Self-assembly-driven nematization

Abstract

The anisotropy of attractive interactions between particles can favor, through a self-assembly process, the formation of linear semi-flexible chains. In the appropriate temperatures and concentration ranges, the growing aspect ratio of the aggregates can induce formation of a nematic phase, as recently experimentally observed in several biologically relevant systems. We present here a numerical study of the isotropic-nematic phase boundary for a model of bifunctional polymerizing hard cylinders, to provide an accurate benchmark for recent theoretical approaches and to assess their ability to capture the coupling between self-assembly and orientational ordering. The comparison indicates the importance of properly modeling excluded volume and orientational entropy and provides a quantitative confirmation of some theoretical predictions. © 2014 American Chemical Society.

Publication
Langmuir

Related