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The authors report Brownian dynamics simulation of the out-of-equilibrium dynamics �aging� in a
colloidal suspension composed of rigid charged disks, one possible model for Laponite, a synthetic
clay deeply investigated in the last few years by means of various experimental techniques. At
variance with previous numerical investigations, mainly focusing on static structure and equilibrium
dynamics, the authors explore the out-of-equilibrium aging dynamics. They analyze the wave vector
and waiting time dependence of the dynamics, focusing on the single-particle and collective density
fluctuations �intermediate scattering functions�, the mean-squared displacement, and the rotational
dynamics. Their findings confirm the complexity of the out-of-equilibrium dynamical behavior of
this class of colloidal suspensions and suggest that an arrested disordered state driven by a repulsive
Yukawa potential, i.e., a Wigner glass, can be observed in this model. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2408418�

I. INTRODUCTION

The out-of-equilibrium dynamical behavior of soft
matter—and gels, in particular—still constitutes an interest-
ing puzzle in condensed matter physics.1–3 Indeed, despite
the fact that out-of-equilibrium nonergodic soft materials are
ubiquitous in the everyday life, the mechanisms governing
their dynamics are still unclear. An adequate comprehension
of the above mechanisms is important for at least two main
general reasons. First, particles ranging from about 10 nm to
microns are currently used as building blocks of nanostruc-
tured composite materials, therefore having strong implica-
tions in industrial processing and technology development.
Second, soft matter systems can help with fundamental ques-
tions about the nature of condensed matter. Indeed, due to
the fact that interactions can be chemically tuned �strength,
range� with a high degree of accuracy, they can provide a
good implementation of particular limits as, for instance, the
hard sphere purely repulsive potential, and can be used to
test most of the theoretical models developed to address the
physics of liquids.

From an experimental point of view, relevant time and
length scales in colloidal systems are more easily accessible
than in the case of simple atomic and molecular supercooled
liquids and glasses.4 Nowadays dynamics can be studied to
relatively long time scales, and average collective dynamics
is accessible together with single-particle behavior. Different
spectroscopies are commonly used, ranging from light and
x-ray scattering to confocal microscopy.2,5,6 These tech-
niques allow one to access the instantaneous state of the
system not only under the form of spectra or correlation
functions of the observables of interest, but also as direct
snapshots �configurations� of the system. The direct knowl-

edge of the space position of the particles can be directly
used to calculate all the relevant quantities or also for visual
inspection,7 sometimes giving a direct physical intuition of
the mechanisms controlling the dynamics.

While technological improvement has strongly devel-
oped the above experimental scattering techniques, theoreti-
cal descriptions often lay behind, due to difficulties in mod-
eling the interparticle potentials and in providing a proper
description of the role of the solvent. Indeed, properties of
colloidal systems have often been studied by classical New-
tonian molecular dynamics simulations, where the interac-
tion among particles �either spherical or anisotropic� are
schematized by simple isotropic potentials. The above ap-
proach completely neglects the interaction of the colloidal
particles with the solvent where they are dispersed, not to
mention hydrodynamic effects. Important steps have been
made in the direction of more realistic descriptions imple-
menting lattice Boltzmann and fluid particle dynamics meth-
ods, where hydrodynamic effects are also considered.8–10

These approaches are very demanding from a computational
point of view, strongly limiting both the size of the consid-
ered systems and the time and length scales accessible by the
simulation. An intermediate approach is provided by Brown-
ian dynamics simulation �i.e., neglecting hydrodynamic in-
teractions� by correctly taking into account the interaction of
a possibly anisotropic colloidal particle with the solvent and
in the presence of a more realistic interaction potential
among the constituents. This intermediate approach, being
computationally feasible, could help in understanding out-of-
equilibrium dynamics on very long time scales.

In this work we introduce a new Brownian dynamics
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algorithm and study the out-of-equilibrium dynamics of a
colloidal suspension formed by strongly anisotropic discoti-
clike particles, which is believed to be a good model for
Laponite. Laponite is an interesting material; it is a synthetic
clay, deeply investigated in the last few years by means of
several experimental techniques.11–17 This system presents
many different open problems, ranging from the correct de-
scription of the phase diagram17–22 to the out-of-equilibrium
and aging dynamics,23–25 also under particular external
conditions.26 Previous computer simulations have focused on
the static structure and the role played by the distribution of
the charges on the platelet.27–29 A Brownian dynamics simu-
lation has been presented in Ref. 30, with a focus on struc-
ture and dynamics at equilibrium. Here we present an analy-
sis of the out-of-equilibrium dynamics of a model introduced
in Ref. 27, where a Laponite platelet is modeled by identical
negatively charged interacting sites, uniformly distributed in
a two-dimensional disklike geometry.

The paper is organized as follows. Section II contains an
overview of the experimental phase diagram of Laponite and
a description of experiments pointing to the existence of an
ergodic to nonergodic phase transition. Section III is a de-
scription of the model we have used to describe the interac-
tion between two Laponite platelets, while in Sec. IV we
briefly recall the principles of Brownian dynamics and intro-
duce our algorithm for the integration of the equations of
motion in the case of strongly anisotropic colloidal particles.
Section V reports the details of the computer simulations.
The next four sections contain a detailed investigation of the
long-time aging dynamics of the model. Section VI reports a
study of the mean-squared displacement of the particles; the
one-particle and collective dynamics of density fluctuations
are included in Sec. VII and VIII, respectively. Section IX
concludes the study of the out-of-equilibrium dynamics with
the rotational dynamics behavior of the system. Finally,
Sec. X contains a discussion of our main results and the
conclusions.

