
LETTERS

Universal scaling between structural
relaxation and vibrational dynamics
in glass-forming liquids and polymers
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If liquids, polymers, bio-materials, metals and molten salts
can avoid crystallization during cooling or compression, they
freeze into a microscopically disordered solid-like state, a
glass1,2. On approaching the glass transition, particles become
trapped in transient cages—in which they rattle on picosecond
timescales—formed by their nearest neighbours; the particles
spend increasing amounts of time in their cages as the
average escape time, or structural relaxation time τα , increases
from a few picoseconds to thousands of seconds through the
transition. Owing to the huge difference between relaxation
and vibrational timescales, theoretical3–9 studies addressing the
underlying rattling process have challenged our understanding
of the structural relaxation. Numerical10–13 and experimental
studies on liquids14 and glasses8,15–19 support the theories, but not
without controversies20 (for a review see ref. 21). Here we show
computer simulations that, when compared with experiments,
reveal the universal correlation of the structural relaxation time
(as well as the viscosity η) and the rattling amplitude from glassy
to low-viscosity states. According to the emerging picture the
glass softens when the rattling amplitude exceeds a critical value,
in agreement with the Lindemann criterion for the melting of
crystalline solids22 and the free-volume model23.

In the solid state atoms oscillate with mean square amplitude
〈u2

〉 around their equilibrium positions (henceforth to be referred
to as the Debye–Waller (DW) factor). With increasing temperature,
solids meet different fates depending on the structural degree
of order. In the crystalline state the ordered structure melts at
Tm, whereas in the amorphous state the disordered structure
softens at the glass transition temperature Tg, above which flow
occurs with viscosity η. The empirical law Tg ' 2/3Tm (refs 1,2,7)
suggests that the two phenomena have a common basis. In fact,
this viewpoint motivated extensions to glasses24 of the Lindemann
melting criterion for crystalline solids22 and pictures the glass
transition as a freezing in an aperiodic crystal structure (ACS)5.

According to the ACS model, the viscous flow is due to
activated jumps over energy barriers 1E ∝ kBTa2/〈u2

〉, where a
is the displacement to overcome the barrier, kB is the Boltzmann
constant and T the temperature. The usual rate theory leads to
the Hall–Wolynes (HW) equation5,21 τα,η ∝ exp(a2/2〈u2

〉). 〈u2
〉

is the DW factor of the liquid, that is, it is the amplitude of the

rattling motion within the cage of the surrounding atoms. This
vibrational regime is assumed to occur on short timescales largely
separated by those of the brownian diffusion. The ACS model is
expected to fail when τα becomes comparable to the typical rattling
times corresponding to picosecond timescales, a condition that is
met at high temperatures (for example, in selenium it occurs at
Tm +104 K (ref. 14)).

Several tests of the HW equation have been carried out21.
However, either the crystal or the glass contributions after
extrapolation in the liquid regime are usually subtracted from 〈u2

〉.
In selenium, the curve log η versus 1/〈u2

〉 is concave, whereas if
the glass or the crystal contribution is removed a convex curve or
a straight line—the latter agreeing with the HW equation—is seen,
respectively14. The fact that many glass-formers have no underlying
crystalline phases, as well as the fact that in many studies removing
the glass contribution, unlike selenium, leads to the HW equation,
raises some ambiguities about the above subtractions.

It seems natural to generalize the HW equation by adopting
a suitable distribution p(a2) of the square displacement to
overcome the energy barriers, independent of state parameters, for
example the temperature or the density. This is motivated by the
observation that, irrespective of the relaxation time, the distance a
particle moves during the structural relaxation is about the same,
comparable to the molecular diameter1. Differently, the amplitude
of the vibrational dynamics 〈u2

〉 is expected to be affected by state
parameters7,9. We choose a gaussian form for p(a2) with a2 average
and σ2

a2 variance. Averaging the HW equation over this distribution
leads to

τα,η ∝ exp

(
a2

2〈u2〉
+

σ2
a2

8〈u2〉2

)
. (1)

Equation (1) yields the leading dependence on 〈u2
〉 even if the

gaussian is truncated to account for a minimum displacement. In
addition to the central limit theorem, other motivations support
the gaussian form of p(a2). For example, if the kinetic unit is
undergoing a harmonic motion due to an effective spring with
constant k, 〈u2

〉 ∝ kBT/k, equation (1) reduces to a form reported
for both supercooled liquids25 and polymers26. Furthermore, along
the same line of reasoning, we may reinterpret the gaussian
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form of p(a2) as a gaussian distribution of the energy barriers
1E ∝ ka2 (ref. 27).

