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Modelling the rheology of anisotropic particles
adsorbed on a two-dimensional fluid interface

Alan M. Luo,*a Leonard M. C. Sagis,ab Hans Christian Öttinger,a

Cristiano De Michelec and Patrick Ilgad

We present a general approach based on nonequilibrium thermodynamics for bridging the gap between

a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces.

Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar

surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex

microscopic models can be readily handled using the methods outlined in this paper. From the afore-

mentioned microscopic starting point, we obtain the macroscopic, constitutive equations using a

combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics.

Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally

relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the

shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the

dilute isotropic regime, to the concentrated nematic regime.

1 Introduction

Colloidal sized particles adsorbed onto a fluid–fluid interfaces
enhance the interfacial rheological properties, leading to more
stable foams and emulsions.1 The particles tend to adsorb
irreversibly and form a quasi-two dimensional microstructure
on the interfaces, which prevents coalescence in foams and
emulsions. Interestingly, the particle geometry seems to play an
important role in the extent of enhancement of rheological
properties. For example, elongated ellipsoidal colloids adsorbed
onto an interface increase the values of the rheological properties
more than their spherical counterparts, for an equal surface
coverage.2 Anisotropic particles are capable of forming more
complex microstructures,3–5 due to the anisotropic nature of
their interactions, with a more complex response to applied
deformations.

These so-called particle-stabilised interfaces were first studied
over a century ago6,7 but despite the wealth of experimental work
there has so far been scant attention paid to theoretically
modelling the surface rheology of these particle-stabilised inter-
faces.8 Certainly, these complex interfaces can be difficult to

model due to the rich variety of interparticle interactions such
as interface-mediated capillary interactions and electrostatic
interactions.9,10 In addition there can be curvature effects on
particle motion11 as well as a coupling between bulk and inter-
face phases,12 which can exchange mass, energy and momentum.

The system we envisage to model is that of a fluid–fluid
interface with adsorbed anisotropic colloidal particles. Such a
system can be rather complicated if one wishes to take into
account all possible phenomena that can occur, therefore we make
a number of simplifying assumptions: (1) the colloidal particles are
hard, smooth, uncharged, ellipsoid-shaped and they move and lie
in a two-dimensional solvent, which represents the interface.
Furthermore, we assume that the interface is not deformed by
the presence of these particles, which implies a 90 degree contact
angle or sufficiently small nanometer scale particles.13 (2) The
interface is assumed to be a planar surface, since many rheological
experiments e.g. Langmuir troughs and bicone interfacial rheo-
meters only measure flat interfaces. (3) The particles are adsorbed
irreversibly due to large detachment forces of ellipsoidal particles
at a fluid interface.14 (4) The system is homogeneous in tempera-
ture and particle surface coverage and induced flows do not induce
gradients in concentration or in ordering. These idealisations
essentially constitute our microscopic model, where we consider
the interface as a two-dimensional bulk phase. We would,
however, emphasise that our approach can handle systems
where these idealisations are no longer valid. The fundamental
requirement is a well-defined microscopic model.

We use the GENERIC (general equation for nonequilibrium
reversible irreversible coupling) framework15–17 of nonequilibrium
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thermodynamics to systematically formulate the set of macro-
scopic equations of motion describing our system. Importantly,
the GENERIC framework has a microscopic basis, which allows
a systematic derivation of the macroscopic, continuum equa-
tions from a well-defined microscopic system.18 We are also
able to link the time evolution of the microstructure to the
applied deformation and recover an expression for the extra
stress due to the microstructure, all formulated in a thermo-
dynamically consistent manner. Since we have a microscopic
basis for the macroscopic constitutive equations, we are able to
capture the nonlinear rheology of our microscopic model over a
range of particle surface coverages, from dilute to very concen-
trated. Our approach is rather general and can also be applied
to modelling systems where some of the simplifications, such
as the one concerning interparticle interactions, are no longer
valid. We point out the necessary modifications to the methods
we use in the appropriate sections.

This paper is organised in the following way. Section 2
briefly introduces the GENERIC framework we use for con-
structing the model. Section 3 concerns the systematic con-
struction of the GENERIC building blocks and we obtain the
constitutive equations from the microscopic model. Then the
set of time evolution equations describing the model are
summarised in Section 4, where we also discuss their behaviour
under various flow conditions.

2 GENERIC framework

The GENERIC framework has been used as a tool for constructing
thermodynamically consistent models for a multitude of different
systems.15 Here we present a brief introduction about the frame-
work. The first most crucial step is to identify the set of indepen-
dent state variables x(r,t) that are functions of position r and time
t that fully determine the system we wish to study at the chosen
level of description. For brevity, we do not explicitly write out the
position or time dependence of the state variables in the rest of
this paper.

With the aforementioned simplifications in the Introduction,
our system is described by the following set of independent state
variables

x = (r, M, u, Z, C) (1)

where r is the total mass density, M is the total momentum
density, u is the internal energy density of the fluid interface in
the absence of adsorbed particles, Z is a scalar describing the
area fraction of the interface covered by particles and C = huui
is the orientation tensor with u being the two-dimensional
orientation vector of a single particle, and h� � �i denotes an
ensemble average. The variables Z and C together describe the
structure of the interface and density is understood to mean an
area density. In principle, a proper thermodynamic treatment
of a dividing interface à la Gibbs requires excess densities,
which may depend on the choice of the gauge defining the
position of the interface.19 In this paper, we simplify matters by
treating the interface as a two-dimensional bulk phase.

The time evolution of the set of state variables is then given
by the equation

_x ¼ L � dE
dx
þM � dS

dx
; (2)

where d/dx denotes functional derivatives, L is the Poisson
matrix and E is the total energy; together they describe the
reversible dynamics. M is the friction matrix and together with
the entropy S gives the irreversible dynamics. The GENERIC
eqn (2) can be written equivalently in terms of brackets

:
A = {A, E} + [A, S], (3)

where A is an arbitrary functional of the state variables. The
Poisson bracket is defined as

B;Cf g ¼
ð
dB
dx
� L � dC

dx
d2r; (4)

where B and C are also arbitrary functionals of the state
variables. The underlying Poisson geometric structure imposes
certain conditions on the Poisson bracket, namely antisymmetry
{A, B} = �{B, A}, the Leibniz rule {AB, C} = A{B, C} + B{A, C} and
Jacobi identity {A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0. The
dissipative bracket is defined as

B;C½ � ¼
ð
dB
dx
�M � dC

dx
d2r: (5)

It is less constrained than the Poisson bracket and simply has
the properties of symmetry [A, B] = [B, A] and positive semi-
definiteness [A, A] Z 0, which ensures that entropy production is
non-negative for irreversible dynamics. There are two supple-
mentary degeneracy conditions

{A, S} = 0, (6)

[A, E] = 0, (7)

which together ensure that total energy is conserved
:
E = 0 and

total entropy production is non-negative
:
S = [S, S] Z 0, there-

fore guaranteeing thermodynamic consistency. In addition, the
first degeneracy condition implies that reversible dynamics is
entropy conserving.