II. LAPONITE

Laponite is a very interesting material. Not only is it
used in several industrial processes, but it has also been
widely investigated by means of the most powerful experi-
mental techniques. It is a synthetic clay, formed by very thin
cylindrical platelets of radius r0�12.5 nm and thickness
d0�1 nm. The total uniform surface charge is Q�Ze, with
Z�−700. Laponite phase diagram has been investigated in
detail in Ref. 18. Recently significant modifications to the
phase diagram of Ref. 18 have been proposed by different
authors.17,19–21

In a series of papers,11–14 dynamic arrest in Laponite has
been interpreted as formation of a Wigner glass. In particular,
aging of a glass is related to the presence of cages of par-
ticles at high concentration, mainly due to repulsive interac-
tions, while gelation corresponds to cluster formation due to
attraction. Recently Ruzicka et al.19–21 have performed dy-
namic light scattering experiments to study aging and struc-
tural arrest for both low and high concentrations. Measure-
ments performed over long periods of time have shown two

different routes to arrest, depending on the role of attractive
short-ranged interactions. The situation is reminiscent of the
case where competing interactions are present, which gives
rise to Wigner-type glasses.31,32

A different interpretation has been proposed by Nicolai
and co-workers15–17 based on a picture in which aggregation
between the platelets is induced by salt addition, which re-
duces electrostatic repulsion and produces fractal aggregates
that will eventually form a gel. It was suggested that attrac-
tive interaction leads to aggregation of the Laponite particles
and the formation of a house of cards structure. It was re-
cently shown that the presence of positive charges on the rim
of the Laponite disks is necessary to induce aggregation and
gelation.17,33 These charges were neutralized by added pyro-
phosphate, and aggregation and gelation were slowed down,
even though the resulting ionic strength was increased.

III. THE INTERACTION MODEL

We consider here the interaction model introduced in
Ref. 27 and conventionally named model A, where the total
negative charge is uniformly distributed over the surface area
and the possible presence of positive rim charges is ne-
glected. In this respect, this work constitutes an effort in the
direction of quantifying the routes to dynamic arrest driven
by repulsive interactions which progressively establishes via
structural reorganization of the system. Future work must
address the issue of the differences in arrest introduced by
the presence of attractions mediated by oppositely charged
rim particles.34

Following the authors of Ref. 27, each Laponite platelet
is schematized as a rigid disk, formed by �=61 charge sites
disposed on a regular mesh with grid points spaced by r0 /4
�see Fig. 1�. Each site carries a charge q=Q /��−11.47e.

FIG. 1. Main panel: Relaxation of potential energy as a function of time
after the temperature jump. 100 independent realizations of the system have
been equilibrated at high temperature, T=500 K, and at tw=0, instanta-
neously quenched to T=300 K. In the plot we show the data for each run
�lines� and the averaged value �symbols�. Note that the energy stays positive
due to the purely repulsive nature of the interaction site-site potential. The
relaxation of the energy follows a power law behavior of exponent �
�0.35 and the value predicted at equilibrium �estimated at E�

�0.0178kBT� is not reached on the total simulation time scale. Therefore,
the systems stay out of equilibrium for the total duration of the present
simulation. Inset: Hexagonal grid with �=61 charge sites used as a model
for a Laponite platelet. The open circles identify the three dynamical sites.
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The solvent �water in the present case� is treated as a con-
tinuum of dielectric constant �=78.

The position of the platelet can be determined by the
three coordinates of its center of mass and the three Euler
angles or, equivalently, by the coordinates of a subset of
points sufficient to define the molecular geometry.35 We
choose the latter description and consider three dynamics
sites �open circles in the inset of Fig. 1�, i.e., the ones whose
dynamics is explicitly integrated in time to generate the
Brownian molecular dynamics trajectory. The dynamical
sites have mass m=747 900mp �here mp is the mass of the
proton�, are placed at the vertices of an equilateral triangle of
side �3r0, and their center of mass coincides with the center
of mass of the entire platelet. Note that the choice of the
dynamical sites is arbitrary �the only requirement being that
they are noncollinear�, and the actual choice we made is
merely due to symmetry considerations. �In the present case,
we obviously do not expect the moments of inertia of a ho-
mogeneous Laponite platelet to be exactly reproduced by a
trimmer. This notwithstanding, we are convinced that our
choice is a rather good approximation and has no large con-
sequences on the dynamics.�

The remaining interaction sites are massless, their posi-
tions can be directly calculated at any time in terms of the
coordinates of the dynamical sites, and they are taken into
account only in the calculation of the constraint forces acting
on the dynamical sites. Therefore, for each dynamical site we
correctly take into account both the intermolecular forces
and the intramolecular contributions coming from the sec-
ondary sites.

The total interaction energy between two platelets is the
sum of �2 site-site screened Coulomb electrostatic interac-
tions of the Yukawa form. The interaction between sites k
and l at positions rk and rl and pertaining to two different
platelets is therefore of the form4,27,36

Vkl =
qkqle

2

�

e−rkl/�D

rkl
, �1�

where rkl= �rk−rl� and �D is the Debye screening length of
the microions, i.e.,

�D =� �kBT

4��n+z+
2 + n−z−

2�e2 . �2�

In the above equation, �n+ ,z+� and �n− ,z−� are the concentra-
tions and the valences of positive counterions and negative
coions coming from the platelets and the salt added to the
solution.

