û2. (14)

7) Go to step 2).

After convergence is reached one has to check whether
the point Tn is inside cylinder 2, i.e.{

|Tn − û2 (Tn − C2) · û2| ≤ D/2,

|(Tn − C2) · û2| ≤ L/2.
(15)

If conditions in eqs. (15) are fulfilled then the two cylinders
overlap. We note that this iterative procedure is equivalent
to the one in algorithm A1, if one considers only T+ in
steps 2) and 3) of the disk-rim overlap check of A1. Indeed,
solution T− corresponds to a maximum of the distance
and it can be safely discarded in each iteration as we do.
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2.2.6 Algorithm A3

The last algorithm is identical to algorithm A2 except that
we propose a different and faster method to check for the
disk-rim overlap which is based on the explicit calculation
of the intersection points of a disk and a rim.

Given two cylinders 1 and 2 of the same diameter D
whose centers are C1 and C2 and whose orientations are
û1 and û2, consider one of the two disks belonging to
cylinder 1, whose center is D1, and the rim of cylinder 2.
An intersection point r = (x, y, z) of disk and rim must
fulfill the following conditions:

|r − D1| = D/2,

(r − D1) · û1 = 0,

|r − C2 − û2 (r − C2) · û2| = D/2. (16)

To simplify these equations we consider a new reference
system with the origin in the center of the disk whose axes
x̂′, ŷ′ and ẑ′ are built as follows:

1) Axis x̂′ is perpendicular to the disk, i.e. x̂′ = û1.
2) Axis ŷ′ is obtained with the following procedure: if

Ai is the point calculated in step 1) of the iterative
procedure of algorithm A2, i.e.

Ai = C2 + [(D1 − C2) · û2] û2,

then if J = Ai − D1 − û1(Ai − D1) · û1, one sets

ŷ′ =
J
|J| .

3) Finally, axis ẑ′ is the cross product of x̂′ and ŷ′, i.e.

ẑ′ = x̂′ ∧ ŷ′.

In the new reference system one has C2 =
(C2,x′ , C2,y′ , C2,z′), û2 = (u2,x′ , u2,y′ , u2,z′) and
r = (x′, y′, z′). Equations (16) reduce to

y′2 + z′2 =
D2

4
, (17)

c0y
′2 + c1z

′2 + c2y
′z′ + c3 + c4y

′ + c5z
′ = 0, (18)

where

c0 = 1 − u2
2,y′ ,

c1 = 1 − u2
2,z′ ,

c2 = −2u2,y′u2,z′ ,

c3 = C2
2,x′(1 − u2

2,x′) + C2
2,y′ c0 + C2

2,z′c1

−2 (C2,x′C2,y′u2,x′u2,y′ + C2,x′C2,z′u2,x′u2,z′

+C2,y′C2,z′u2,y′u2,z′) − D2

4
,

c4 = 2 (C2,z′u2,y′u2,z′ + C2,x′u2,x′u2,y′ − C2,y′ c0),
c5 = 2 (C2,x′u2,x′u2,z′ + C2,y′u2,y′u2,z′ − C2,z′ c1).

Note that eq. (17) is that of a circumference of radius D/2
lying on the y′z′-plane and centered in the origin of the

reference system, while eq. (18) is that of a generic ellipse
which lies on the y′z′-plane too. If we scale the ŷ′ and ẑ′
axis by a factor D/2, i.e. we apply the transformation

y′′ =
y′

D/2
,

z′′ =
z′

D/2
,

then eqs. (17) and (18) become:

y′′2 + z′′2 = 1, (19)
d0y

′′2 + d1z
′′2 + d2y

′′z′′ + d3 + d4y
′′ + d5z

′′ = 0, (20)

where

d0 = c0(D/2)2,
d1 = c1(D/2)2,
d2 = c2(D/2)2,
d3 = c3,

d4 = c4(D/2),
d5 = c5(D/2).

Now, if we solve for y′′ in eq. (19) and we plug the resulting
expression of y′′ in eq. (20), one obtains

y′′ =
(d0 − d1)z′′2 − d5z

′′ − d0 − d3

d2z′′ + d4
, (21)

q4z
′′4 + q3z

′′3 + q2z
′′2 + q1z

′′ + q0 = 0, (22)

where

q0 = d2
0 + 2d0d3 + d2

3 − d2
4,

q1 = −2d2d4 + 2d0d5 + 2d3d5,

q2 = −2d2
0 + 2d0d1 − d2

2 − 2d0d3 + 2d1d3 + d2
4 + d2

5,

q3 = 2d2d4 − 2d0d5 + 2d1d5,

q4 = d2
0 − d0d1 + d2

1 + d2
2.