So the construction of a model using the GENERIC frame-
work requires us to specify the four building blocks L, M, E, S.
Crucially, all of the building blocks can be formulated using
a statistical approach (coarse-graining) of the microscopic
system.18 We use this statistical approach to help formulate
the entropy functional S and the friction matrix M.

3 Constructing the constitutive model

In this section we systematically formulate the four building
blocks of GENERIC. In contrast to an earlier model,20 the
formulation presented in this paper is based on and derived
from a microscopic model.

3.1 Energy and entropy

Two of the building blocks in the GENERIC framework are
the energy and entropy functionals. We model the adsorbed
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colloidal particles as hard ellipsoidal particles confined to
a two-dimensional plane, and the interface as a viscous (two-
dimensional) fluid. Therefore there is no particle–particle
interaction energy and we can write the energy functional as

E ¼
ð

M2

2r
þ u

� �
d2r: (8)

Recall that the state variables are dependent on the position so
that e.g. the internal energy density of the fluid u is equal to
zero where particles are present. Thus the surface coverage is
implicitly taken into account in the integral. The entropy is

S ¼
ð
sðr; u; Z; CÞd2r: (9)

We assume that the entropy density per unit area s can be split
into separate contributions from the solvent ss, and from the
structure formed by the ellipsoids. The structural entropy can
be further decomposed into an ideal part sid associated with the
entropy of an ensemble of non-interacting rotators, and an
excess part sexcl associated with excluded volume interactions
between our hard ellipsoids. Therefore we write

s = ss(r, u) + sid(Z, C) + sexcl(Z, C). (10)

The latter two contributions have been determined21 to be

sid ¼ kBnp
1

2
ln 1� S2ð Þ þ 1

2
S2 �

3

4
S2ð Þ2þ

1

6
S2ð Þ3

�

�1
8
S2ð Þ4þ

1

10
S2ð Þ5�

1

18
S2ð Þ6

�
;

(11)

sexcl = kBnp(Z + aZ2)[b(S2)2 + c(S2)4], (12)

where S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C:C� 2trCþ 1
p

is an order parameter that varies
from 0 in the isotropic phase to 1 in the perfectly ordered phase, np

is the number density of particles adsorbed on the interface (related
to the surface coverage by Apnp = Z, where Ap is the interfacial area
removed by a single particle) and a = 2.107, b = 0.654, and c = 0.175
are numerical parameters for ellipsoids with an aspect ratio k = 4.
For other aspect ratios or particle geometries, a systematic proce-
dure21,22 can be applied to determine a coarse-grained free energy.
The entropy of mixing has been neglected as we have begun by
assuming a homogeneous surface coverage. Functional derivatives
of the energy and entropy are, respectively, as follows:

dE
dx
¼

�v2

2

v

1

0

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and
dS
dx
¼

�m
T

0

1
T

@s
@Z

@s
@C

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (13)

where the velocity is defined as v = M/r, the temperature is

T ¼ @s

@u

� ��1
and m is the chemical potential of the solvent.

For completeness, the remaining derivatives in the functional
derivative of the entropy are

@s

@Z
¼ sid

Ap
þ kBnpð2þ 3aZÞ b S2ð Þ2þc S2ð Þ4

h i
; (14)

@s

@C
¼ kBnp f Z;S2ð Þ C� 1

2
d

� �
; (15)

where d is the 2 � 2 identity matrix and

f Z;S2ð Þ ¼ 2 S2ð Þ5�5 S2ð Þ4þ6 S2ð Þ3�6 S2ð Þ2þ12S2 � 12

3 1� S2ð Þ

þ 4 Zþ aZ2
� �

bþ 2c S2ð Þ2
	 


:

(16)

3.2 Poisson bracket

The Poisson bracket gives the reversible dynamics and can be
formulated as

A;Bf g ¼ �
ð
r

dA
dMj

@

@rj

dB
dr
� dB
dMj

@

@rj

dA
dr

� �
d2r

�
ð
Mk

dA
dMj

@

@rj

dB
dMk

� dB
dMj

@

@rj

dA
dMk

� �
d2r

�
ð
u

dA
dMj

@

@rj

dB
du
� dB
dMj

@

@rj

dA
du

� �
d2r

�
ð
sjk

dA
du

@

@rj

dB
dMk

� dB
du

@

@rj

dA
dMk

� �
d2r

þ
ð
Cjk

@

@rl

dA
dCjk

dB
dMl
� dB
dCjk

dA
dMl

� �
d2r

þ
ð
Clk

dA
dCjk

@

@rl

dB
dMj
� dB
dCjk

@

@rl

dA
dMj

� �
d2r

þ
ð
Cjl

dA
dCjk

@

@rl

dB
dMk

� dB
dCjk

@

@rl

dA
dMk

� �
d2r

�
ð
2CijCkl

dA
dCij

@

@rl

dB
dMk

� dB
dCij

@

@rl

dA
dMk

� �
d2r

�
ð
Z

dA
dMj

@

@rj

dB
dZ
� dB
dMj

@

@rj

dA
dZ

� �
d2r;

(17)

where we use the Einstein summation convention for the
indices i, j, k, and l. The first four integrals form the usual
Poisson bracket of hydrodynamics15,23 with a stress tensor s
determined by the degeneracy condition {A, S} = 0, giving

s ¼ T s� r
@s

@r
� u

@s

@u
� Z

@s

@Z

� �
d

�

þ 2C � @s
@C
� 2 C:

@s

@C

� �
C

�
:

(18)

This expression for the stress can be identified with the
expression given in ref. 24. We are further able to identify the
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surface tension g as

g ¼ u� Ts� rmþ ZT
@s

@Z
; (19)

with the contribution to the surface stress due to the structural
variables given by

P ¼ 2T C � @s
@C
� C:

@s

@C

� �
C

� �
; (20)

so the reversible contribution to the surface stress can be
written as

s = �gd + P. (21)