IV. BROWNIAN DYNAMICS AND THE INTEGRATION
ALGORITHM

In this article we introduce a novel algorithm to integrate
the Brownian equations of motion which, although neglect-
ing hydrodynamics effects, takes into account the presence
of the solvent in the dynamics. Most Brownian dynamics
simulations are based on the original Ermak algorithm37 de-
veloped for atomic systems, where the friction coefficient
associated with the damping force and acting on spherical
objects is isotropic. The Ermak algorithm has been general-

ized by van Gunsteren and Berendsen38 to the case of mol-
ecules formed by spherical centers of interaction, for which
the choice of an isotropic friction coefficient is still appro-
priate. In contrast, in the present case of a strongly aniso-
tropic rigid particle, one should take into account the fact
that the platelet moves differently in the directions perpen-
dicular and parallel to its symmetry axis.

To the best of our knowledge, the only other attempt to
take into account in a reasonable fashion the anisotropy of a
discoticlike particle in a Brownian dynamics computer simu-
lation has been the one by Odriozola et al.,30 based on the
integration of the Langevin equations of a rigid body, sepa-
rately for the center of mass and for the orientation. In the
present work we prefer to rely on the original work by Er-
mak, which allows us to find an optimal balance between a
reasonable realism of the molecular model and an acceptable
efficiency. This gives us the possibility to follow the dynam-
ics of the system on time scales much longer than the ones
investigated so far.

In our algorithm the viscous damping and the Brownian
forces act on each of the three sites with mass but the friction
coefficient � is chosen different in the directions perpendicu-
lar ���� and parallel ���� to the symmetry axis of the platelet,
which we choose parallel to the normal to the surface. The
numerical values of the two friction coefficients must be cho-
sen properly, in order to reproduce a realistic dynamics for
the free diffusion of the single platelet, as we will describe in
detail in Sec. V. �� and �� are used to evaluate the following
numerical coefficients:

c0
� = e−��	t, c1

� =
1 − c0

�

��	t
, c2

� =
1 − c1

�

��	t
, �3a�

�
r
��2 =

kBT

m

	t

��
�2 −

3 − 4e−��	t + e−2��	t

��	t
	,

�
v
��2 =

kBT

m
�1 − e−2��	t� , �3b�

crv
� =

kBT

m

1

��
r
�
v

� �1 − e−��	t�2, �3c�

where �= � , � and 	t is the integration time step.
For each dynamical site of mass m of the platelet, and at

the time �t+	t�, the integration algorithm can be schematized
as follows:

�1� Each pair of components of the vectors

	r = �	rx,	ry,	rz� , �4a�

	v = �	vx,	vy,	vz� , �4b�

is sampled from a bivariate Gaussian distribution with
zero mean values, variances given by �
r

��2 and �
v
��2

�Eq. �3b��, and a correlation coefficient determined by
crv

� �Eq. �3c�� �see Ref. 39�. With this step we produce a
realization of the stochastic process appropriate to gen-
erate Brownian motion.
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�2� Transform position r�t�, velocity v�t�, and forces F�t�
evaluated in the laboratory-fixed frame at time t to
r��t�= �rx� ,ry� ,rz��, v��t�= �vx� ,vy� ,vz��, and F�
= �Fx� ,Fy� ,Fz�� in the body �platelet�-fixed reference
frame, where the z axis is chosen parallel to the platelet
symmetry axis

r��t� = R�t�r�t� , �5a�

v��t� = R�t�v�t� , �5b�

F��t� = R�t�F�t�; �5c�

here R�t� is the appropriate orthogonal matrix corre-
sponding to the change of the reference frame �evalu-
ated at time t�.

�3� Update positions in the body-fixed reference frame to
�t+	t� and velocities to �t+	t /2�, according to Ermak’s
prescription:

r���t + 	t� = r���t� + c0
�v��	t + c2

�F���t�
m

	t2 + 	r�, �6a�

v���t +
	t

2
	 = c0

�v���t� + �c1
� − c2

��
F���t�

m
	t + 	v�, �6b�

where �= � if �=x ,y and �=� if �=z. Note that F���t�
are the forces evaluated at time t, acting onto the three
sites carrying mass, transformed to the body-fixed ref-
erence frame. These forces include the intraplatelet
contributions coming from the massless sites.

�4� Transform positions and velocities to the laboratory-
fixed reference frame:

r�t + 	t� = R−1�t�r��t + 	t� , �7a�

v�t + 	t� = R−1�t�v��t + 	t� . �7b�

�5� Adjust positions and velocities using the RATTLE
algorithm39 in order to fulfill the rigid constraints �fixed
distances� among the three sites with mass.

�6� Evaluate the forces F��t+	t� acting on the site at time
�t+	t�.

�7� Transform velocities v�t� and forces F�t� evaluated in
the laboratory-fixed frame at time t to v�t�
= �vx� ,vy� ,vz�� and F�= �Fx� ,Fy� ,Fz�� in the body �platelet�-
fixed reference frame using the orthogonal matrix R�t�,
as we did in step 2.

�8� Update velocities to t+	t following Ermak’s scheme:

v���t + 	t� = v���t +
	t

2
	 + c2

�	t
F���t + 	t�

m
, �8�

where, again, �= � if �=x ,y and �=� if �=z.
�9� Transform velocities back to the laboratory-fixed refer-

ence frame using the matrix R−1�t�, as we did in step 4.
�10� Finally, adjust velocities using the RATTLE algorithm

to assure zero relative velocity among the dynamical
sites.

