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hard helices: a rich and
unconventional polymorphism
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Achille Giacometti,*a Toby S. Hudson,d Cristiano De Michelee

and Francesco Sciortinoe

Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft

matter systems, all featuring the helix as their basic structural unit, from natural polynucleotides and

polypeptides to synthetic helical polymers, and from bacterial flagella to colloidal helices. Here we

present an extensive investigation of the phase diagram of hard helices using a variety of methods.

Isobaric Monte Carlo numerical simulations are used to trace the phase diagram; on going from the low-

density isotropic to the high-density compact phases a rich polymorphism is observed, exhibiting a

special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present

full characterization of the latter, showing that they have unconventional features, ascribable to the

helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-

nematic phase transition, and the results are compared with those stemming from an Onsager-like

theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition;

within the simplifying assumption of perfectly parallel helices, we compare different levels of

approximation, that is second- and third-virial expansions and a Parsons–Lee correction.
1 Introduction

Short-range repulsive interactions are those mainly responsible
for the structure of classical particle uid systems; this is what
originally conferred worthiness to hard-body particle models.1

These have actually proven to be a very good representation of
colloidal particle systems, with a very good agreement between
the theoretical phase diagram of hard spheres and the experi-
mental phase behaviour of colloidal spheres.2 Today, the ever-
increasing importance of colloids and advances in the synthesis
of colloidal particles of non-spherical symmetry3–5 have shown
that the study of hard particle systems may be crucial for the
design of new colloidal materials and are no longer just an
academic curiosity.6
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Helical particles are especially worth investigating as nature
has conferred to the helix a rather prominent role. Helical
polynucleotides and polypeptides function at large enough
densities that the details of their shape start to be relevant.7 The
desire to mimic nature in reproducing the functions carried out
by helical biopolymers has, in turn, led to a very active area in
polymer research – the synthesis and characterisation of helical
polymers, aiming at exploiting the inherent chirality of the
helical structure to produce new functional materials to be
used especially in asymmetric catalysis and enantiomeric
separation.8,9

This material interest merges with its inherent biological
interest in the currently pursued attempt to employ DNA,
perhaps the most emblematic of all helical biomolecular
systems, as a building-block for new materials.10,11

Rather surprisingly, in spite of this wealth of sources of
inspiration, helices appear to have been mostly overlooked in
past theoretical studies on hard-body non-spherical particle
systems, which focus mostly on rod- or disc-like particles,12,13

possibly due to the tacit assumption that helices, as elongated
objects, can be approximated to rods.

To ll this gap, we have undertaken a systematic investiga-
tion of the phase behaviour of hard helices, using numerical
simulation and density functional theory. We have found how
nely the isotropic–nematic phase boundaries depend on the
structural parameters dening a helical particle, with a depen-
dence not simply rooted in its aspect ratio, thus making
Soft Matter, 2014, 10, 8171–8187 | 8171
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Fig. 1 Model for a hard helix, with r its radius and p the pitch.
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mapping onto an effective rod rather loose.14 More importantly,
we have also provided evidence for the existence of a new chiral
nematic phase, named the screw-nematic phase, where the
helix twofold symmetry axes spiral around the main phase
director.15 This was the phase observed in experiments on
systems of colloidal helical laments,16 but our results on such a
basic model suggest this screw-nematic phase to be a general
feature of any helical particle system, including DNA suspen-
sions at sufficiently high densities.17

In the present work, we build upon past work by extending it
in several respects. (i) We present a complete phase diagram in
the density–pressure plane, with a special emphasis on the
smectic phases occurring at densities higher than those typical
of the conventional and screw-nematic phases, and discuss how
the screw-nematic order merges with a tendency towards
layering to produce new chiral, screw-like, smectic phases. (ii)
We perform a detailed study of the isotropic–nematic coexis-
tence. (iii) We extend the second-virial theory for the nematic-to-
screw-nematic phase transition15 by adding the third-virial
contribution, and validate it against numerical simulations.

In the next section, we provide details on the various theo-
retical and computational methods used. We rst describe the
Monte Carlo simulation technique and then the density func-
tional theory at different levels of approximation. Section III
presents and discusses the results, sub-divided into several
parts. In the rst, phase diagrams, as obtained from isobaric
Monte Carlo simulations, are shown and the structure of the
smectic phases occurring in the higher density regions is
described by means of positional and orientational order
parameters and pair correlation functions. In the second part,
attention is paid to the isotropic–nematic phase transition, with
the aim of proper location of the coexisting densities and
pressure. The third part presents the theoretical results for the
nematic-to-screw-nematic phase transition. Finally, Section IV
concludes this work by giving a brief summary and possible
outlooks.