The next four integrals in eqn (17) represent the upper convective
behaviour of the tensor variable, with the integral involving the
term 2CijCkl required to preserve the trace of C.24,25 The final
integral describes the convection of the particle surface coverage
Z. And we note that the Jacobi identity is satisfied by the Poisson
bracket in eqn (17).26

3.3 Friction matrix

There are two dissipative processes that can occur in our
model: viscous heating and rotational relaxation of the particles.
We treat viscous heating first, followed by rotational relaxation.
Friction matrix entries for other possible dissipative processes that
we have neglected such as diffusion in the presence of gradients of
the structural variables, or temperature are well-known.12,15

3.3.1 Surface viscosity. This is the usual hydrodynamics
entry for a viscous fluid specialised to a surface,12 which is

A;B½ �hydro ¼
ð
2esT

@

@ri

dA
dMj
� _gij

dA
du

� �
@

@ri

dB
dMj
� _gij

dB
du

� �
d2r

þ
ð
edT

@

@ri

dA
dMi
� _gii

dA
du

� �
@

@rj

dB
dMj
� _gjj

dB
du

� �
d2r

(22)

where es is the surface shear viscosity, ed is the surface dilata-

tional viscosity and _c ¼ 1

2
jþ jTð Þ is the symmetrised velocity

gradient tensor, with j = qv/qr. A bar over a tensor indicates that
we are only considering the traceless, symmetric part of that
tensor.

3.3.2 Rotational relaxation. In this section the friction
matrix entry for the tensor variable C is determined for a range
of packing fractions for the particular aspect ratio k = 4. We use
a mixture of analytic results and computer simulations to guide
the formulation of this entry.

In its simplest form, the friction matrix entry for relaxation
of C to equilibrium would be a constant inverse relaxation
time.27 In the related case of polymer melts, it was found that
the friction matrix depends on the structural state variables.28

We begin by looking at the microscopic system, which is
modelled using hard ellipsoids. Then a Green–Kubo relation-
ship relates the fluctuations of C to its relaxation dynamics15

Mrot ¼
1

kB

ðts
0

_CfðtÞ _Cfð0Þ
� �

dt; (23)

where
:
Cf are the fast fluctuations of the variable C and ts is an

intermediate separating timescale between fast dynamics
(unresolved on the macroscopic level and which we regard as
noise), and the slow dynamics of our state variables. The state
variables should not change systematically on the timescale ts.
This approach was demonstrated successfully to obtain the
friction matrix numerically29 and semi-analytically28 for the
case of polymer melts. To include other inter-particle interac-
tions, it suffices to use the appropriate interaction potential in
the computer simulations.

We note that the average in eqn (23) should, in principle, be
taken at equilibrium or where there exists an appropriate
distribution function describing the out-of-equilibrium state.
Hence eqn (23) may not necessarily be valid in all nonequili-
brium situations. However, in this particular case, we benefit
from the isotropic-nematic transition, giving us access to
equilibrium states with non-zero ordering C a d/2 and we
further benefit from the symmetry of C, which has only one
tensorial invariant. Therefore flow does not lead to a different
tensor structure (which would break the symmetry).

If we make the assumption that the fast rotational dynamics
of a single ellipsoid is described by Brownian motion, we can
formulate an analytic expression with only one unknown para-
meter. Detailed calculations leading to the result eqn (24) are
presented in the Appendix. Whether the Brownian motion is
caused by multiple collisions between colloidal particles, or by
thermal fluctuations of the solvent is unimportant; the only
parameter is the rotational relaxation timescale trot. The theo-
retical result is

Mrotð Þijkl¼
1

kBnptrot
Cikdjl þ Cjkdil þ Cjldik þ Cildjk � 4 C4ð Þijkl
	 


;

(24)

where (C4)ijkl = huiujukuli is the fourth moment of the orienta-
tion distribution, which arises due to the inextensibility of the
particles. It can be expressed exactly in terms of second rank
tensors and the order parameters S2 and S4 in the two-
dimensional case, see eqn (47) in the Appendix. The order
parameters are given by S2 = hcos 2yi and S4 = hcos 4yi, where
y is the angle between particle’s orientation vector and the
director, which is the average orientation of all the particles.
Our exact expression for (C4)ijkl is rather lengthy so we provide it
in the Appendix.

The values of the individual components (Mrot)ijkl can be
matched with those of the tensor in eqn (23) obtained numeri-
cally via equilibrium molecular dynamics simulations. There is
then a single fitting parameter, the rotational timescale trot,
allowing a relationship between trot and Z to be established.
The computer simulations we use to verify the tensor structure
of eqn (24) and to help guide the development of the friction
matrix are event-driven molecular dynamics (EDMD).30 Note
that since we simulate hard ellipsoids-of-revolution confined to
a plane, the moment of inertia I is different compared to a true
two-dimensional ellipse. The temperature of the system is set to
kBT = 1; equipartition then sets the intrinsic units of time in the
simulation. Explicitly, time is measured in our simulations in
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units of ~t ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=kBT

p
. There is no solvent in these simula-

tions to save on computational complexity and efficiency.
The existence of ts is crucial for obtaining a meaningful

friction matrix from simulations, therefore a small discussion
of the various rotational timescales in our model is appropriate.
Thinking about the model when there is a solvent present,
the rotational dynamics of the colloidal particles is due to
Brownian motion and collisions with other colloids, which
introduces two timescales: an intrinsic time for the rotation
of a single particle trot, and the average time between collisions
tcoll. It is expected and verified by our computer simulations
that tcoll decreases monotonically with Z, see Fig. 1. We also
consider that trot is approximately constant for dilute systems
because there are few collisions and changes in orientation are
caused primarily by solvent thermal fluctuations. Then trot

should diverge as the nematic phase and the close packing
limit is approached since it becomes increasingly difficult for
the ellipses to reorientate due to caging effects.

In our EDMD simulations, the origin of the ‘‘noise’’ is
exclusively due to multiple collisions between the ellipsoids,
like in the kinetic theory of gases. The validity of a thermo-
dynamic description requires that there is a clear separation of
timescales between the fast processes (‘‘noise’’) and systematic
changes of the state variables. Therefore we can only use
eqn (23) to construct M when the two timescales trot and tcoll

are sufficiently separated i.e. when trot c tcoll.