We show that the dependence of the structural relaxation time
on the DW factor collapses to a universal master curve provided by
equation (1). We devised a two-step strategy. First, a master curve is
constructed using extensive molecular-dynamics (MD) numerical
simulations for a bead–spring model28 of a polymer melt. Then
a suitable scaling of both the numerical and experimental data is
introduced to convert the MD master curve into the universal one
including both strong and fragile glasses1 and polymers; the latter,
apart from a few studies17,19, have been little considered.

We now discuss the MD simulations. They involved changes
in the temperature T , the density ρ, the chain length M and
the interaction potential Up,q(r). To characterize the short-time
dynamics and the structural relaxation we use the monomer
mean square displacement (MSD) 〈r2(t)〉 and the incoherent
intermediate scattering function (ISF) Fs(qmax, t), qmax being the
q-vector of the maximum of the static structure factor (see the
Methods section).

Figure 1 shows typical MSD and ISF curves. At very
short times (ballistic regime), MSD increases according to
〈r2(t)〉 ∼= (3kBT/µ)t2 with µ the monomer mass and t the time
and ISF starts to decay. The repeated collisions with the other
monomers slow the displacement of the tagged one, evinced by
a knee of MSD at t ∼

√
12/Ω0 ∼ 0.17, where Ω0 is an effective

collision frequency: Ω0 is the mean small-oscillation frequency of
the monomer in the potential well produced by the surrounding
ones kept at their equilibrium positions29. At later times a quasi-
plateau region, also found in the ISF, occurs when the temperature
is lowered and/or the density increased. This signals the increased
caging of the particle. The latter is released after an average time
τα, defined by the relation Fs(qmax, τα) = e−1 (other definitions
differ by an overall constant due to the superposition of the ISF
curves at long times by a suitable logarithmic shift; see the inset of
Fig. 1b). For t ∼

> τα MSD increases more steeply. The monomers of
short chains (M ∼

< 3) undergo diffusive motion, 〈r2(t)〉 ∝ t δ, with
δ = 1. For longer chains, owing to the increased connectivity, the
onset of the diffusion is preceded by a subdiffusive region (δ < 1,
Rouse regime)23.

The dynamics of the model polymer depends in a complex
way on the state parameters. Nonetheless, we systematically found
that, if two states (labelled by multiplets {T ,ρ, M, p, q}) have
equal relaxation times τα, the corresponding MSD and ISF curves
coincide from times rather longer than τα down to the crossover
to the ballistic regime and even at shorter times if the states have
equal temperatures. Examples are shown in Fig. 1. Notice that
the coincidence of MSD and ISF curves of states with equal τα

at intermediate times (t ∼
< τα) must not be confused with the

customary superposition of ISF curves at long times (t ∼
> τα)

following a suitable logarithmic time shift (see the inset of Fig. 1b).
The above findings clearly show that a correlation between the

structural relaxation and the fast dynamics sets in. We assess it by
correlating τα and the DW factor 〈u2

〉.
Prior to the discussion of the DW factor, we have to clarify

whether the fast dynamics of the monomers takes place in cages.
In this respect, we point out that the product Ω0τα ∼ 20 for states
with the fastest relaxation and much larger for states with slower
relaxation; that is, the structure lifetime is at least one order of
magnitude longer than the collision time. Furthermore, in the
present study we always observe (not shown) that the time velocity
correlation function (VCF), after a first large drop due to pair
collisions, reverses the sign because the monomer rebounds from
the cage wall29.

We now show that the DW factor is a characteristic length
scale of the rattling motion into the cage. The measure of the DW
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Figure 1 MD simulations of the polymer melt. a, MSD time dependence in
selected cases (see the Supplementary Information). The MSDs are multiplied by the
indicated factors. Inset: Corresponding MSD slope ∆(t ); the uncertainty range on
the position of the minimum at t ?

= 1.0(4) (black line) is bounded by the vertical
coloured lines. b, Corresponding ISF curves. Inset: Superposition of the ISF curves.
Four sets of clustered curves (A–D) show that, if states have equal τα values
(marked with dots on each curve), the MSD and ISF curves coincide from times
rather longer than τα down to the crossover to the ballistic regime at least.

factor must take place in a time window where both the inertial
and the relaxation effects are not present. To clearly identify this
time window we consider the quantity ∆(t) ≡ ∂ log〈r2(t)〉/∂ logt ;
representative plots of ∆(t) are given in the inset of Fig. 1a.
∆(t) shows a clear minimum at t ?