V. SIMULATION DETAILS

We have simulated a system composed of N=108 Lapo-
nite platelets of radius ro=12.5 nm. The time unit is t0

=73.6 ps and the time step used to integrate the equation of
motions is 	t=0.1t0. The system is initially thermalized at a
high temperature, T=500 K, and at time tw=0, it is instanta-
neously quenched at room temperature, T=300 K. tw is the
waiting time, i.e., the elapsed time after the quench, and it is
an additional relevant time scale for the dynamics of the
system, as we will see below. The total volume of the system
is V=1.515�106 nm3, which corresponds to a volume frac-
tion =3.5% in the case we assume that each platelet occu-
pies a volume equal to 4�ro

2do=1963.5 nm3. We note that at
a volume fraction =3.5%, corresponding to a weight con-
centration of about 9%, the experimental phase diagram of
Laponite predicts a nematic phase.40 In the model we study
�with no rim charges�, we do not find any buildup of nematic
order in the system during the aging dynamics. The nematic
order in the system has been checked, evaluating the nematic
order parameter, defined as the largest eigenvalue of the or-
dering matrix.41 This parameter is 0 for an isotropic system
and 1 for a nematic one. We found that the nematic order
parameter is always around 0.

The side length of the simulation box is L=114.84 nm
and cubic periodic boundary conditions are used. The Debye
screening length value chosen for the interaction potential
Eq. �1� is �D=3 nm, a value which is believed to be appro-
priate for realistic experimental conditions.27 The interaction
potential is truncated when the distance between the two in-
teracting sites exceeds a cutoff radius rc=10 nm.

The numerical values of the friction coefficients, �� and
��, defined above have been chosen according to the follow-
ing argument. A Laponite platelet can be assimilated to an
oblate ellipsoid of semiaxes �a ,b ,c�, with a=b and a�c,
which diffuses in a solvent �water� characterized by a viscos-
ity �. In the case of an oblate ellipsoid, the translational
diffusion coefficients, D�

T and D�
T—corresponding respec-

tively to displacements perpendicular and parallel to the
platelet surface—and the corresponding rotational diffusion
coefficients, D�

R and D�
R—that correspond to rotations about

axes perpendicular and parallel to the platelet surface,
respectively—can be evaluated exactly �see, for instance,
Ref. 42�. More specifically, assuming that �i� we consider as
a solvent pure water, i.e., �=1.002 cP; �ii� the freely diffus-
ing oblate ellipsoid has an aspect ratio similar to that of the
Laponite platelets, i.e., a=12.5 nm and c=0.5 nm; and �ii�
the temperature is T=300 K; we have chosen the friction
coefficients ��=0.016 ps−1 and �� =0.063 ps−1.

As we will see below, following the temperature jump,
the simulated system does not reach equilibrium on the time
scale of the simulation. This implies that two-time correla-
tion functions will depend separately on the time difference t
and the time tw elapsed from the quench. Hence, average
over starting times must be substituted with an average over
an ensemble of several statistically independent initial con-
figurations. We have considered 100 independent configura-
tions of the systems, which have been equilibrated at high
temperature T=500 K and, at time tw=0, quenched instanta-
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neously to ambient temperature T=300 K. We have calcu-
lated the Brownian dynamics trajectories for each sample for
106 integration time steps, corresponding to a total time in-
terval of 7 �s. The total CPU time amounts to about
14 000 h on a farm of ten 2.6 GHz AMD Opteron CPUs. The
evolution of the 100 independent systems has been recorded,
and system configurations have been stored logarithmically
spaced in time for the analysis presented in the following
sections.

Following the temperature jump from high temperature,
the energy of the system relaxes but never reaches thermo-
dynamic equilibrium at the lower temperature. In Fig. 1 we
show the energy relaxation for each sample �solid lines� and
the average value �open circles�. Note that, due to the repul-
sive nature of the interaction potential, the total potential
energy is always positive. The relaxation follows a power
law of exponent ��0.35 and the equilibrium value �esti-
mated at E��0.0178kBT� is not reached on the simulation
time scale. Hence, the system is always out of equilibrium
and explores a series of metastable states of lower and lower
energy. In what follows we will characterize the aging dy-
namics and show that the slowing down of the dynamics
strongly depends on the waiting time tw.

In the main panel of Fig. 2 we show the static structure
factor, S�Q�= 
��Q��*�Q��, where ��Q�= �1/M��i

M

exp�iQ ·Xi� is the density fluctuation of wave vector Q. Here
and in the following, the coordinates Xi indicate either the
center of mass of platelet Ri �in this case M =N� or the po-
sition ri of all sites �in this case M =61�N�. The figure
shows our results for both centers of mass �open symbols�
and sites �closed symbols�. In particular, latter data contain
detailed informations on the form factor of the clay platelets
and, therefore, they are the results most appropriate for a
comparison with experimental measurements. We note, how-
ever, that the smallest wave-vector value accessible in our

simulation has modulus Qm=2� /L�0.055 nm−1, obviously
far from the values typical of the most popular scattering
techniques. Each point shown is a spherical average in mo-
mentum space with a resolution �Q=0.05 nm−1, and up to
200 vectors have been considered for each value of Q. The
data have been calculated from the configurations produced
at times larger than 106 ps and no changes have been found
in the static structure at later times. Only at much shorter
times small changes are evident in the structure of the second
subpeak for the case of interaction sites, as shown in the inset
of Fig. 2.