3.3.2.1 Isotropic state. For intermediate values of the surface
coverage when the equilibrium state is isotropic, there is no
range of intermediate timescales ts where M is approximately
independent of ts, making it impossible to use eqn (23).
Indeed, this is symptomatic of cases where there is no clear
separation between ‘‘fast’’ and ‘‘slow’’ dynamics. In this range
of area fractions we have that tcoll E trot. We note that previous
studies on the force autocorrelation function of Brownian
particles suggested to choose the separating timescale ts to
be when the autocorrelation function crosses zero for the first

time31 or to fit the (time-dependent) friction to an exponential
decay form, and associate the decay constant with the friction
coefficient.32 However, we try a different approach outlined
below, which we find gives more reliable results for our case.

We begin by noting that the friction matrix must be an
isotropic rank-4 tensor close to the equilibrium isotropic phase
due to symmetry requirements. Take the isotropic limit of
eqn (24) to obtain

lim
S2;S4!0
C!d=2

Mrotð Þijkl¼
1

2kBnptrot
djkdil þ dikdjl � dijdkl
� �

: (25)

Since, close to equilibrium the entropy gradient is a linear
function of C, and the irreversible dynamics is given by eqn (25)
double contracted with the entropy gradient, we expect a time
evolution equation with an exponential decay solution containing
one time constant

CðtÞ ¼ Cð0Þe�t=t þ 1

2
d: (26)

where 1/t = 4[b(Z + aZ2) � 1]/trot is the decay constant, which is
related to the rotational timescale. To test this reasoning, we
perform computer experiments, in which the initial state is out
of equilibrium, and we watch how the components of C relax to
their equilibrium values. To construct the initial configurations,
Monte-Carlo simulations of N = 2025 ellipsoids in the generalised
canonical ensemble are performed, where Lagrange multipliers
are used to specify the average orientation. The initial states have
surface coverages which have an isotropic equilibrium state, but
are held in a nonequilibrium ordered state by the Lagrange
multipliers. For each packing fraction we generate 150 indepen-
dent initial configurations and use our EDMD code to observe the
time series of the orientation tensor components as the config-
urations equilibrate. An exponential decay fits our data rather
well, from which we extract the time constant trot for various
surface coverages, see Fig. 2. Taking inspiration from the slowing
down of dynamics observed as granular materials approach
jamming, we fit the decay constant with a power law

trot = tvisc|1 � Z/ZJ|
�1, (27)

where the fitting parameters are: tvisc = 4.80� 0.40 ~t and ZJ = 0.70�
0.04. The parameter tvisc is the rotational timescale of an ellipsoid
in the limit of zero surface coverage and this could be determined
experimentally by observing the motion of a single adsorbed
particle. We propose that ZJ is the maximal surface coverage that
could be obtained by a random packing of ellipses. However, this
divergence of the relaxation time cannot be observed because
the isotropic-nematic phase transition occurs at a surface cover-
age Zin B 0.65,21 before the system can become jammed.

3.3.2.2 Nematic state. Now we discuss the case when there is
a clear separation of timescales, for example in the nematic
phase (Z 4 Zin) when the relaxation of C is slow compared to
the microscopic timescale. Then there exists a plateau region
where the entries of M are approximately constant. This region
exists between the fast collision timescale and the slow time for
the rotation of a particle tcoll { ts { trot. We perform

Fig. 1 The average time between collisions as a function of surface coverage
fraction. The vertical dashed line represents the approximate position of
the isotropic-nematic transition for aspect ratio 4 ellipses.21 The estimated
uncertainty is smaller than the symbol size.
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equilibrium EDMD simulations of the hard ellipsoids for various
surface coverages in order to calculate the friction matrix entry
using the Green–Kubo type formula of eqn (23). Note that it is
necessary to average over many independent trajectories in
order to calculate the correlation function in eqn (23) suffi-
ciently accurately. Some examples of Mrot extracted from simu-
lations are shown in Fig. 3, where a plateau region is clearly
visible. We can therefore extract a value for each tensor com-
ponent of Mrot by taking its mean value in the range ts A
[20,50]. Comparison of this with the analytic expression for Mrot

yields the rotational timescale trot. We take the simulation
values for S2, S4, C, and C4 to use in the analytic expression
eqn (24). Importantly, the tensor structure of Mrot in eqn (24) is
confirmed by our simulations.

The rotational timescale as a function of the surface cover-
age for the nematic phase can once again be nicely fitted using
a power law trot = tnem|1 � Z/Zmax|�b with a dynamical critical
exponent b = 4.88 � 0.02 and an intrinsic timescale tnem =
(1.11 � 0.20) � 102 ~t. The fit diverges at a significantly higher

surface coverage Zmax ¼ p
 ffiffiffiffiffi

12
p

. This is the maximum possible
surface coverage,33 where the ellipses are arranged regularly on
a lattice and kinetically arrested – at this very high surface
coverage there is no movement possible of the particles without
causing an overlap. We plot the rotational timescale for both
isotropic and nematic surface coverages together with their
power law fits in Fig. 4.

The additional parameter tnem is significantly greater than
the viscous rotational time tvisc because in the nematic phase,
rotation of a single particle requires a collective rotation of all of
its neighbours. The parameter tnem should also be considered
system-dependent, to be estimated by experiment. In our EDMD
simulations of the quasi two-dimensional hard ellipsoid fluid,
we find that tnem is approximately two orders of magnitude
greater than the rotational timescale of a free ellipsoid tvisc.

However, a limitation of our model is that it is unlikely to
accurately model interfaces with extremely high surface cov-
erages due to the increasing possibility of ellipsoidal particles
with orientations pointing out of the interface2 as well as it
being outside the range of validity of the entropy expression
eqn (12). Finally, there is a region around the isotropic-nematic
phase transition where neither method presented above pro-
duces satisfactory results for the timescale trot due to large
critical fluctuations near the transition.

We note that in comparison to the previous Section, where
we had to run the simulation over a timespan longer than the
longest timescale in the system in order to extract trot, in this
Section we see that exploiting thermodynamics results in compu-
tational efficiencies of several orders of magnitude. This is thanks
to the fact that we need only simulate up to the intermediate

Fig. 2 Time constant in eqn (26) as a function of surface coverage. It
is shown with a power law fit eqn (27) that diverges as jamming is
approached (solid black line). Inset: relaxation of the C11 tensor compo-
nent. Initially the system is put into a partially ordered state and we follow
its evolution to the equilibrium isotropic state. The remaining independent
off-diagonal tensor component is intially set to zero and remains zero.