= 1.0(4) (corresponding to an
inflection point in the log–log plot of 〈r2(t)〉), which separates two
regimes. At short times, t ∼

< 0.7 < t ?, the VCF always exceeds the
noise floor (not shown) and the inertial effects become apparent. At
long times, t > τα > t ?, relaxation sets in. The short- and the long-
time limits of ∆(t) correspond to the ballistic (∆(0) = 2) and the
diffusive regimes (∆(∞) = 1), respectively. To observe a minimum
of ∆(t) requires that the VCF shows a negative tail at long times.
A monotonically decreasing VCF, that is, no cage effect, leads to
a monotonically decreasing ∆(t). Therefore, the MSD at t ? is a
mean localization length and the DW factor is 〈u2

〉 ≡ 〈r2(t = t ?)〉
(the same definition has been adopted, with no justification, in
ref. 11). Notice that t ?, corresponding to about 1–10 ps (ref. 28),
is consistent with the timescales of the experimental measurement
of the DW factor; see, for example, ref. 14.

Figure 2 shows the dependence of the structural relaxation time
τα on the DW factor. The data collapse on a well-defined master
curve well fitted by equation (1). States with different densities,
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Figure 2 The structural relaxation time τα versus the DW factor 〈u 2〉 from
MD simulations for different chain lengths. Circles identify the cases plotted
in Fig. 1. The dashed curve is equation (1), logτα = α+β〈u 2

〉
−1

+ γ〈u 2
〉
−2

with α = −0.424(1), β = a 2/2ln10= 2.7(1)×10−2,
γ = σ2

a 2
/8ln10= 3.41(3)×10−3. Additional data on the collective relaxation time

τ are also plotted11 (O). The dotted curve is obtained by vertically shifting the
dashed curve (α′

= α+0.205(5)). Inset: The maximum of the non-gaussian
parameter α2max of clusters A–E of states versus the ratio of the quadratic and the
linear terms of equation (1) with respect to 〈u 2

〉
−1.

chain lengths and interaction potentials are included in Fig. 2,
corresponding to different degrees of anharmonicity of the rattling
motion in the cage (that is, nonlinear temperature dependence of
the DW factor) and then to different fragilities4,7,10,12,15,18,19,21. The
scaling shows that for our model system both the average value a2

and the spread σa2 of the square displacement needed to overcome
the energy barriers are not affected by the anharmonicity. The best-
fit value of the average is a2

1/2
∼= 0.35, consistent with both the

observation that 〈r2(t = τα)〉
1/2

∼
< 0.5 (see Fig. 1) and the well-

known result that the atomic MSD during the structural relaxation
is less than one atomic radius (∼0.5 in MD units)1.

The concavity of the master curve in Fig. 2 is a signature
of the heterogeneity of the structural relaxation. The best fit
of our MD data with equation (1) gives σa2 ∼ 0.25, indicating
a distribution of the displacement required to overcome the
energy barriers. The magnitude of the ratio of the quadratic
and the linear terms of equation (1) with respect to 〈u2

〉
−1,

R ≡ σ2
a2 /4a2〈u2

〉, discriminates two different regimes. If the DW
factor 〈u2

〉 is small enough that R is larger than unity, the
distribution of the displacement required to overcome the energy
barriers shows up. In this case, because different a values produce
different monomer mobility, a heterogeneous mobility distribution
is expected. On the other hand, if R is smaller than unity, the
dynamics is homogeneous. To support this scenario we recall
that, on approaching the glass transition, a spatial distribution of
mobilities develops with increasing non-gaussian features of the
molecular displacement2,7,30. The features are characterized by the
maximum α2max of the time-dependent non-gaussian parameter
α2(t) (see the Methods section)30. States with coinciding ISF and
MSD shown in Fig. 1 have coinciding α2(t) curves too (not shown).
For these states we sketch the relation between α2max and R in
the inset of Fig. 2. It is seen that, when R exceeds the unit value,
α2max increases exponentially. Notably, the inset of Fig. 2 reduces
to an activated law for strong glass-formers, where 〈u2

〉 is nearly
proportional to T ; this law has been observed for silica30.
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Figure 3 Scaling of the structural relaxation time τα (in MD units) versus
the reduced mean square amplitude x̃ = 〈u 2

g 〉/〈u 2〉. The grey area marks
the glass transition. The continuous black line is equation (1) rewritten as
logτα = α+β̃x̃+γ̃ x̃ 2 with β̃ = β/0.1292 and γ̃ = γ/0.1294; α,β,γ from
Fig. 2. The numbers in parentheses denote the fragility m. The uncertainty on the
time t ?

= 1±0.4 involved in the definition of the DW factor (〈u 2
〉 ≡ 〈r 2 (t= t ? )〉)

leads to an error on the black curve, which is bounded between the two coloured
continuous curves corresponding to the two definitions 〈u 2

〉 ≡ 〈r 2 (t= 0.6)〉
(magenta, 〈u 2

g 〉
1/2

= 0.134(1)) and 〈u 2
〉 ≡ 〈r 2 (t= 1.4)〉 (orange,

〈u 2
g 〉

1/2
= 0.122(1)).

