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Abstract. Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible
chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A
minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively
studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly
capture the physical properties of these self-assembly–driven liquid crystals. Here, we investigated a simpler
model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but
which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains.
For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with
theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been
greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess
a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to
properly model particle orientation in the presence of aggregation, that has not been properly checked yet.

1 Introduction

Self-assembly, i.e. the reversible aggregation of basic
building blocks, plays a central role in material science,
soft-matter and biophysics [1–3]. In particular, in many
systems, such as micelles [4–6], fibers and fibrils [7–10],
aqueous solutions of short (nano) [11–13] and long B-
DNA [14–17], G-quadruplexes [18], chromonics [19–23],
and colloidal polymers [24], linear semi-flexible chains
form as a result of reversible aggregation. This ensem-
ble of semi-flexible chains, if sufficiently concentrated, can
undergo a transition from an isotropic to a self-assembly–
driven nematic phase and by further increasing the con-
centration to other liquid-crystalline phases [7, 11, 25, 26].
To gain some insight into the physical mechanisms behind
the formation of these lyotropic liquid crystals as a result
of self-assembly of their constituent particles, several the-
oretical approaches have been proposed in the past [5,
27–32]. In all these studies the crucial role of polydisper-
sity, particle shape and chain flexibility unambiguously
emerges. In ref. [33] self-assembling patchy hard cylinders
—intended as a minimalist modeling of self-assembly–
driven liquid crystals of particles with anisotropic shape—
have been studied and compared to a theoretical approach
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which has been proposed by one of the two authors of the
present manuscript [31]. Bent hard cylinders have been
also investigated in ref. [34], where the degree of bend-
ing plays the role of an effective persistence-length and
theoretical predictions, that have been made by using the
same aforementioned approach, nicely match numerical
data. These studies elucidated how the physical proper-
ties of these systems can be related to polydispersity, par-
ticles shape and chain flexibility. Here, we investigate an
even simpler system, i.e. hard spheres decorated with at-
tractive interaction sites according to the Kern-Frenkel
(KF) model [35]. The physical properties of bifunctional
patchy spheres in the isotropic phase have already been
fully understood both theoretically [36–39] and numer-
ically [40–42], anyway a careful study of the isotropic-
nematic (IN) transition has been attempted only for very
stiff chains of bifunctional spheres [28, 29] and in lat-
ter studies numerical results were compared with a semi-
phenomenological theoretical approach which was not able
to capture some peculiar features of self-assembly–driven
liquid crystals [33]. The present model is more reminis-
cent of reversible polymers than chromonic liquid crys-
tals, such as those obtained from DNA duplexes, fibrils,
dyes (SSY or DCSG) or G-quadruplexes, because the ag-
gregating units have no shape anisotropy. Hence, it is not
obvious whether the theory, which reproduces numerical
data and experiments for cylinder-like and disk-like par-
ticles [31, 33, 43, 44], can still offer a valid description of
the present system. For example, in ref. [45] it is shown
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that the Parson-Lee decoupling approximation, which is
exploited also in the theory developed in ref. [31], does
not provide a good description of the IN phase transition
for linear tangent hard-sphere chains (LTHSCs) compris-
ing 7 tangentially bonded segments. A further motivation
for studying both numerically and theoretically the phase
diagram of bifunctional patchy spheres can be rooted in
the fact that the design of bifunctional colloidal parti-
cles of spherical shape, which can self-assemble into semi-
flexible reversible polymers and thus give rise to nematic
liquid crystals, is surely not out of reach in the next fu-
ture [46–54]. With this work we aim to provide predic-
tions and guidance for these possible future experimental
studies.

We will show that, despite its simplicity and the lack
of shape anisotropy of aggregating monomers, this system
can still undergo an IN transition, whose phase bound-
aries exhibits a clear reentrant behavior in the phase di-
agram as already observed in bifunctional hard cylinders,
DNA duplexes and chromonics [31, 33, 44, 55]. Moreover,
the theoretical treatment, which is used in the present
work, although greatly simplified with respect to the ones
used in previous studied, proved to be in good agreement
with numerical results. On top of this we provide in this
work a careful check of an important hypothesis used in
the theory, i.e. the assumption that the orientational dis-
tribution of monomers can be drawn from the Onsager
trial function [56], which is a valid modeling of the orien-
tational distribution of non-aggregating anisotropic parti-
cles [57, 58]. This hypothesis, although rather reasonable,
has not been directly verified in these systems yet.