Fig. 3 Typical form of the (Mrot)1111 matrix entry calculated using eqn (23)
for Z = 0.70 (dotted red line) and for Z = 0.74 (dotted blue line). The solid
lines are the (Mrot)1111 matrix entry calculated using eqn (42). The correla-
tion functions used to calculate these results were obtained with a moving
window over a time series 0 o t o 200 with timestep dt = 0.001 and then
further averaged over 20 independent initial configurations.

Fig. 4 Results for the rotational timescale trot for the isotropic and
nematic phases. The solid blue line (red solid line) is the power law fit in
the isotropic (nematic) phase. The approximate packing fraction where the
isotropic-nematic transition takes place is indicated by the dashed black
line. Note the use of a logarithmic scale on the y-axis showing the
significant increase of trot across the isotropic-nematic transition.
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timescale ts, which satisfies ts { trot, especially for high surface
coverages, when collective rearrangements are slow.

4 Discussion of the model

The closed set of time evolution equations describing our
model is obtained from the four building blocks assembled
according to eqn (2), and reads

_r ¼ � @
@r
� ðrvÞ; (28)

_M ¼ � @
@r
� ðvMÞ � @

@r
� stot; (29)

_u ¼ � @
@r
� ðuvÞ � s:jT þ 2es _c: _cþ ed tr _cð Þ2; (30)

_Z ¼ � @
@r
� ðZvÞ; (31)

_C ¼ j � Cþ C � jT � v � @C
@r
� 2C:jTC� 1

teff
C� 1

2
d

� �
: (32)

We have in eqn (28) a statement of mass conservation, and
eqn (29) contains the momentum balance terms, where the
total surface stress is defined as

stot ¼ �gdþPþ ed � esð Þ @

@r
� v

� �
dþ 2es _c: (33)

The total surface stress is the sum of entropic contributions to
the stress and viscous terms. There is no energetic contribution
because in our model, the particles only have excluded volume
interactions. If there were other particle–particle interactions,
these would be represented by a configurational internal energy
density uc(Z,C) term in the energy functional eqn (8). In addi-
tion, there would also be an additional energetic contribution
to the stress due to the structural variables.15

The internal energy time evolution eqn (30) has the usual
convection term and two sources: stress and viscous heating.
The first of the structural variables Z has in its time evolution
eqn (31) a conservation law. The second structural variable C is
upper convected, with the fourth term on the right hand side of
eqn (32) being required to keep the trace of C constant. For our
model, we find a relaxation term with the effective time constant

1

teff
¼ f Z;S2ð Þ S4 � 1ð Þ 1

trot
: (34)

An interesting consequence of such an expression for the
effective time constant is that rotational relaxation is hindered
both by ordering from the factor f (Z,S2)(S4 � 1) as well as the
caging effect of neighbouring particles intrinsic to the rotational
timescale trot. Recall that f (Z,S2) is given in eqn (16). The

remarkable occurence of only a linear (in C� 1

2
d) relaxation

term in eqn (32) is due to the two-dimensional nature of our
system, where the tensor C only has a single tensorial invariant.
However, the effective time constant teff is of course nonlinear
in S2 and Z.

In comparison with the earlier model20 we have corrected the
upper convected behaviour of the tensor variable C so that the
trace is preserved. This leads to a modification of the anisotropic
part of the surface stress eqn (20). Also, we use an expression for
the free energy that is accurate over a wider range of surface
coverages, in particular across the isotropic-nematic transition.21

To study the fundamental physical behaviour of our model
for often-used experimentally imposed flow conditions, we
began with a number of simplifications, namely homogeneity
of the particle surface coverage, temperature, mass density and
surface tension. Therefore the relevant state variables are
reduced to the structural variables Z and C. For numerical
solutions to the model equations, we must specify certain
parameter values, which are summarised here: interfacial area
removed per particles Ap = 10�14 m2, temperature T = 290 K,
rotational timescales tvisc = 1 s and tnem = 102 s, and shear
viscosity es = 10�8 Pa m s�1 corresponding to a water–air
interface34 and we assume for the dilational viscosity ed = es.
For dilatational flow, where the surface coverage can vary
through isotropic–nematic phase transition, we need a method
to smoothly describe the transition of the rotational timescale.
In our numerical solutions, we use a simple method by finding
the intercept between isotropic and nematic trot; for Z below the
intercept we use the isotropic fitting parameter (ZJ) in the
expression for trot, while for Z greater than the intercept we
use the nematic fitting parameters (b,Zmax). In the following,
we use the inbuilt Matlab (Version 8.3, ode15) solver to
numerically solve the set of differential equations. Initial
conditions are always the equilibrium state for the initially
assigned surface coverage.

4.1 Linear viscoelastic behaviour

We begin by examining the linear viscoelastic behaviour of our
model for a general flow. The velocity gradient tensor can be
written as j = j0eiot, where o is the angular frequency of an
oscillatory flow. The response of the orientation tensor is then
C = C0 + Aeiot, where C0 is the orientation tensor at equilibrium
and A is a perturbation. Let us assume that the equilibrium state
is isotropic so that C0 = d/2. Substitution of these two expressions
into eqn (32) and neglecting second and higher order terms gives

A ¼ 1

ioþ 1=t
S ¼ A0 � iA00; (35)

where we recall that t is the rotational relaxation timescale in the
limit of zero ordering and S is the two-dimensional deviatoric
rate of the deformation tensor

S ¼ 1

2
j0 þ j0

T � tr j0ð Þd
� �

:

The corresponding stress response is

P = �2kBTnp f (Z, S2 - 0)[A0 cos (ot) + A00 sin (ot)],
(36)

which is simply the Maxwell model of linear viscoelasticity with
an effective number density �np f (Z, S2 - 0) (note that the
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function f (Z,S2) is negative for Zo Zin and our above analysis is
only valid for this range of surface coverages).

4.2 Steady simple shear

We present numerical results for start-up of simple shear for a
wide range of shear rates in Fig. 5, where the linear regime may
no longer be accurate. We specialise eqn (32) to the case of
steady shear, where (j)xy = _g with _g the shear rate and the other
components of j are equal to zero. The set of equations we
numerically solve reads

_Cxx ¼ 2 _gCxy 1� Cxxð Þ � 1

teff
Cxx �

1

2

� �
; (37a)

_Cxy ¼ _g 1� Cxx � 2Cxy
2

� �
� 1

teff
Cxy; (37b)

where due to the properties of C, we also have that Cyx = Cxy and
Cyy = 1 � Cxx. The shear component of the total surface stress is

(stot)xy = es _g � 4npkBT f (Z, S2)Cxy(Cxx � Cxx
2 � Cxy

2). (38)

For the higher dimensionless shear rates _gtvisc \ 1 we
observe mild stress overshoots. Unlike the model presented
in ref. 20, our properly convected structural tensor variable is
well-behaved, even for large dimensionless shear rates _gtvisc.
Note that our use of the trace-preserving closure in eqn (17)
precludes any tumbling behaviour of the director in the steady
state.35,36 The orientation strength can be interpreted as a
competition between the tendency of the particles to align with
the flow, and the tendency to relax to their equilibrium state,
given by the maximum of the entropy sid + sexcl.