2 Models and methods

Helices were simply modelled as a line of 15 fused hard
spherical beads of diameter D rigidly arranged into a helicoidal
shape, with a contour length xed to L¼ 10D.14 On changing the
radius r and pitch p at xed L, the shape of the helical particle
can be tuned from a straight rod to tightly wound coils (Fig. 1).
We focus on increasingly twisted helical shapes in the range r/D
˛ [0.2; 0.4] and p/D ˛ [2; 8]. Such particles have a sufficiently
large effective aspect ratio to display a rich polymorphic liquid-
crystal phase behaviour, and yet have an intermediate degree of
“curliness” (L/p ¼ O (1)), so that phase sequences and phase
structures are expected to depend sensitively on the overall set
of parameters dening the particle shape. Hereaer, all lengths
will be expressed in units of D.

To trace the full phase diagrams of such objects, we resorted
to Monte Carlo (MC) numerical simulations in the isobaric-
(-isothermal) ensemble (MC-NPT).18,19 These calculations were
preceded by the construction of the initial compact congura-
tions. Additional MC simulations in the canonical ensemble
8172 | Soft Matter, 2014, 10, 8171–8187
(MC-NVT)18,19 were performed in one specic case to identify the
precise values of the volume fractions and pressure at the
coexistence. Onsager theory, in different forms,20–22 was used for
studying the isotropic-to-nematic and nematic–screw-nematic
phase transitions. The remainder of this section provides
details on the various methods used to investigate the phase
behaviour.
2.1 Isopointal search method (ISM)

One of the difficulties arising in simulations of non-spherical
objects stems from the choice of a judicious set of initial condi-
tions that allows a correct span of the whole phase diagram.
Usually, a disordered initial condition is unable to probe the
most compact phases. On the other hand, high-density compact
congurations of particles of arbitrary shape are not readily
envisaged and unexpected features may arise. In this respect,
hard (sphero-)cylinders seem to be an exception;23 hard ellip-
soids, thought for a long time to crystallise in a “stretched-fcc”
structure,24were recently also shown to do otherwise.25 In order to
cope with this problem, we have exploited an isopointal search
method26 to construct compact congurations that we then used
as initial congurations in most of the simulations. The method
hinges on a structural search for dense packing, which is sup-
ported and guided by crystallographic inputs that help to reduce
its computational cost, and coupled to an annealing scheme that
progressively increases the density of a small number of helices
within a unit cell, until the maximum possible packing is
achieved.

Calculations were carried out for a single layer of parallel
helices with their centres of mass lying on the same plane. This
led to a considerable simplication in that one could limit the
analysis to the 17 two-dimensional wallpaper space groups,
rather than having to deal with the full set of the 230 three-
dimensional space groups. When applied to a system of hard
helices with radii ranging in the interval 0.1# r# 1 and pitches
in the range 1 # p # 10, the ISM predicts that, apart from the
peculiar case of p ¼ 1, a specic wallpaper group with a single
helix per unit cell provides the maximum possible packing
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Maximally packed structure for two different cases. (Top) Non-
overlapping circles, the two-dimensional counterpart of hard cylinders
(limit case of helices with r ¼ 0 and p ¼ N, having hhex ¼ p=

ffiffiffiffiffi
12

p
).

(Bottom) Overlapping circles corresponding to hard helices with r ¼
0.2 and p ¼ 3.

Fig. 3 Colour map of the maximal packing fraction (h) as function of
the helix r and p. The digit inserts indicate the value of h. A snapshot of
the corresponding helix is also shown in the inset.

‡ The effective length of helices is taken equal to L + D, where L is the Euclidean
length,14 to which the bead diameter is added.
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fraction. Fig. 2 (bottom panel) provides a top view of the
resulting structure in the case r ¼ 0.2 and p ¼ 3, with the circles
each having their centre coincident with the projection on a
perpendicular plane to the helix axis, and their radius equal to
the helix radius r (the red circle) and to r + D/2 (the black circle).
The black thick lines inside the red circles give the orientation
of the twofold (C2) symmetry axis of the helices. Notice that
they are aligned along the same direction, meaning that
helices are all in register. The darker grey areas indicate
overlapping regions, where the grooves of neighbouring
helices intrude into each other’s voids. For any given helix
morphology, the method provides the shape and area of the
unit cell, also displayed in Fig. 2. The crucial quantity
provided by the calculation is the ratio Ahelix/Acell where Ahelix
is the area occupied by the helix (i.e. the section of the
cylinder containing the helix) and Acell is the area of the
unit cell. Because of the signicant overlap between neigh-
bouring helices, this ratio might exceed unity, as clearly
indicated by the differences in the two pictures in Fig. 2. In
the case of no overlap, the maximal packing would be
bidimensional hexagonal, having a packing fraction
hhex ¼ p=

ffiffiffiffiffiffi
12

p ¼ 0:9064. and with each larger circle inscribed
in the unit cell of area Acell,hex ¼ (2r + D)2p/3 (Fig. 2 top). This is
signicantly different from the reported example of a helix
with r ¼ 0.2 and p ¼ 3 (Fig. 2 bottom) where the black circle
covers a surface substantially larger than the corresponding
unit cell. The result for Ahelix/Acell can then be translated into a
volume fraction as

h ¼ nhelixv0

AcellðLþDÞ (1)

where nhelix is the number of helices in the unit cell (¼1 in the
large majority of the cases, as anticipated), v0 is the volume of
the helix, calculated as in ref. 14, and L is the Euclidean length
This journal is © The Royal Society of Chemistry 2014
(measured as the component parallel to the main axis of the
helix) of the distance between the rst and the last bead.14‡