It is well known that the analytic solution of eq. (22) is
numerically inaccurate due to roundoff errors [37,38] and
as such it cannot be used in practice. At present, several
alternative quartic solvers exist, which are quite fast and
numerically robust [39–42]. In the present work, build-
ing on the quartic solver proposed in ref. [41], we devel-
oped our own quartic solver which proved to be very fast
and resilient to numerical errors. It will be thoroughly de-
scribed in a forthcoming publication where we will com-
pare it against other solvers. The efficiency of the quartic
solver is rather important for achieving a good perfor-
mance. The use of the algorithm described in ref. [40] or
the one based on the calculation of eigenvalues of a com-
panion matrix [39] results in a slowing-down of around
30% and 60%, respectively.

Before proceeding to the calculation of the roots of
eq. (22) one has to check the value of q4. If q4 = 0 the disk
axis is parallel to the rim axis, i.e. cylinder 1 and 2 are
parallel. In this case cylinder 1 and 2 overlap if and only



Page 6 of 10 Eur. Phys. J. E (2018) 41: 51

if the conditions in eq. (1) are fulfilled. If q4 �= 0, we can
proceed with calculating the roots of eq. (22) through the
quartic solver. If there are no real roots, disk and rim do
not intersect, otherwise one needs to check whether any
intersection point belongs to the cylinder 2. If this is the
case, the two cylinders 1 and 2 overlap.

2.3 Some tricks of the trade

Here we will describe two tricks which significantly speed-
up simulations of patchy HCs: MLLs and BBs. Before en-
tering into the details of these two methods, it is useful
to define the speed-up SO of some optimization O (where
O can be either MLL or BB) as the ratio of the running
time τ�O with optimization O disabled over the running
time τO with such optimization enabled, i.e.

SO ≡ τ�O
τO

. (23)

In the following two sections we illustrate MLLs and BBs
methods and we also discuss the X0- and φ-dependence of
SMLL and SBB .

2.3.1 Multiple linked cell lists

Linked cell lists (LL) as described in textbooks such as
refs. [43, 44] are used to avoid unnecessary distance cal-
culations by partitioning the simulation box into a set
of cubic cells CHC , where each cell encloses completely a
particle. In the present case a cubic cell has to contain
entirely each patchy HC. For each sticky spot of a given
HC, one has to calculate the interaction potential βuSW

with every sticky spot belonging to all other HCs within
the same cell or within the 26 adjacent cells. Since the
range of attraction of interacting sites of patchy colloids
(e.g., see refs. [23, 30, 33]) is typically much smaller than
HC dimensions, the simulation box can be partitioned into
cubic cells CHC and CSS of two different sizes: one for HCs
and the other one much smaller for sticky spots. Each cu-
bic cell of CHC contains completely an HC, while each
cubic cell of CSS has a size just greater than the range of
attraction of attractive sites. By using these two different
partitionings CHC and CSS of the simulation box, two sep-
arate linked cell lists are built for HCs and sticky spots.
As in ref. [45] we will refer to this approach as the MLLs
method. To understand how much MLLs can be beneficial
to the simulation performance consider the model shown
in fig. 1(a), where an HC is decorated with two small sticky
spots on its two bases. If only one set of cubic cells is used,
the minimum size LHC of each cubic cell into which the
simulation box is partitioned for building the linked cell
lists of HCs has to be:

LHC =
√

4D2 + (X0D + ΔL)2, (24)

where ΔL ensures that both HCs and yellow spheres (see
fig. 1(a)) can be contained entirely inside a cubic cell. The

number of attractive sites nSS within a cubic cell is

nSS ≈ 2L3
HC

φ

πX0D3/4
(25)

and in the limit of large or small aspect ratio, one has

nSS ≈

⎧⎪⎪⎨
⎪⎪⎩

8φ

π
X2

0 , if X0 � 1,

φ

π

1
X0

, if X0 	 1.