Flow curves calculated from steady state solutions of eqn (37)
are shown in Fig. 6. Increasing the shear rate results in increased
ordering, and the director aligns more closely with the flow
direction. From the total surface stress, we can define the
effective surface shear viscosity, which takes into account
the effect of adsorbed particles as eeff

s = (stot)xy/_g. We show the
effective surface shear viscosity as a function of shear rate for a
range of Z in Fig. 7.

There is a Newtonian regime at low shear rates, when the
flow is not sufficiently strong to cause significant changes in
the alignment. Shear-thinning behaviour is seen in Fig. 7 for all
surface coverages and is caused by ordering and the alignment
of the director with the flow direction. In the limit of high

shear rates, when the particles are perfectly ordered in the
x-direction, they pose no further resistance to flow and we
recover the viscosity of the bare interface.

When the surface coverage is sufficiently high i.e. Z4 Zin, we
observe a mechanically unstable regime in the flow curves
where the shear stress decreases with shear rate (see the lower
right panel of Fig. 6), which would indicate shear banding
behaviour. This behaviour is fairly widespread in complex
fluids37 and has been studied in various theoretical models
of liquid crystal dynamics, which are similar to ours, see the
review by Olmsted38 and references therein. Typically, shear
banding is attributed to strong shear-thinning caused by a large
increase in alignment with a moderate increase in shear rate.
Our model would appear to support this explanation; the
unstable area of the flow curve is precisely where shear-thinning

Fig. 5 Startup simple shear for surface coverage Z = 0.5. From top to
bottom are dimensionless shear rates of _gtvisc = 10, 1, 0.1, 0.01.

Fig. 6 Left panels. Steady state values of order parameter S2 (solid lines),
director angle with respect to the x-axis fd (dashed lines). Right panels.
Shear stress plotted against a dimensionless shear rate for surface coverages
indicated in the legend. Recall tvisc = 1 and tnem = 100.

Fig. 7 The effective shear viscosity eeff
s plotted as a function of shear rate

for various packing fractions.
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is particularly pronounced. Although, recent numerical studies of
various nematodynamic models including hydrodynamics, such
as the study of Forest et al.39 indicate shear banding is actually a
rather delicate matter with a dynamic layering of time-dependent
states.

We note that the other components of the of the stress
tensor are non-zero, meaning that our model predicts a non-
zero normal stress difference for steady in-plane shear of rigid
anisotropic particles

(stot)xx � (stot)yy = 4kBT f (Z, S2)(1 � 2Cxx)(Cxx
2 + Cxy

2 � Cxx),
(39)

which vanishes when the system is in equilibrium. Note that
this normal stress difference is an in-plane and perpendicular
to the direction of shear rather than out of plane.

4.3 Oscillatory simple shear

Oscillatory simple shear has (j)xy = _g as the flow profile, with a
time-dependent shear rate _g(t) = g0o cosot, where o is the
angular frequency and g0 is the maximum shear strain. The
shear strain is defined as g = g0 sinot. Again, the surface area is
conserved so that _Z ¼ 0. The set of equations is the same as
eqn (37) and (38) but with a time dependent shear rate. In this
case, the parameter space is increased to include the amplitude
of shear g0, and angular frequency o.

There are typically three regimes related to the competition
between shear-induced ordering and relaxation. The character-
istic flow timescale is B2p/o, while the effective rotational
relaxation time is teff. We show typical results for the ordering
and stress plotted against strain in Fig. 8 for various angular
frequencies covering a range of ratios between B2p/o and teff.
In the case where relaxation occurs faster than the shear-
induced ordering, the Lissajous stress–strain plots show purely
viscous behaviour and flow-aligning behaviour is weak. More
interesting behaviour is seen when both timescales are similar

in value, then the stress–strain plots show a shear-thinning
behaviour.

In Fig. 9, we show ordering strength and shear stress
Lissajous plots for two different surface coverages Z = 0.40
(isotropic at equilibrium) and Z = 0.75 (nematic at equilibrium).
The stress–strain behaviour for both surface coverages is that of
a purely viscous interface when g0 is small. As g0 increases,
there is significant ordering and the contribution from the
surface microstructure begins to be seen in the form of mild
shear-thinning for Z = 0.40 and in the form of shear-thickening
for Z = 0.75. We interpret this as being due to the fact that the
director is never in the optimal orientation with respect to the
flow when the flow suddenly reverses.

We also present dynamic surface shear moduli for surface
coverages in the isotropic phase in Fig. 10. These are calculated
by Fourier transforming the stress response (stot)xy and extract-
ing the magnitude Ã and phase lag d of the first harmonic.
The storage and loss moduli are then respectively defined as
G0 = (Ã/g0) cos d and G00 = (Ã/g0) sin d.

The top panel of Fig. 10 shows dynamic moduli for an
inverse frequency 1/2p/o c teff. The bottom panel of Fig. 10
contains shear amplitude sweeps in the case where 1/2p/o B
teff. Here, we observe a greater range of behaviours for the
different surface coverages. The lowest surface coverage, Z = 0.4,
exhibits dominant viscous behaviour, while increasing the
surface coverage to Z = 0.5 leads to a more elastic interface
for lower shear amplitudes. As the surface coverage is increased
further to Z = 0.6, the loss modulus shows non-monotonic
behaviour, which is qualitatively similar to the dynamic moduli
obtained experimentally with a monolayer of haematite ellipsoid-
shaped particles with an aspect ratio of B4.6.2

The zero-shear limit of the dynamic moduli G0
0,G0

00 for a
range of surface coverages and both frequencies is presented in
Fig. 11. The storage moduli is found to increase with surface

Fig. 8 Top left. Lissajous plot of ordering against the shear strain for
2p/o = 0.2 s (violet), 2p/o = 2 s (red) and 2p/o = 20 s (blue). Clockwise,
from top right. Lissajous stress–strain plots for Z = 0.4, g0 = 0.5, and flow
timescales 2p/o = 0.2, 2, 20 s. For this surface coverage, and taking into
account the flow orientation, the effective rotational timescale is teff B 1.1 s.