Equation (1) with the best-fit parameters from Fig. 2 offers the
opportunity to find the DW factor 〈u2

g〉 at the glass transition of
the model polymer system. At the glass transition τα = τα g ≡ 102 s
in laboratory units1, which corresponds to τα g = 1013–1014 in
dimensionless MD units (the time unit corresponds to 1–10 ps
(ref. 28)). Equation (1) yields 〈u2

g〉
1/2

= 0.129(1). This amplitude
corresponds to the ratio v0 ∼ (2〈u2

g〉
1/2)3

= 0.017 between the
volume that is accessible to the monomer centre of mass and the
monomer volume. It has been proposed that the glass transition
takes place under iso-free-volume conditions with the universal
value v0

∼= 0.025 (ref. 23). Furthermore, an extension of the
ACS model (leading to the HW equation) predicts that, just
as for a crystalline solid22, there is a Lindemann criterion for
the stability of glasses: the ratio f = 〈u2

g〉
1/2/d, d being the

average next-neighbour distance of the atoms in the lattice, is a
quasi-universal number24 (f ∼= 0.1). Our data yield f ∼ 0.12–0.13
(d is taken from the monomer radial distribution function), which
is close to f = 0.129 for the melting of a hard-sphere face-centred
cubic solid22.

We are now in a position to show that equation (1) with the
best-fit parameters from Fig. 2 may be recast as a universal curve
by considering the reduced variable x̃ = 〈u2

g〉/〈u2
〉. For MD data

we set 〈u2
g〉

1/2
= 0.129. Figure 3 shows scaling for several glass-

formers and polymers in a wide range of the fragility m, which
measures the rapidity with which viscosity and structural relaxation
change as the glassy state is approached1. The scaling in Fig. 3
must not be ascribed to 〈u2

g〉, which does not correlate with
m (compare m from Fig. 3 and 〈u2

g〉 from the Supplementary
Information, Table S1). Instead, it shows that both the reduced
mean square displacement a2/〈u2

g〉 to overcome the energy barriers
and the spread σa2 /〈u2

g〉 are fragility independent, and then also the
curvature of the master curve, which indicates the heterogeneity of
the structural relaxation.

The experimental data in Fig. 3 were collected by changing
the temperature. In this respect, the universal scaling of Fig. 3
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proves that the well-known increasing deviation of 〈u2(T)〉 from
the linear temperature dependence of the harmonic behaviour
by increasing the fragility index m (refs 4,7,9,18,19) just mirrors
the corresponding increasing bending of τα(T) versus Tg/T
in the Angell plot1 from the glass transition region to the
liquid state. However, the glass transition may be reached under
isothermal conditions by increasing the density or the connectivity
(here expressed by the chain length) as well. Our MD results
highlight the correlation of structural relaxation and vibrational
dynamics also for these alternative routes. This prediction awaits
experimental confirmation.

METHODS

In our numerical simulations each chain is pictured as a freely jointed
linear sequence of M soft spheres, the monomers, with M = 2, 3, 5, 10.
For details see Supplementary Information and ref. 28. The non-bonded
monomers belonging to the same or different chains interact via the
potential Up,q(r) = ε(q − p)−1

[p(σ?/r)q
− q(σ?/r)p

]+ Ucut with σ?
= 21/6σ

(refs 12,29). All quantities are in reduced units: length in units of σ,
temperature in units of ε/kB and time in units of σ

√
µ/ε, where µ is the

monomer mass. The potential is cut and shifted to zero by Ucut at r = 2.5.
The bond length is b = 0.97. Changing the p and q parameters does not
affect the position r = σ? or the depth ε of the potential minimum but
only the steepness of the repulsive and the attractive wings. The monomer
MSD 〈r2(t)〉 is defined as 〈r2(t)〉 = N−1

〈
∑N

j=1[rj(t)− rj(0)]2
〉, where the

sum runs over the total number of N monomers and the brackets denote
a suitable ensemble average. The incoherent ISF Fs(qmax, t) is defined as
Fs(q, t) = N−1

〈
∑N

j=1 exp{−iq · [rj(t)− rj(0)]}〉, qmax being the q-vector of
the maximum of the static structure factor. The time-dependent non-gaussian
parameter is defined as α2(t) = (3〈r4(t)〉/5〈r2(t)〉2)−1 and vanishes if the
displacement r is gaussian.

To prepare Fig. 3, data about the structural relaxation (in seconds) and
the viscosity (in Pa s) were scaled to the MD master curve by logarithmic
vertical shifts +11.5(5) and +1.5(5), respectively, apart from B2O3 (+8.4(5)

and −2.2(5)). Data of polymers refer to τα . Data related to B2O3,OTP and
ferrocene/dibutylphthalate include two independent sets, one for τα , the other
for η, which for simplicity’s sake are presented with the same symbol. See
Supplementary Information for the data sources and further details.
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