The manuscript is organized as detailed in the follow-
ing. In sect. 2 we describe the model which we used in
the Monte Carlo (MC) simulation and we provide some
details of the theory. We also discuss the numerical tech-
niques used to trace the phase boundaries of the isotropic-
nematic transition. In sect. 3 we show the results obtained
from computer simulations in comparison with theoreti-
cal predictions. Finally, in sect. 4 the conclusions will be
drawn.

2 Methods

2.1 Model

In this paper we study hard spheres of diameter D deco-
rated with 2 attractive sites (also called “sticky patches”)
as illustrated in fig. 1. These attractive sites on particles
1 and 2 interact via a KF potential [35]:

VKF (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−u0, if

⎧
⎪⎨

⎪⎩

D < r < D + δ and

cos(θ1) > cos(θmax) and

− cos(θ2) > cos(θmax),

0, otherwise,
(1)

where θ1 and θ2 are the angles between the directions of
the site on particle 1 and 2, respectively, and vector r

Fig. 1. The model of hard spheres with KF patches. (a) Illus-
tration of a particle and its KF patches. (b) In 2D, an example
of 2 bonded particles with explanations of the parameters of
the model; note that the two bonding patches (yellow spherical
truncated cones) overlap and the vector r, joining the centers
of 2 particles, crosses both caps.

points from the center of particle 1 to that of particle 2;
δ and θmax are the parameters of the potential that are
explained in fig. 1(b). One can enforce the rule of no more
than 1 bond per patch by imposing the following condition
on the angle θmax for a particular value of δ:

sin (θmax) ≤ [2 (1 + δ/D)]−1
. (2)

A nice feature of the KF interaction potential is that
it offers the flexibility to adjust bonding volume and
persistence length independently. To study the isotropic-
nematic transition we set δ = 0.546D and cos(θmax) =
0.9462, which results in maximum bonding volume and in
a persistence length lp = 18.35 in monomers unit.

In eq. (1) u0 is the binding energy and in the following
we will make use of the adimensional temperature T ∗ =
kBT/u0, where kB is the Boltzmann constant. Here, as in
previous studies on self-assembly–driven liquid crystals,
u0 does not depend on the aggregate size, i.e. the self-
assembly process is assumed to be isodesmic [59,60].

2.2 Monte Carlo simulations

We use the Kofke thermodynamics integration (KI) [61–
63] to build coexistence lines over a quite wide range of
temperatures. The KI method is based on the numeri-
cal integration of the Clausius-Clapeyron (CC) differential
equation, i.e.

(
d lnP

dβ

)∣
∣
∣
∣
coex

= − Δh

βPΔv
, (3)

where P is the pressure of the system, Δh is the enthalpy
per particle difference between the two phases, and Δv is
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their volume per particle difference. For each integration
step over β = 1/kBT , two separate Monte Carlo (MC)
simulations in the NPT ensemble are carried out for the
two coexisting phases, from which an estimate of Δh and
Δv and thus of a new value of pressure P at coexistence
is obtained (see the Electronic Supplementary Material
(ESM) for further details on the method). For NPT MC
simulations we used N = 6000 particles and we numeri-
cally integrate over temperature the CC equation starting
from T ∗ = 0.130 up to T ∗ = 0.165 and down to T ∗ = 0.12.
The integration of the CC differential equation in eq. (3)
requires giving some initial condition, i.e. an initial es-
timate of coexistence densities at a given temperature.
These initial coexistence densities have been estimated by
successive umbrella sampling (SUS) MC simulations car-
ried out at T ∗ = 0.130.

The SUS method provides a convenient way to effi-
ciently calculate P (N), i.e. the probability P (N) of find-
ing N particles at fixed volume, temperature and chem-
ical potential, i.e. in the grand-canonical (GC) ensem-
ble [64, 65]. Within the SUS approach the investigated
range of particles is partitioned into several overlapping
regions and for each of them an independent GC-MC sim-
ulation is performed in parallel with the others. In our GC-
MC simulations the number of particles varies between
4500 and 7380 (see the ESM for more details). The entire
P (N) distribution can be conveniently reconstructed by
matching the overlapping of distributions gathered from
all the GC-MC simulations running in parallel. A stan-
dard histogram reweighting technique can be exploited to
enforce an equal-area condition below the P (N) peaks as-
sociated to the isotropic and nematic coexisting phases,
thus obtaining the P (N) at coexistence. Finally, the co-
existence densities can be evaluated by calculating the av-
erage number of particles below the two peaks associated
to the two coexisting phases. As suggested in ref. [65] we
employed an elongated (i.e. not cubic) simulation box of
volume V = LxLyLz with Ly = Lz = 16D and Lx = 40D.
Simulation box dimensions have been chosen to satisfy the
following conditions:

Lx � Ly and Lx � Lz, (4)

where the z-axis is parallel to the nematic director (to
which all particles are aligned in the starting configura-
tion used for the SUS simulation). The chosen shape of
the simulation box ensures that the IN interface builds
parallel to the yz-plane. The rationale of latter choice is
extensively discussed in the ESM. When the system is ne-
matic, the chains can get quite long and the box should
be large enough to not affect anyhow the growth of long
chains. Since Lz should fulfill the condition provided in
eq. (4), Lz ≈ 15D, one can accommodate in the box chain
as long as 15-mers, which are still larger than the average
chain length in all of the systems we studied with SUS. We
performed two additional SUS simulations at T ∗ = 0.12
and T ∗ = 0.155 intended as checkpoints for KI as shown
in fig. 3.

Starting from configurations obtained from KI we car-
ried out a canonical NVT MC simulation along coex-
istence lines to obtain an accurate estimate of average

lengths of chains M . For NVT MC simulations we em-
ployed N = 6000 particles. In these simulations for the
I phase we used a cubic box while for the N phase an
elongated box chosen according to eq. (4) has been used.
Periodic boundary conditions in all directions have been
used in all simulations.

2.3 Theory

As proposed in refs. [31, 33, 43] for polydisperse mixtures
of self-assembled linear aggregates, if ν(l) is the number
density of aggregates of length l, which obeys the nor-
malization condition

∑
l ν(l) = ρ, with ρ = N/V , the

Helmholtz free energy F of the I and N phases is assumed
to comprise the following contributions:

F = F id + F excl + F or + F st, (5)

where F id is the ideal gas free energy, F excl accounts
for the excluded-volume interactions, F or quantifies the
entropy decrease due to orientational order and the last
term, F st, is the stacking free energy which accounts for
monomer aggregation and which is expressed in terms
of Δ = Δ(T ), the bonding free energy [31]. Here, as
in refs. [31, 55], ν(l) is assumed to be exponential, i.e.
ν(l) = ρM (l−1)/(M − 1)(l+1), with M the average cluster
length.

The F or is expressed as the sum of two contributions
which have been proposed for the limiting cases of stiff and
very flexible rods [57] where their weight is controlled by
an adimensional adjustable parameter l0 which we fixed
to the value of 16.

The excluded-volume contribution to the free energy,
F excl can be written in terms of ν(l) as follows:

βF excl
0

V
=

η(ζφ)
2

∑

l

∑

l′

ν(l)ν(l′)vexcl(l, l′), (6)

where vexcl(l, l′) is the excluded volume between two ag-
gregates made of l and l′ disks, and η(ζφ) is a modi-
fied Parsons-Lee factor [66, 67], where the system volume
fraction φ = ρD3π/6 is scaled by a factor ζ. The lat-
ter modification of the Parson-Lee theory is based on the
of the so-called effective molecular volume of non-convex
hard bodies as suggested in ref. [68], where a system of
linear fused hard sphere chains was studied. The value
used for ζ in the theoretical calculations will be pro-
vided later. If R1 = {r1,1 . . . r1,l}, R2 = {r2,1 . . . r2,l′},
U1 = {u1,1 . . .u1,l} and U2 = {u2,1 . . .u2,l′}, where rγ,i

and uγ,i are the position and the orientation (unit vector)
of monomer i belonging to the chain γ = 1, 2, the excluded
volume vexcl of two chains 1 and 2 composed of l and l′

monomers in the isotropic phase is defined as

vexcl
iso (l, l′) = − 1

16π2V l+l′−1

∫ ′
dR1dR2 dΩ1dΩ2

×ell′

12(R1,U1,R2,U2), (7)
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where uγ,i is the orientation of monomer i belonging to
aggregate γ, dRγ =