In summary, from the above data it is evident that, fol-
lowing the temperature jump, the system starts to explore
out-of-equilibrium states of lower and lower energy. During
the above process the static structure does not significantly
change at long times, as also found in the case of molecular
glass formers. This is at strong variance with the long-time
structural dynamics—as shown by the mean-squared dis-
placement and density fluctuations correlation functions—
which show spectacular changes, as we will report in the
following sections.

VI. THE MEAN-SQUARED DISPLACEMENT

In this section we analyze the centers of mass mean-
squared displacement of the center of mass of the platelets,


r2�t,tw�� =
1

N
�
k=1

N


Rk�t + tw� − Rk�tw�2�; �9�

here 
 � is the average over the initial conditions. Note that in
the calculations we have taken care of subtracting the dis-
placement of the center of mass of the whole system, which
does not vanish in Brownian simulations, to reveal the intrin-
sic dynamics of the particles. Indeed, in the case where the
dynamics is very slow �as it is the case here�, at long times
the diffusion motion of the total center of mass can be rel-
evant. In Fig. 3 we plot the mean-squared displacement at
the indicated values of tw. Following an initial transient re-
gime, the curves reach a plateau, reminiscent of the cage
effect in glassy systems, and whose lifetime increases on
increasing tw; only at later times, eventually, the curves move
from the plateau and apparently bend toward a constant
value. From these data we can tentatively argue that, for
values of tw longer than the one we can presently simulate,
the system stops to flow on very long time scales and arrests
in a disordered state.

The absence of a clear diffusive regime �even at long
times� and the absence of equilibrium conditions do not al-
low us to extract from the mean-squared displacement data a
diffusion coefficient via the Einstein relation. In order to
identify a relevant time scale of the structural dynamics,
without introducing any ad hoc model, we proceed as fol-
lows: we fix an arbitrary threshold value r2*, and consider the
time �* at which r2��*�=r2*. We repeat this analysis as a
function of the waiting time tw. In Fig. 4 �main panel� we
show our results for several values of r2*, ranging from
5 to 50 nm2. The data have been rescaled by tw and addition-
ally shifted to maximize the overlap and stress the simple
scaling with tw which, therefore, seems to set the only rel-

FIG. 2. Main panel: Equilibrium static structure factor S�Q� calculated both
for the platelet centers of mass �open circles� and interaction sites �closed
circles�. Each point is an average over 100 system configurations for t
�106 ps. The smallest value of Q accessible in our simulation is Qm

=2� /L�0.05 nm−1. For the wave-vector average, we have chosen a reso-
lution �Q=0.005 nm−1 and up to 200 Q vectors have been considered for
each value of Q. Error bars are smaller than the symbols. Inset: Variation of
the static structure factor calculated on sites at short times at the indicated
values of t. A slight change in the structure of the second subpeak is evident.
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evant time scale for diffusion. In the inset of Fig. 4 we show
the raw data for the case r2*=15 nm2. At short tw the data can
be represented by a function of the form �*�A+Btw

x , with
x�0.64. At longer tw we observe the linear behavior �*� tw,
expected for �*� tw. Indeed, from simple models �see, for
instance, Refs. 43 and 44�, it is possible to show that the
average lifetime of a potential energy landscape basin, trap-
ping the system at a time of order tw, cannot exceed tw.

Already from these results it is clear that the aging dy-
namics forces us to introduce a new relevant time scale, tw.
This is of particular interest for the case of Q-dependent
quantities, where we expect a particularly complex interplay
between the length scales probed, the corresponding relax-

ation time �Q, and the waiting time tw. In the following sec-
tions we therefore focus on the out-of-equilibrium dynamics
of the density fluctuations.

VII. ONE-PARTICLE DYNAMICS OF DENSITY
FLUCTUATIONS

The relaxation dynamics of density fluctuations is en-
coded in the intermediate scattering function F�Q ; t , tw�
= 
��Q , t��*�Q , tw��, where the density fluctuations, ��Q , t�,
have been defined above. �We recall here that 
 � is an aver-
age over the initial conditions which amounts to 100 inde-
pendent samples�. In light scattering experiments in out-of-
equilibrium conditions, information on the dynamics of the
system is obtained by measuring the time autocorrelation
function of the scattered intensity, g2�Q ; t , tw�= 
I�tw

+ t�I�tw��. In the single scattering approximation the time au-
tocorrelation function of the scattered intensity and the inter-
mediate scattering function are connected by the relation
F�Q ; t , tw���g2�Q ; t , tw�−1, where the proportionality factor
depends on the detection setup.

We start our study of the dynamics of density fluctua-
tions focusing on the incoherent �one-particle� part of the
intermediate scattering function, Fs�Q ; t , tw�,

Fs�Q;t,tw� =
1

M��
i=1

M

e−iQ·�Xi�t+tw�−Xi�tw��� . �10�

We recall here that Xi can either refer to the center of mass
of platelets i, in which case M =N, or site positions, in which
case M =61�N. As already detailed above, the smallest
value of the wave vector accessible in the simulation is Qm

=2� /L�0.055 nm−1. We have used a wave-vector resolu-
tion �Q=0.005 nm−1 and, for each value of Q, a maximum
of 200 Q vectors has been considered in the calculation of
averages. We note that, although scattering experiments
mainly probe the collective intermediate scattering function,
we expect to grasp the main features of the long-time aging
dynamics also from Fs�Q ; t , tw�. This choice is mainly due to
the fact that one-particle dynamics is less affected by noise
than collective dynamics and, therefore, statistics is more
reliable in the former case.