(26)

For a sticky spot belonging to a given HC the number
of sticky spots for which βuSW has to be calculated is
27nSS without using MLL. On the contrary, if MLLs are
employed this number of calculations reduces to n0

SS ≈ 1,
which does not depend on X0, i.e. n0

SS = n0
SS(φ). Since

the speed-up SMLL is expected to be roughly proportional
to nSS/n0

SS , i.e.

SMLL ∝ nSS(φ,X0)
n0

SS(φ)
(27)

by plugging eq. (26) into eq. (27) one obtains that

SMLL ∝

⎧⎪⎪⎨
⎪⎪⎩

φ

n0
SS(φ)

X2
0 , if X0 � 1,

φ

n0
SS(φ)

1
X0

, if X0 	 1.

(28)

2.3.2 Bounding boxes

The check of HCs overlap is rather time consuming, hence
it would be advisable to reduce as much as possible the
number of these checks in a simulation. A possible strat-
egy is to surround each HC with a bounding neighbor-
hood having a similar shape as the HC and to check HCs
overlap only between HCs having overlapping bounding
neighborhoods.

In ref. [46] it has been suggested to build an oriented
BB around each HC and to test HCs overlap only if their
BBs overlap as shown in fig. 4. This method is rather
effective because the overlap between two parallelepipeds
can be checked very efficiently by using the Separating
Axis Theorem [47].

To estimate the speed-up SBB consider an HC labelled
with A within a cubic cell c ∈ CHC . The number of HCs
within c and within all cubic cells adjacent to c is equal
to 27nSS/2. Without BBs one has to check the overlap
between A and all the 27nSS/2 neighbor HCs. If BBs are
used, the number of overlap checks reduces to n0

BB which
can be assumed to depend only on φ. Hence, SBB can be
estimated as follows:

SBB ∝ nSS(φ,X0)
n0

BB(φ)
. (29)
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Fig. 4. Bounding boxes surrounding two hard cylinders. Since
the two BBs do not overlap, the overlap check between HCs
has not to be performed in this case.

By plugging eq. (26) into eq. (29), as with MLLs for large
and small aspect ratio, we can expect the following limit-
ing behavior of SBB :

SBB ∝

⎧⎪⎪⎨
⎪⎪⎩

φ

n0
BB(φ)

X2
0 , if X0 � 1,

φ

n0
BB(φ)

1
X0

, if X0 	 1.

(30)

Boxes which are enclosed in the cylinders can be used to
perform a fast overlap pre-check, where two HCs overlap
if the enclosed boxes overlap. We make also use of this
optimization in the simulations performed in this work.

3 Results

In this section we show the results for all the tests which
we carried out to evaluate the consistency and efficiency of
algorithms A1, A2 and A3 discussed above and of MLLs
and BBs methods. All simulations have been carried out
on a Linux server based on Intel Xeon E5-4620 v2 2.60GHz
octa-core processor. The code has been compiled with gcc
version 4.8.4 using -O3 and -ffast-math optimization flags.

3.1 Consistency of algorithms A1, A2 and A3

To assess the consistency of the three algorithms discussed
in sect. 2.2, we performed three NTV MC simulations in
the isotropic phase of N = 980 patchy HCs (as in fig. 1(a))
with X0 = 0.31, at φ = 0.273 and T ∗ = 0.5 using the three
algorithms A1, A2 and A3. These simulations, which used
the same pseudo-random sequence, lasted 5×107 MC steps
starting from the same initial configuration. If algorithms
A1, A2 and A3 consistently give the same result for every
overlap check of HCs which occurs during the simulation,
one must expect the same energy values throughout the
whole simulation.

Figure 5 shows the potential energy V as a function
of MC steps for algorithms A1, A2 and A3. It can be
seen that the energy obtained by using the three different
algorithms is the same over the whole simulation.

0 1 2 3 4 5

MC steps [ ×10
7
 ]

-140

-120

-100

-80

V
/u

0

A1
A2
A3

Fig. 5. Energy during three MC simulations of 5 × 107 MC
steps carried out with the patchy HC model for the three algo-
rithms A1 (black straight line), A2 (red crosses) and A3 (blue
circles).