∏l
i=1 drγ,i, dΩγ =

∏l
i=1 dωγ,i with

dωγ,i the infinitesimal solid angle around the orientation
uγ,i and ell′

12 is the Mayer function [69]:

ell′

12(R1,U1,R2,U2) =
exp {−Uh(R1,U1,R2,U2)/kBT} − 1, (8)

with Uh(R1,U1,R1,U2) being the hard-core pair poten-
tial:

Uh(R1,U1,R2,U2) =

{
∞, if 1, 2 overlap,

0, if 1, 2 do not overlap.
(9)

The prime sign in the integral of eq. (7) means that the
domain of integration is restricted to the positions and ori-
entations of monomers such that i) within each chain only
two monomers are single bonded and all the remaining
monomers (if any) are double bonded1 and that ii) chains
do not self-overlap.

In ref. [70] the excluded volume of two rigid LTHSCs
both in the isotropic and nematic phase has been calcu-
lated analytically, here we use the same analytical form
with some modifications to account for the finite range of
the SW interaction between patches (i.e. the spheres are
not touching each other as assumed in ref. [70] and the
resulting chain is not rigid). In the isotropic phase for the
theoretical calculations, we use the following form for the
excluded volume:

vexcl
iso (l, l′) = (ξ2D)3

π

6

[

Kπ

4
ξ2
1 ll′ +

(
11 −Kπ

2

)

×ξ1
l + l′

2
− 3 + Kπ

4

]

, (10)

where K = 3.53390. Equation (10) is the excluded volume
in the isotropic phase of two LTHSCs of length ξ1l and
ξ1l

′ and sphere diameter equal to ξ2D [70]. The only ad-
justable parameters in eq. (10) are ξ1 and ξ2 that account
for the fact that, because of the finite range of SW inter-
action between patches, given a chain of l KF spheres, the
length and diameter of an equivalent LTHSC comprises ξ1l
spheres of diameter ξ2D. In passing we note that, since the
expression for the excluded volume in eq. (10) is a second-
order polynomial in l and l′, the scaling behavior with
respect to the chain length is identical to the one assumed
and discussed in ref. [31], where one can identify three
contributions which come from end-end, end midsection
and midsection-midsection steric interactions between two
chains. Within the present approach for the calculation
of the excluded-volume contribution to the free energy, a
chain CD comprising l spheres of diameter D is mapped
onto an equivalent chain Cξ of ξ1l spheres of diameter ξ2D.
Since the ratio between the volume of Cξ and CD amounts
to ξ1ξ

3
2 , we have to consistently set ζ = ξ1ξ

3
2 in eq. (6).

The numerical procedure to estimate ξ1 and ξ2 includes
first the evaluation of the excluded volume in eq. (7) for

1 Except if two chains are constituted of two monomers.

l = 1, . . . , 10 via Monte Carlo integration; then eq. (10) is
fit to these data, using ξ1 and ξ2 as fitting parameters.

Similarly, in the nematic phase we assume [31]:

vexcl
nem(l, l′) = (ξ2D)3

π

6

{

KBn(α)ξ2
1 ll′ + [11 − 2KBn(α)]

×ξ1
l + l′

2
− 3 + KBn(α)

}

, (11)

where Bn(α) can be calculated as follows:

Bn(α) =
∫

sin γ̃ fO(u)fO(u′)dω dω′, (12)

where cos γ̃ = u·u′ and fO(u) is the Onsager orientational
distribution function [56], i.e.

fO(u) =
α

4π sinhα
cosh(α cos θ), (13)

where θ is the angle between the particle orientation u
and the nematic axis and α is a non-negative parameter,
which increases with increasing nematic order. Parameters
ξ1 and ξ2 in eq. (11) are the same ones of eq. (10). We note
that eqs. (10) and (11) have to be intended as manageable
analytical expressions for theoretical calculations, which
well reproduce the exact excluded volume in the isotropic
and nematic phase, respectively. The degree of alignment
in the system can also be quantified by the nematic order
S, which is defined as the largest eigenvalue of the order
matrix Q, i.e.:

Qαβ =
1
N

∑

i

3
2
〈(ui)α(ui)β〉 −

1
2
δα,β , (14)

where αβ ∈ {x, y, z}, and the unit vector (ui(t))α is the
component α of the orientation (i.e. the symmetry axis)
of particle i at time t. A non-zero value of S signals the
presence of the orientational order in the system. The pa-
rameter α is related to the nematic order parameter S as