Fig. 9 Left panels: plots of orientational strength as a function of shear
strain. Top shows Z = 0.40 and bottom shows Z = 0.75. Right panels:
Lissajous plots of the shear stress for angular frequency o = 0.05� 2p rad s�1.
We vary the amplitude of the shear amplitude g0 according to the legend.
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coverage. We find power law behaviour for dilute surface
coverages. The storage moduli peak just before Zin and drop
to zero at the isotropic-nematic transition. The contribution to
the interface elasticity comes from flow-induced ordering
effects, which are very weak in the nematic phase Z 4 Zin,
when the particles are already ordered at equilibrium. For Z 4
Zin, we would therefore only expect to see a loss modulus (in the
limit g0 - 0), which only has a contribution from the surface
shear viscosity of the bare interface.

4.4 Oscillatory dilatational flow

We model the oscillating barrier method in a Langmuir trough.
In this experimental technique, barriers oscillate along a single
direction with angular frequency o, causing the surface area A of
the interface to vary in time, i.e. A(t) = A0(1 + G0 sinot), where A0

is the initial surface area and G0 is the amplitude of deformation,
measured as a fraction of A0. The velocity gradient of such a flow
field is therefore given by (j)xx = G0o cos (ot)/(1 + G0 sinot), with
the other components equal to zero. Therefore, in terms of
components of C, the equations of motion to be solved are

_Cxx ¼ 2ðjÞxxCxx 1� Cxxð Þ � 1

teff
Cxx �

1

2

� �
; (40a)

_Cxy ¼ ðjÞxxCxy 1� 2Cxxð Þ � 1

teff
Cxy: (40b)

If we take an isotropic state as the initial condition, eqn (40b) is
identical to zero and we are left with a single equation to be

solved for Cxx. Note, however, that this is still a highly nonlinear
equation due to the dependence of teff on both Z and S2, S4.

Solution of the balance equation for the surface coverage
eqn (31) yields Z(t) = Z(0)/(1 + G0 sinot). Since the surface
coverage varies, we must also take into account its contribution
to the surface tension, see eqn (19) so that the surface extra
stress sex we measured is given by

sex = P � Dgd, (41)

with the change in surface tension given by

Dg ¼ ZT
@s

@Z
� ZT

@s

@Z

� �
t¼0
:

Note that the number density of adsorbed particles np (used
in the entropy densities sid, sexcl) also varies in the same way as
the surface coverage Z.

In Fig. 12 we show the time response of the xx-component of
the surface extra stress defined in eqn (41) to an oscillatory
dilatational strain. The system parameters are Z = 0.4, o = 0.1 �
2p rad s�1 and strain amplitudes varying from 0.02 to 0.45.

Fig. 10 Top panel: dynamic shear moduli plotted against the shear
amplitude for an angular frequency o = 0.01 � 2p rad s�1. Bottom panel:
dynamic shear moduli plotted against the shear amplitude for a higher
frequency o = 0.1 � 2p rad s�1. Both graphs use the same legend.

Fig. 11 Zero-shear amplitude limit of the dynamic shear moduli plotted
against surface coverage for frequencies 2p/o = 0.01 Hz and 2p/o =
0.1 Hz. Note that the dynamic dilatational moduli E0

0, E0
00 in the zero

deformation amplitude limit are (in two dimensions) identical to G0
0,G0

00.8

The vertical dashed line indicates Zin.

Fig. 12 Time response of the xx-component of the stress tensor to the
applied oscillatory dilational strain for a range of strain amplitudes G0. Note
that the maximum surface coverage achieved in the compression phase
for G0 = 0.45 is approximately 0.73. The corresponding Lissajous plots are
shown in Fig. 13.
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Increasing the strain amplitude G0 results in the presence of
higher harmonics in the stress response, which is manifested
by an increasing deviation from purely sinusoidal behaviour.

The corresponding Lissajous plots of Fig. 12 for the orienta-
tion tensor components and the xx-component of the surface
extra stress are displayed in Fig. 13. As expected, in compres-
sion (when the strain is negative), the particles tend to align in
the y-direction, while in extension (when the strain is positive),
the particles tend to align in the x-direction. For small strain
amplitudes (see G0 = 0.02 in Fig. 13), the effective relaxation
time teff changes only a little so the magnitude of flow-induced
ordering is approximately symmetric in the compression and
extension phases. Therefore the Lissajous plot of the stress
shows no nonlinear behaviour. Upon increasing the strain
amplitude, the surface coverage increases in the compression
phase, with a corresponding increase in teff. Relaxation occurs
more slowly here than in the extension phase. This effect is
reflected in the increased flow-induced ordering in the com-
pression phase compared with the extension phase. As a
consequence of the ordering and increased surface coverage,

the stress in the compression phase is significantly greater than
that in the extension phase. Increasing the strain amplitude
even further, we find a sudden and significant resistance to
compression due to the particles approaching a jammed state,
see the bottom panel in Fig. 13. The behaviour seen in our
macroscopic rheological model for dilatational flow illustrates
the importance of a rotational relaxation time and entropy that
varies in the correct way with Z and S2.

The dynamic surface dilatational storage and loss moduli E0

and E00 for the same numerical parameters as above are shown
in Fig. 14. Similarly to the dynamic shear moduli, E0 and E00 are
calculated by Fourier transforming the stress response (sex)xx

and extracting the magnitude Ã and phase lag d of the first
harmonic. The dilatational storage and loss moduli are then
respectively defined as E0 = (Ã/G0) cos d and E00 = (Ã/G0) sin d.
For small strain amplitudes the interface is mostly viscous,
however, elastic behaviour dominates when the particles in the
interface approach a high surface coverage in the compression
part of the flow. The compression also leads to a rapid increase
of the storage modulus E0 for high strain amplitudes, as the
particles approach a jammed state, where they exhibit a greater
resistance to compression, which is also seen in the high strain
amplitude Lissajous plots of Fig. 13.