3.2 Performance of algorithms A1, A2 and A3

Having assessed the consistency of the three algorithms
we proceed with evaluating their performance. We carried
out NVT MC simulations with N = 1000 HCs without
patches (as in fig. 1(b)) which lasted 2 × 105 MC steps
and we measured their running time τAα with α = 1, 2, 3.
The relative efficiency of algorithm A2 against A1 and of
algorithm A3 against A1 will be quantified by τA1/τA2

and τA1/τA3, respectively.
Figure 6(a) shows τA1/τA2 while fig. 6(b) shows

τA1/τA3 and it can be seen that both algorithms A2 and
A3 provide a significant speed-up compared to A1 at small
elongations. At large elongation the most likely overlap is
of rim-rim type (see fig. 2(c)) and, since the same method
is used in all these algorithms to detect such overlaps, the
same performance for all of them is expected. Remark-
ably, algorithm A3 is more than 100% faster than A1 at
small elongations. In fig. 6 τA2 and τA3 are also shown
as insets of panel (a) and (b), respectively, to provide in-
formation about real computational costs of simulations.
In many past numerical studies HSCs [48–51] have been
preferred to HCs because of an easier implementation of
the code and of better computational performance. Here,
we compare simulations of HCs (using algorithms A2 and
A3) against simulations of HSCs. The overlap algorithm
for HSCs is the one proposed in ref. [52] and the aspect
ratio of an HSC of diameter D and length L of its cylin-
drical part is defined as X0 = (L + D)/D. We simulate
N = 1000 HCs and HSCs in the canonical ensemble for
2 × 105 MC steps at concentrations φ = 0.10, 0.20, 0.30
and for several aspect ratios ranging from 1.4 to 5. Fig-
ure 7 shows τA2/τHSC (a) and τA3/τHSC (b), where τHSC

is the running time for HSCs, as a function of X0 for
the three different volume fractions studied. We note that
the efficiency of both algorithms A2 and A3 compared to
HSCs (i.e. τA2/τHSC and τA3/τHSC) weakly depends on



Page 8 of 10 Eur. Phys. J. E (2018) 41: 51

0.25 0.5 1 2 4
X

0

0.8

1

1.2

1.4

1.6

1.8

2

2.2

τ A
1/τ

A
2

φ=0.10
φ=0.20
φ=0.30

0.25 0.5 1 2 4
X

0

0
0.5

1
1.5

2
2.5

3

τ A
2 [

 1
03 s 

]

(a)

0.25 0.5 1 2 4
X

0

1

1.5

2

2.5

3

τ A
1/τ

A
3

φ=0.10
φ=0.20
φ=0.30

0.25 0.5 1 2 4
X

0

0
0.5

1
1.5

2
2.5

3

τ A
3 [

 1
03 s 

]

(b)

Fig. 6. Performance comparison of algorithm A2 (a) and A3
(b) with A1 for φ = 0.10, 0.20, 0.30 as a function of the aspect
ratio X0. The insets show τA2 and τA3, i.e. the computational
cost in seconds for performing the simulations.

the volume fraction. The X0-dependence of τA2/τHSC and
τA3/τHSC is rather different instead. In fact, τA2/τHSC de-
pends significantly on the aspect ratio X0 increasing up
to 3 on decreasing X0, as can be seen from fig. 7(a). We
conclude that the simulation of HCs with algorithm A2
becomes much less efficient for short elongations in com-
parison with HSCs. On the contrary, the efficiency of al-
gorithm A3 compared to HSCs (i.e., τA3/τHSC) exhibits
no significant X0-dependence. As shown in fig. 7(b) al-
gorithm A3 is just 1.5–2 times slower than HSCs for all
investigated aspect ratios. In this figure, as an inset, we
show τHSC so that the real computational cost in seconds
of the HSCs simulation can be conveniently quantified.

3.3 Performance of MLLs and BBs methods

To test the performance of BBs and MLLs methods we
simulated N = 1000 patchy hard cylinders (as in fig. 1(a))
in a cubic box with periodic boundary conditions using a
standard canonical (NVT) Metropolis MC.
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H
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H
SC
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φ=0.20
φ=0.30

1 2 3 4 5
X

0

0

0.5

1

1.5

τ H
SC

 [
 1

03 s 
]

(b)

Fig. 7. Performance comparison of algorithm A2 (a) and A3
(b) with HSCs for φ = 0.10, 0.20, 0.30 as a function of the
aspect ratio X0. The inset in panel (b) shows τHSC , i.e. the
computational cost for carrying out the simulation of HSCs in
seconds.