S =
∫ π

0

dθ sin θ

(
3
2

cos2 θ − 1
2

)

fO(cos θ)

= 1 − 3
coth α

α
+

3
α2

high α−−−−→ 1 − 3
α

. (15)

In the nematic phase all aggregates are assumed to possess
an orientation which can be drawn from the same orienta-
tional distribution function independently of their length.
Nevertheless, short aggregates are more likely isotropic
than nematic and a proper correction term is added to the
nematic free energy F as discussed in ref. [31]. Here, we
evaluated this correction in eq. (6) by treating aggregates
up to l = 4 as isotropic. A better approach would consist of
introducing a chain-length–dependent Onsager parameter
α, we plan to modify the theory along this direction in the
future. A further improvement of the theory would be to
employ a joint orientation and chain length distribution,
as suggested first for non–self-assembling systems by van
der Schoot and Cates [5]. A first attempt in this direction
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has been done in ref. [30] and the present approach can
be modified accordingly. Nevertheless, theoretical calcula-
tions would become rather demanding and cumbersome as
well as, presumably, without a significant improvement in
the accuracy of the theoretical predictions [30]. The free
energy F depends solely on M in the istropic phase while
it depends also on α in the nematic phase. By minimiz-
ing the free energy in the isotropic (nematic) phase with
respect to M (M and α) for a given temperature and con-
centration, one obtains the equilibrium value of M (M
and α). In ref. [55] it has been shown that assuming an
exponential chain length distribution minimization of the
free energy with respect to M leads to the following ex-
pression for the average chain length MI in the isotropic
phase:

MI =
1
2

(
1 +

√
1 + 4φekIφη(ξφ)+βΔFb

)
, (16)

where ΔFb is a parameter which depends on the free en-
ergy associated to the formation of a single bond [55]. Sim-
ilarly, one obtains the following expression for the average
chain length MN in the nematic phase for long chains:

MN =
1
2

(
1 +

√
1 + αφekN (α)φη(ξφ)+βΔFb

)
. (17)

Coexistence lines can be obtained by calculating the
chemical potential and pressure in both I and N phase
and by imposing that they have to be equal at coexistence.
Finally, we note that in comparison with the theoretical
treatment proposed in ref. [33] the present approach has
been greatly simplified by considering an equivalent sys-
tem of touching hard spheres both in the isotropic and
nematic phases. Within the present approach one has to
calculate the excluded volume between chains of bifunc-
tional spheres just in the isotropic phase to estimate the
parameters ξ1 and ξ2. In the nematic phase, assuming that
an appropriate orientational distribution function is the
Onsager function, the excluded volume can be calculated
analytically.

3 Results and discussion

3.1 Phase coexistence

We built the phase diagram for IN transition by calcu-
lating the probability distribution P (N) of observing at
coexistence N particles in the simulation box at fixed T
and chemical potential as explained in sect. 2.2.

For nematic configurations we calculated the three-
dimensional pair distribution function g(r) defined as

g(r) =
1

ρN

〈
N∑

i=1

∑

j �=i

δ(r − (ri − rj))

〉

, (18)

where δ(x) is the Dirac delta function. If the z-axis is cho-
sen parallel to the nematic director, correlations in a plane
perpendicular to the nematic director can be quantified by

Fig. 2. Plot of g(x, y, 0) (a) and g(0, y, z) (b) where the z-axis
is parallel to the nematic director for T ∗ = 0.165 and φ = 0.41.

plotting g(x, y, 0), while those in a plane parallel to it by
plotting g(0, y, z).

Figure 2 shows both g(x, y, 0) and g(0, y, z) for T ∗ =
0.165 and φ = 0.41 and being representative of all sim-
ulations they show that no columnar, crystal or smectic
phases are observed in our simulations.

The phase boundaries computed by simulation and
theory are shown in fig. 3. It can be seen the KI pro-
vides very accurate results since the two SUS checkpoints
at T ∗ = 0.12 and 0.155 coincide with the ones estimated
by KI. Note that, as expected, the volume fractions of
both the isotropic and nematic phases at coexistence in-
crease on increasing T [31,33,44,55]. As already observed
in refs. [33,34] theoretical predictions overestimate the ex-
tent of the coexistence region, although in the present case
the coexistence region calculated by KI is significantly nar-
rower than the one predicted theoretically. This result can
be understood by calculating the order parameter Sl for
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0.45

0.5

φ

Theory
Kofke
SUS

I

N

I + N

Fig. 3. Isotropic-nematic phase diagram in the packing-
fraction φ vs. temperature T ∗ plane. Triangles are SUS simu-
lations at T ∗ = 0.12, 0.130 and 0.155. Circles are results from
the Kofke thermodynamic integration, started from the SUS
simulation at T ∗ = 0.130. The other SUS simulations are used
as checkpoints. Lines are obtained by theoretical calculations.