The quantities calculated from the position of the inter-
action sites also contain a dynamic contribution coming from
rotations of the platelets; therefore, we expect the relative
correlation functions to relax on time scales shorter than the
analogous quantities calculated from the centers of mass of
the platelets. Indeed, this is what we observe. In Fig. 5 we
show our results at Q=0.40 nm−1, at the indicated values of
the waiting time tw, both for centers of mass �left panel� and
interaction sites �right panel�. In Fig. 6 we show the simula-
tion results at fixed tw�3.5 �s at the indicated values of Q.
From these two figures it is evident that aging is fully active
in the system. In particular, the slowing down of the dynam-
ics is larger the longer the aging time, and a clear Q depen-
dence of the relaxation is visible at constant tw. In the fol-
lowing we give a more detailed description of the effect of
the aging time on the above dynamics.

The most natural choice would be to fit the data to a
particular model and, then, to study the dependence on Q and

FIG. 3. Mean-squared displacement 
r2�t , tw��, calculated for the platelet
centers of mass, as discussed in the text, as a function of time for different
waiting times tw. Shorter waiting times are on the top. The initial transient
dynamics at short t is followed by a plateau whose lifetime increases on
increasing tw. Next the curves move from the plateau, saturating to a
�nearly� constant value at very long times. From these data we could argue
that the system eventually stops to flow on very long time scales.

FIG. 4. Relevant dynamic time scale �* calculated from the mean-squared
displacement, as discussed in the text. Main panel: �* as a function of tw

calculated for different values of r2*, ranging from 5 to 50 nm2. Data have
been rescaled by tw and additionally shifted to maximize the overlap and
stress the simple scaling with tw, which sets the relevant time scale. Inset: �*

as a function of tw for r2*=15 nm2. At short tw data can be represented by a
power law behavior, �*�A+Btw

x , with x�0.64 �solid line�; at longer tw, one
observes the expected linear behavior �*� tw �dashed line� �Ref. 50�.
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tw of the fitting parameters. In doing so, we should take into
account two important observations. First, we should note
that most of the curves shown in Figs. 5 and 6 do not relax to
zero on the available time window and this fact severely
limits the possibility to fit the data without introducing arbi-
trary bounds. Second, in the present case t is always larger
than or at most of the same order of magnitude of the waiting
time tw. This is in contrast to the case of experiments, where
it is always tw� t, and poses the question if it is reasonable to
try to fit with a particular functional form a correlation func-
tion for times longer than the corresponding waiting time.

The above discussion amounts to identify a reasonable
relaxation time scale for the intermediate scattering function
which is independent of a particular model. We choose to use
the method of the threshold we have described in the previ-
ous section in the case of the mean-squared displacement: we
fix a particular threshold value and we consider as a relevant
time scale the one at which the correlation function decreases
from unity to the threshold value. Obviously, exploiting such
a method we must take into account some caveats. Note, for

instance, that the shape of the long-time relaxation �possibly
representable by a stretched exponential� clearly changes
with the waiting time and, therefore, the relaxation time
alone is not the only relevant parameter. Nevertheless, we
expect to understand the correct general behavior and also
clarify the interplay between the aging time and the length
scales actually relevant for the aging dynamics. A posteriori
we also verify the above procedure in a particular case, fit-
ting the data with a particular functional form and comparing
the results.

In Fig. 7 we show the results for both sites �left panel�
and centers of mass �right panel� for a threshold value f
=e−1 as a function of the waiting time tw, at the indicated
values of Q. We have checked that the value chosen for the
threshold does not qualitatively change the results. These
data confirm the picture coming from the above analysis of
the mean-squared displacement, pointing to a strong depen-
dence of the out-of-equilibrium relaxation time on the wait-
ing time. We observe that in our data the exponential depen-
dence on the waiting time of the relaxation time visible at
short waiting times in experiments is absent. �Note that the
physical processes behind this particular feature in experi-
ments still remain unexplained�.14

To be more quantitative and to check the analysis intro-
duced above, we fitted some of our data to a particular func-
tional form, proposed some time ago and widely exploited in
the literature �see, among others, Refs. 19–21 and 45�. We
choose, mainly due to a better quality of the data, the par-
ticular value Q=0.7 nm−1 and fit the curves to the following
model:

Fs�Q;t,tw� = fQ�tw�e−t/�f�Q;tw�

+ �1 − fQ�tw��e−�t/�c�Q ; tw����Q;tw�
. �11�

Here, we have introduced two relaxation times, i.e., � f, re-
lated to fast short-time dynamics, and �c, controlling the
long-time relaxation. The nonergodicity parameter, fQ�tw�,
and the stretching parameter, ��Q ; tw�, are reminiscent of the
analogous quantities introduced for the study of the glass

FIG. 5. tw dependence of the incoherent �one-particle� intermediate scatter-
ing functions Fs�Q ; t , tw� at Q=0.40 nm−1, at the indicated values of tw. �a�
Data calculated from the positions of the platelet centers of mass. �b� Data
calculated from sites, also containing orientational dynamics contributions.
The effect of aging is evident from these data.