5 Concluding remarks and outlook

In this paper, we provide not only the tools, but also demon-
strate a simple example, how to derive macroscopic constitutive
equations for the interfacial rheology of complex fluid–fluid
interfaces. For the demonstration of our approach, we begin
with a well-defined microscopic model of hard ellipsoids
confined to a plane. We show the advantage of exploiting
thermodynamics to efficiently bridge timescales when we
extract the long rotational timescale from short time simula-
tions for high surface coverages. The macroscopic constitutive
equations formulated with the aid of nonequilibrium thermo-
dynamics clearly establish the important relationships between
the surface structure and various timescales under different

Fig. 13 Dilatational rheology for initial surface coverage Z(0) = 0.40 and
o = 0.1 � 2p rad s�1. Left column. Lissajous plots of orientation tensor
components Cxx (blue) and Cyy (red) against the strain defined as (A(t) �
A0)/A0 for various area deformation amplitudes from the top G0 = 0.02,
0.10, 0.20, 0.30, 0.45. Right column. Lissajous figure of the xx-component
of the stress plotted against the strain for the same deformation amplitudes
as listed above.

Fig. 14 A strain sweep of the dynamic moduli for Z(0) = 0.3, 0.4, 0.5 and
o = 0.1 � 2p rad s�1. Note the rapid increase in elastic modulus as higher
surface coverages are reached by increasing the strain amplitude.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
9 

A
pr

il 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
' d

i R
om

a 
L

a 
Sa

pi
en

za
 o

n 
25

/0
8/

20
15

 1
5:

59
:0

8.
 

View Article Online

http://dx.doi.org/10.1039/c5sm00372e


4394 | Soft Matter, 2015, 11, 4383--4395 This journal is©The Royal Society of Chemistry 2015

flow conditions. Accurately modelling these relationships is
shown to be crucial for understanding the interfacial rheology
of particle-stabilised fluid interfaces and reproducing the rich
variety of behaviours seen in experiments.2,4

The general nature of our approach (based on systematic
coarse-graining and the nonequilibrium thermodynamic frame-
work GENERIC) can be readily applied to derive reliable consti-
tutive equations for other specific systems of interest, once
sufficiently detailed microscopic models of these systems are
developed.

Appendix: orientational relaxation of
rotators by Brownian motion

Here we present the calculations leading to our theoretical result
for the friction matrix entry for rotational relaxation eqn (24). We
begin with the microscopic expression of the friction matrix
entry,15 which is the integrated version of eqn (23),

Mrot ¼
A

2kBts
DtsCðzÞDtsCðzÞh i; (42)

where A is the surface area of the system, h� � �i denotes an average
over an ensemble of atomistic trajectories consistent with a given
coarse-grained state, Dts

C(z) = C(z(ts)) � C(z(0)) is the incremental
change of C over the time ts and z are the atomistic variables.
Since we are only interested in rotation, z = {u1,. . .,uN}, the set of
N orientation vectors. The time ts is an intermediate timescale
separating the slow from the fast dynamics. If we assume that ts

is sufficiently small such that there is no systematic change of an
ellipse orientation u over the timescale ts, then any changes in u
are due to noise, which we model with a stochastic differential
equation in the Itô prescription40

u tsð Þ � uð0Þ ¼ �1
2
B2tsuð0Þ þ B½d� uð0Þuð0Þ� � DW; (43)

where B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=z

p
is the noise amplitude of the two-

dimensional Wiener process with friction coefficient z and DW =
W(ts) � W(0) is a Wiener increment. Note that the stochastic
dynamics of eqn (43) preserves the normalisation u2 = 1. We can
actually neglect the first term on the right hand side of eqn (43)
since it only contributes second and higher order terms in (ts/trot)
in the correlation function of eqn (42). The quantity Dts

C(z) can
thus be written

DtsCðzÞ ¼ Buðd� uuÞ � DW� ðd� uuÞ � DWu; (44)

where it is understood that u = u(0), X ¼
PN
i¼1

Xi=N denotes the

mean of X and terms of order (DW)2 have been neglected. Note
the ordering of the tensor products and the contractions. Sub-
stitution of eqn (44) into eqn (42) yields the following

Mrot ¼
B2

2kBtsnp
uAuAþ AuuAþ AuAuþ uAAu
� �

; (45)

where we have abbreviated the vector A = (d � uu)�DW and
np = N/A is the number density of adsorbed particles. After some

algebraic manipulations and noting that hDWDWi = tsd along
with the definition C ¼ uu we find that

Mrotð Þijkl¼
B2

2kBnp
Cikdjl þ Cjkdil þ Cjldik þ Cildjk � 4 C4ð Þijkl
	 


;

(46)

which is the theoretical expression for the friction matrix entry
written in eqn (24). We identify the friction coefficient with the
rotational timescale z = trot/kBT to recover eqn (24). Note that the
fourth moment C4 = huuuui appears due to the constraint of
constant length. The fourth moment can be expressed exactly in
terms of the second moment and the identity tensor. From
symmetry considerations C4 can be decomposed into

(C4)ijkl = S4ninjnknl + X(ninjdkl + 5 perms.) + Y(dijdkl + 2 perms.),
(47)

where perms. indicates additional all permuations of the indices
and n is the director, which is the eigenvector associated with the
greatest eigenvalue of C and indicates the direction of ordering.
The coefficients X, Y are uniquely determined by the following
properties of the second and the fourth moment

(C4)ijkk = Cij and Cii = 1, (48)

which when combined with the relationship

Cij ¼ S2ninj þ
1

2
1� S2ð Þdij ; (49)

yields

X ¼ S2 � S4

6
and Y ¼ 3þ S4 � 4S2

24
: (50)

One can then convert eqn (47) to be in terms of C and d rather
than n and d. Finally the order parameter S4 is expressed in terms
of S2 using the generalised canonical ensemble. The distribution
function f for two-dimensional non-interacting rotators is

f ¼ 1

Z
exp½�K:ðuu� d=2Þ� (51)

where K is the Lagrange multiplier, which we can choose to be
L11 = �L22 = l without loss of generality and Z = I0(l) is the
partition function; In is the modified Bessel function of the first
kind of order n. The Lagrange multiplier sets the average orienta-
tion of the ensemble of rotators. Writing the orientation vector as
u = (cos y, siny) we can calculate the ensemble averages in order
to obtain the order parameters

S2 ¼
1

I0ðlÞ

ð2p
0

dy
2p

cosð2yÞe�l cosð2yÞ ¼ I1ðlÞ
I0ðlÞ

; (52)

S4 ¼
1

I0ðlÞ

ð2p
0

dy
2p

cosð4yÞe�l cosð2yÞ ¼ I2ðlÞ
I0ðlÞ

: (53)
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16 M. Grmela and H. C. Öttinger, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 1997, 56, 6620–6632.
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