10 20 30 40
l

0

0.2

0.4

0.6

0.8

S l

T* = 0.12
T* = 0.13
T* = 0.137
T* = 0.145
T* = 0.155

Fig. 4. Chain-length–dependent nematic order Sl in systems
at different temperatures. Symbols are simulation data. The
dashed line indicates S = 0.6.

individual clusters, which is estimated by evaluating the
largest eigenvalue of the order tensor in eq. (14) calculated
for all monomers belonging to clusters of size l [30]. Fig-
ure 4 shows Sl for several temperatures along the nematic
coexistence line. It can be seen that aggregates of l up to
4–5 are more isotropic than nematic, a result which can
ascribed to the lack of shape anisotropy of bifunctional
KF spheres. Indeed, we remind that for hard cylinders of
aspect ratio (i.e. the ratio of length over diameter) equal
to 2, which have been studied in ref. [33], only monomers
could be considered not nematic. Since theory does not ac-
count explicitly for such l-dependence of α, short chains
are considered as nematic as long chains, thus favoring
the nematic phase against the isotropic one and resulting
in a wider coexistence region.

0 10 20 30 40 50 60 70
l

10
-5

10
-4

10
-3

10
-2

(l
)

T*=0.12
T*=0.155

Fig. 5. Aggregate size distribution ν(l) for the nematic phase
at coexistence for T ∗ = 0.12 and 0.155. Symbols are simulation
data and lines are single exponential fits.

3.2 Cluster size distribution

One of the assumptions made in the theory illustrated in
sect. 2.3 is that the cluster size distribution ν(l) is expo-
nential. Figure 5 shows that a single exponential decay
well describe ν(l) except for monomers. A different decay
for small l can be ascribed to a different orientational or-
dering of smaller aggregates as evidenced by fig. 4. Short
chains are more isotropic than long ones and the average
chain length M in the isotropic phase is smaller than in
the nematic phase, thus resulting in a faster decay of ν(l)
for small l, since ν(l) ≈ e−l/M . This behavior has been
already observed in past studies [28,31,33] and as long as
only short chains deviate from the exponential decay —as
in the present case— the theoretical results are expected
to be not significantly affected [31].

3.3 Reentrant behavior

Theoretical predictions for the coexisting volume fractions
as a function of the average cluster size M are in agree-
ment with numerical results obtained from NTV MC sim-
ulations as shown in fig. 6. The non-monotonic behav-
ior of the nematic branch in fig. 6 is a distinctive fea-
ture of self-assembly–driven liquid crystals, since it cannot
be accounted for by Onsager theory [33]. Nevertheless, to
capture this reentrant behavior it is crucial to accurately
calculate the excluded volume between polymers. Indeed,
fig. 5(b) of ref. [33] shows the results predicted by Lu and
Kindt’s theory [28] and the one from the work of Kuri-
abova et al. [30] and, as in the Onsager theory, both these
two approaches do not predict the reentrant behavior of
the phase diagram in the φ-M plane.

Within the present theory the ratio R between the
average chain length of the nematic phase MN and that
of the isotropic phase MI at coexistence strongly depends
on the packing fraction through an entropic contribution
related to the orientational order in the system.
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Fig. 6. Isotropic-nematic coexistence lines in the average
length M and volume fraction φ-plane. Symbols are numer-
ical results from NTV MC simulations. Solid lines are theoret-
ical predictions and full circles along the isotropic and nematic
phase boundaries, which are joined by dotted lines, indicate φ
and M for isotropic and nematic phases at coexistence at the
same temperature.

At high temperatures nematization takes place at large
φ and from eqs. (16) and (17) one has

R =
MN

MI
≈

√
α. (19)

Since the inverse of α controls the width of the orienta-
tional distribution of monomers, α is expected to increase
dramatically at large φ, thus making R very large. Since
at large volume fractions MI ≈ 1 [31], from eq. (19) it
follows that MN becomes very large too. Likewise, at low
temperatures from eqs. (16) and (17) one has that [55]:

MN ∝
√

eβu0 , (20)

thus increasing unbounded. According to the last two con-
siderations we can argue that MN can reasonably exhibit
a minimum as a function of φ, i.e. it can exhibit a reen-
trant behavior as shown in fig. 6.