Figure 8(a) shows the speed-up SMLL which can be
obtained by using MLLs in a simulation of patchy HCs
for φ = 0.10, 0.20, 0.30 as a function of X0 at T ∗ = 1.
Although the speed-up SMLL is far from the limiting be-
havior in eq. (28), it can be seen that SMLL increases on
either increasing X0 for X0 > 1 or on decreasing X0 for
X0 < 1 as expected. We note also that SMLL is almost
independent of φ. An explanation for this behavior is that
by increasing the volume fraction from 0.10 to 0.30 n0

SS(φ)
in eq. (27) increases, thus making the speed-up almost in-
dependent of φ.

Figure 8(b) shows the speed-up SBB provided by BBs
as a function of X0 for φ = 0.10, 0.20, 0.30. As was with
MLL, according to eq. (30) the speed-up SBB increases on
either increasing X0 for X0 > 1 or on decreasing X0 for
X0 < 1. Moreover, we observe no dependence of SBB on
volume fraction. This behavior can be explained again by
an increase of n0

BB(φ) in eq. (29) on increasing φ, which
counterbalances the speed-up increase provided by the use
of BBs.
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Fig. 8. Speed-up SMLL obtained by using MLL (a) and speed-
up SBB obtained by using BB (b) for φ = 0.10, 0.20, 0.30 as a
function of the aspect ratio X0.

4 Conclusions

In this paper we propose two novel algorithms (A2 and
A3) for testing the overlap of two HCs. Algorithm A2
is a more efficient variant of the algorithm proposed in
ref. [35], while algorithm A3 features a completely differ-
ent and faster rim-disk overlap check, which is based on
the solution of a quartic equation. We assess the efficiency
of these algorithms by comparing them with the algorithm
A1 and with HSCs. With respect to algorithm A1, algo-
rithm A3 turned out to be up to 2.5 faster, while algorithm
A2, even if it is a bit less efficient than algorithm A3, has
the advantage of being easier to implement. In comparison
with HSCs algorithm A3 is less than twice as slow, thus
making the simulation of HCs almost on a par with those
with HSCs.

We also describe and test a couple of optimizations
which can be used to speed-up the simulation of HCs,
namely MLLs and BBs. Patchy HCs can take a signifi-
cant advantage from MLLs where separate linked cell lists
are built for the attractive sites which decorate the HC.
On the contrary, BBs can be used both with and without
patches and provide a great speed-up too.

Very recently HCs have been used as a very effective
coarse-grained model of DNA duplexes [23, 30, 33]. Our
algorithms and optimizations provide a valuable tool to
ease the study of these systems via MC simulations. An-
other example for which our numerical techniques could
be very beneficial is provided by chromonic liquid crys-
tals. Chromonic liquid crystals, such as sunset yellow
(SSY) [53] or disodium cromoglycate (DSCG) [54,55], are
constituted of disk-like particles which form linear aggre-
gates by reversible polymerization due to the attractive
(stacking) interaction between their bases. In particular
the aggregate structure and stacking energy of SSY have
been rather well characterized [56–62]. A SSY molecule
can be appropriately modeled as a thick disk of length L
and diameter D decorated with two attractive sites, i.e.
as the patchy disk shown in fig. 1(a). Experimental val-
ues of the elastic properties and phase diagram of SSY
are available [53, 60]. To grasp a deeper understanding of
these experimental results, computer simulations could be
carried out by using the patchy HC model and thus fully
exploiting all the techniques which have been discussed in
the present paper.

We note that algorithms A1, A2 and A3 can be
straightforwardly generalized to simulate a mixture of
hard cylinders of different aspect ratio and/or size, thus
making their applicability rather wide in soft-matter
physics. Furthermore, the use of BBs and MLLs is not re-
stricted to HC model, since they can be also conveniently
employed in simulations of patchy particles of arbitrary
shape. Furthermore, in the case of more attractive or mul-
tiple bonding, which is a rather common situation in as-
sociating fluids [63, 64], we expect that, even if absolute
computational timing increases, the speed-up achieved by
the techniques described in the present paper is not sig-
nificantly affected.

Finally, it is worth observing that several methods for
collision detection, which have been specifically developed
for computer graphics or robotics [47, 65, 66], could be in
principle adopted for testing HCs overlap. Anyway, it is
not clear whether these approaches can be more efficient
than the algorithms which have been discussed in this pa-
per and it would be very interesting to carry out a careful
comparison of all these methods.
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