FIG. 6. Q dependence of the one-particle intermediate scattering function
Fs�Q ; t , tw� at tw=3 448 933 ps at the indicated values of Q. �a� Data calcu-
lated on the platelet centers of mass. �b� Data calculated on interaction sites.
A strong dependence on Q is evident from these data.

FIG. 7. Relaxation time for the incoherent intermediate scattering functions
calculated by the threshold method with f =e−1 for both centers of mass and
sites as a function of the waiting time tw. The indicated values of Q have
been considered.
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transition. We fitted our data to Eq. �11� only for times ten-
tatively shorter than 2tw. Figure 8 shows the tw dependence
of fitting parameters. The left panel shows �c, � f, and the
“mean” relaxation time �m, defined as �m=�c��1/�� /�, both
for centers of mass of the platelets and interaction sites. All
the data strongly depend on the waiting time and increase
with tw. The right panel shows our results for �, decreasing
with tw from 1 to about 0.4 �this behavior is also observed in
experiments, see Ref. 45�, and fQ, which stays constant at a
value of about 0.1 in the case of the center of mass and
increases up to 0.3 for sites. Figure 9 shows the Q depen-
dence of the same fitting parameters at constant tw�30 ns. � f

stays almost constant in the whole investigated Q range,
while �c shows the typical Q−2 dependence.24,46,47 Also, fQ

stays almost constant in the whole considered range �data for
platelets and sites overlap almost perfectly�, while � shows a
slight decrease with Q in both cases.

We note that the above fits are particularly difficult due
to the low statistics and to the fact that not all the curves
relax to zero on the accessible time window. Moreover, the
absence of a clear separation between time scales makes the
determination of the relaxation times particularly difficult.
More specifically, in some cases it was also possible to fit the
data with two comparable values for � f and �c, obtaining
a value of �2 comparable to the one of the actual fit with
� f ��c.

VIII. COLLECTIVE DYNAMICS OF DENSITY
FLUCTUATIONS

The coherent intermediate scattering function at times tw

and t is defined as

Fc�Q;t,tw� =
1

MS�Q���
i=1

M

�
j=1

M

e−iQ·�Xi�t+tw�−Xj�tw��� , �12�

where Xi has been defined above and S�Q� are the data in-
cluded in Fig. 2. This function is related to the collective
dynamics of the density fluctuations, and it is the quantity of
direct relevance for the experimental measurements. In Fig.
10 we show the tw dependence of Fc�Q , t� at Q=0.40 nm−1,
both for centers of mass �left panel� and sites �right panel�,
while in Fig. 11 we show the Q dependence of Fc�Q , t� at
fixed tw�3.4 �s, again for the two cases. Also these results
confirm the strong tw dependence of the out-of-equilibrium
dynamics and do not seem to add much more insight to the
analysis of the previous section. Indeed, the qualitative be-
havior of Fc�Q ; t , tw� and Fs�Q ; t , tw�, as a function of both Q
and tw, is very similar, as is evident by comparing Fig. 10 to
Fig. 5 and Fig. 11 to Fig. 6. Hence, the same conclusions of

FIG. 8. Waiting time dependence of the parameters of
the fit discussed in the text for the incoherent scattering
function at Q=0.7 nm−1.

FIG. 9. Parameters of the fits discussed in the text for the incoherent scat-
tering function at tw=29 390 ps as a function of the wave vector Q.

FIG. 10. tw dependence of the coherent �collective� intermediate scattering
function, Fc�Q ; t , tw�, at Q=0.40 nm−1, at the indicated values of tw �longer
tw’s on top�. Data calculated on the platelet centers of mass �a� and on
interaction sites �b� are qualitatively in agreement.
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Sec. VII can also be drawn from these results, at least at a
qualitative level.

In the present case we do not attempt a direct fit of the
data and directly exploit the method of the threshold to
evaluate a reasonable relaxation time scale, independent of a
particular functional form for a fitting model. Figure 12
shows our results, with a threshold f =e−1, for the data at the
indicated values of Q and as a function of the waiting time,
tw. Again, we have checked that the results do not qualita-
tively change with the chosen value of the threshold. Data
are qualitatively in agreement with the results reported in
Fig. 7 and confirm the overall picture we described in detail
in the previous section.

IX. ROTATIONAL DYNAMICS

The strong anisotropy of the Laponite particle implies
that an important role in dynamics and structural reorganiza-
tion must be played by the mutual orientations of the plate-
lets. Therefore, also from the above results, we expect that
the orientational behavior of the system, both for the single
platelet and collective, must strongly couple to the dynamics

of density fluctuations and take place on comparable time
scales. This is the main motivation for the present section.

The behavior of the orientational degrees of freedom is
accessible via the dynamics of the Legendre polynomials
calculated from the orientation vectors of platelets. Some of
those polynomials are directly related to the response func-
tions detected by different experimental techniques. The con-
venient correlation functions in this case are the functions
Cl�t , tw� and their self-part Cl

�s��t , tw�, which are defined as

Cl�t,tw� =
1

N��
i=1

N

�
j=1

N

Pl�ui�t + tw� · u j�tw��� , �13a�

Cl
�s��t,tw� =

1

N��
i=1

N

Pl�ui�t + tw� · ui�tw��� . �13b�

Here, ui is the normalized orientational vector of the ith par-
ticle, pointing along the normal to the surface of the platelet,
and Pl�x� is the Legendre polynomial of order l, with l�1.
Note that for l=1 and l=2, the functions Cl�t� can be mea-
sured in dielectric and light scattering experiments. We also
note that it is often assumed that the cross term in Cl�t� can
be neglected; in this case the experiments would also yield
information on Cl

�s��t�.
In Fig. 13 we show our results at tw=7 ps at the indi-

cated values of 1� l�4, for the one-particle �left panel� and
collective �right panel� cases, respectively. From these data it
is evident that the smaller the value of l, the longer the time
scale of the relaxation dynamics. In particular, note that in
the collective case, the curves seem to saturate to a finite
value at long time, pointing to a progressive freezing of the
orientational degrees of freedom at very long times. Unfor-
tunately the limited total time extension of the present com-
puter simulation does not allow us to be conclusive on this
point.