Finally, we remind that only the present theory is able
to predict this reentrance in the M -φ plane compared to
all other theoretical approaches (cf. ref. [33]) and actually
this prediction still awaits experimental verification.

3.4 Orientational distribution function

In sect. 2.3 we also assumed that the distribution of orien-
tations of aggregates in the nematic phase is well described
by the Onsager trial function. Here, we would like to test
this hypothesis since eq. (13) is known to work very well
with non-assembling particles, such as hard spherocyin-
ders [71] and ellipsoids [72–74], but it has not be assessed
its validity in self-assembling systems yet. The fit of the
Onsager trial function fO(θ) to simulation data along the
coexistence curve in the nematic phase is shown in fig. 7

0 /4 /2 3 /40
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)
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T* = 0.165

0.12 0.14 0.16
T*
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0.8

0.9

1

S

fit of f( )
order tensor

Fig. 7. Orientational distribution f(θ) from simulations (sym-
bols) fitted to the Onsager trial function (solid lines) for
T ∗ = 0.12, 0.145 and 0.165. Inset: values of the order param-
eter S obtained by fitting the simulation to the Onsager trial
function (green circles) and as the largest eigenvalue of the
order tensor (red squares).

and it can be clearly seen that it is able to well repro-
duce numerical data. Moreover, we calculated the order
parameter S from the values of α obtained from the fits
and we compare it with the values of S directly obtained
by diagonalizing the order tensor as shown in the inset of
fig. 7. The agreement between the two different estimates
of the order parameter is rather satisfactory and suggests
that the use of the Onsager trial function is a reasonable
assumption in our theoretical treatment.

4 Conclusions

We studied a simple model of self-assembly–driven aggre-
gation of patchy hard spheres and we reproduce the behav-
ior already observed for other systems studied in the past
such as patchy hard cylinder or patchy disks [31, 33, 44].
In particular, theoretical predictions for phase boundaries
are in good agreement with data from MC simulations.
The reentrant behavior in the elongation-concentration
plane has been robustly confirmed and it can be consid-
ered a clear hallmark of the formation of self-assembly–
driven liquid-crystalline phases, which still awaits for
an experimental confirmation though. We also carefully
checked the validity of an important hypothesis, which
has been exploited in the theoretical approach, i.e. the
assumption that the orientation of monomers can be de-
scribed by the Onsager trial function.

Recent advances in the synthesis of patchy colloids
of spherical shape [47] makes us confident that in the
near future bifunctional spherical nanoparticles which self-
assemble into linear chains of tunable stiffness will be
available for experiments. Our numerical and theoretical
approach is amenable to provide physical insight into these
future experiments. For example, quantitative predictions
on the dependence of phase boundaries on varying chain
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flexibility can be easily obtained by the theory and com-
pared with experimental findings. These novel colloidal
liquid crystals with tunable physical properties are very
promising candidates for bio and life science applications.
For example their ability to transmit polarized light only
at certain temperatures and concentrations could be ex-
ploited in medical diagnostics. More generally, patchy col-
loids can be envisaged as basic building blocks for creating
materials with several applications. Many computer sim-
ulations have proved the emergence of unusual structures,
such as Archimedian tilings [75] or diamond-like photonic
crystals [76,77], in model colloidal systems which exhibit a
full photonic bandgap. Reconfigurable materials based on
soft, stimuli-responsive, patchy particles can be now fab-
ricated and these materials can encode massive amounts
of informations [78]. The possibility to induce the forma-
tion of a nematic phase on demand could provide a further
flexibility in the design of these novel materials.

In conclusion, our work shows that with respect to
isotropic and nematic phases reversible polymers made of
spherical particles share the same properties of linear ag-
gregates of anisotropic particles such as hard cylinders or
disks. This finding was not a priori obvious due to the lack
of shape anisotropy of monomers in the present system
and provides a solid indication that the recent theoretical
developments for these systems well capture the physics
behind the formation of liquid-crystalline phases through
self-assembly of both spherical and elongated building
blocks into semi-flexible polymers.
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