In Fig. 14 we plot our results for l=2 �panels �a� and �b��
and 4 �panels �c� and �d�� at the indicated waiting times, both
for the self �left panels� and collective �right panels� cases.
Again, also in the case of the rotational dynamics, a strong

FIG. 11. Q dependence of the coherent intermediate scattering function,
Fc�Q ; t , tw�, at tw=3 448 933 ps at the indicated values of Q. Data calculated
on the platelet centers of mass �a� and on interaction sites �b� show a quali-
tatively similar behavior.

FIG. 12. Relaxation time for the coherent intermediate scattering functions
calculated by the threshold method with f =e−1 for centers of mass and sites
as a function of the waiting time tw at the indicated values of Q.

FIG. 13. Correlation functions of the Legendre polynomials of the order 1
� l�4 at tw�7 ps. We show the self-contribution �left panel� and collective
total case �right panel�. The orientational relaxation dynamics is slower the
higher the value of the order l.
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aging time dependence is evident and at longer waiting times
the rotational dynamics slows down significantly.

A threshold analysis similar to the one described above
for the dynamics of density fluctuations allows one to iden-

tify a relaxation time. Our results are shown for 1� l�4 in
Fig. 15, where the threshold has been fixed to a value f
=0.8. The overall qualitative behavior is analogous to the
one found in the case of the translational dynamics, and the
time scales, except for the case l=1, are also comparable in
the two cases. Concluding, our data support a strong cou-
pling between translational and orientational degrees of
freedom,48,49 as expected for a strongly anisotropic particle.

X. CONCLUSIONS

In this work we have presented a systematic study of the
out-of-equilibrium and aging dynamics of a model for a
Laponite colloidal suspension. The choice of the system con-
sidered has been mainly suggested by the terrific amount of
experimental work already present in the literature. A site-
site, purely repulsive Yukawa-type interaction potential be-
tween Laponite platelets has been considered. We have used
the Brownian dynamics technique for extensive molecular
dynamics simulations. In particular, we have proposed a new
algorithm which, although neglecting hydrodynamic effects,
correctly takes into account the strong anisotropy of the
Laponite platelet, introducing two different friction coeffi-
cients, respectively parallel and perpendicular to the direc-
tion of the symmetry axis of the platelet.

FIG. 14. Top: Waiting time dependence of the orienta-
tional correlation functions for l=2 �longer waiting
times on the top�, both for the self �left panel� and col-
lective �right panel� cases. Bottom: Waiting time depen-
dence of the orientational correlation functions for l
=4 �shorter waiting times on the top� both for the self
�left panel� and collective total cases �right panel�.

FIG. 15. Aging time dependence of the orientational relaxation time for the
correlation functions of the Legendre polynomials of order 1� l�4, deter-
mined by means of the threshold method, as discussed in the text. The
threshold has been fixed to the value of f =0.8. Left panel: Data calculated
from the self part of the correlation functions. Right panel: Data calculated
from the total collective correlation functions.
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An extensive ensemble of independent systems has been
driven out of equilibrium by an instantaneous jump from a
high temperature to room temperature at constant volume
fraction, and realistic configurations have been stored for the
analysis. In particular, we have focused on the long-time
aging dynamics, calculating the mean-squared displacement
and the intermediate scattering functions. Both coherent and
incoherent dynamics have been studied in detail. The dynam-
ics of the density fluctuations has been found to be strongly
dependent on the aging time, and a qualitative discussion has
been performed on the interplay between the different time
and length scales which play a significant role in the relax-
ation. A study of the rotational dynamics has completed the
study of the dynamics of the Laponite colloidal suspension.
The main result is that aging dynamics also strongly affects
the orientational degrees of freedom, which relax on time
scales comparable to the ones typical of translational modes.

The study presented here strongly suggests that, indeed,
in the absence of attractive interactions between particles, a
disordered arrested state can be generated only by the pres-
ence of Yukawa repulsive interactions. The long range of the
repulsive interaction makes it possible to arrest the dynamics
of the colloidal suspension even if the effective packing frac-
tion is only a few percent. In this respect, cages are defined
not by the physical size of the hard core but by the effective
range of the screened electrostatic potential. While in the
case of spherical particles, Yukawa interactions alone hardly
generate a glass; due to the fast rates of crystallization in-
duced by the long range of the interaction, the anisotropy of
the platelets appears to be able to self-generate a sufficient
local disorder which stabilizes the metastability of the ar-
rested disordered state.

In this respect, despite the fact that our data are not
conclusive, due to the difficulty of extending the time length
of the simulation, charged platelets may give rise to Wigner
glasses. Future work, in line with the present approach, must
focus on the role played in the dynamics by both the salt
concentration and the presence of opposite sign rim charges.
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