The value of h is reported in Fig. 3 in a colour map as a
function of helix r and p. Since these values for h have been
obtained by considering each layer as independent, they can only
be regarded as a reasonable lower boundary of the real maximally
packed conguration that could be achieved by a further inter-
layer occupancy optimization. Yet, the so-built congurations
constitute a very handy compact initial condition to achieve well
equilibrated high density structures, as we will see below.
2.2 Monte Carlo simulations

The MC-NPT method27 was used for calculating the equation of
state of a system of hard helical particles. Up to N ¼ 2000 parti-
cles were inserted in a generally triclinic and oppy (i.e. shape
adapting) computational box, with standard periodic boundary
conditions. Such conditions are fully appropriate as long as the
spatial periodicity of the mesophases are comparable with the
particle length scale, as is the case for the various phases that we
will be discussing in the present study. They would not be
appropriate, however, for phases with a periodicity much longer
than the particle size. This is in general the case of the cholesteric
phase,28,29 which for this reason cannot be observed in our
simulations. However, because of its long length scale, the
absence of the twist distortion is not expected to substantially
affect the boundaries and the local structure of the nematic
phase. For this reason, we will henceforth always refer to an
untwisted conventional nematic phase, in spite of the chiral
nature of helical particles. We will return to this point later on.

In the majority of cases, simulations were started from a
compact conguration as generated by the ISM. A few tests were
additionally carried out to check the robustness of the obtained
results with respect to the choice of the initial conditions. Every
simulation run was organised in cycles, each of them consisting
of N/2 translational and N/2 rotational trial moves, performed
either using quaternions or the Barker–Watts method18
Soft Matter, 2014, 10, 8171–8187 | 8173
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supplemented with a rotation around the helix main axis, with
an attempt to vary the shape and volume of the computational
box. The typical length of the equilibration runs was 3–4 � 106

MC cycles. Equilibration runs were then followed by typically 2
� 106 MC cycle-long production runs, during which averages of
several order parameters and correlation functions were accu-
mulated. These quantities were used to characterise and
distinguish the various phases.

Dedicated additional simulations were also carried out with
the helix long axes constrained along a xed direction to vali-
date the theory for the nematic-to-screw-nematic phase transi-
tion described in Section 2.4.
2.3 Order parameters and correlation functions

Different liquid crystal phases will be distinguished by using
appropriate order parameters combined with suitable correla-
tion functions. For the denition of these quantities, we refer to
Fig. 4 where the helix main axis û and secondary axis ŵ, parallel
to the C2 symmetry axis, are shown, along with the unit vectors
parallel to the main phase director (n̂) and to the minor phase
director (ĉ) at a given position. The various order parameters are
calculated as follows.

� The nematic order parameter28,29 is dened as the averaged
second Legendre polynomial

hP2i ¼
�
3

2
ðû$n̂Þ2 � 1

2

�
; (2)

where the average is over the congurations. It can be computed
using the standard procedure patterned aer the early work of
Veilliard–Baron30 by introducing, for each conguration, the
second-rank tensor
Fig. 4 Helix with arrows showing the unit vectors û and ŵ defined in
the molecular frame, and the unit vectors n̂ and ĉ defined in the
laboratory frame. X and Z are the axes of the laboratory frame, with a

the angle between ŵ and the X axis.

8174 | Soft Matter, 2014, 10, 8171–8187
Qab ¼ 1

N

XN
i¼1

3

2
ûi
a
ûi
b
� 1

2
dab (3)

with ûa and ûb the Cartesian components of û and dab the
Krönecker symbol. This second-rank traceless tensor is then
diagonalized to compute the largest eigenvalue and the corre-
sponding eigen-direction. The latter is identied as the con-
guration's nematic director n̂. The maximum eigenvalues are
then averaged over the congurations, to give the order
parameter hP2i dened in eqn (2). This order parameter essen-
tially vanishes in the isotropic phase (I) whereas in the nematic
phase it is distinctly larger than zero and approaches unity as
density increases.

� The screw-nematic order parameter15,17 is dened as

hP1,ci ¼ hŵ$ĉi. (4)

This order parameter measures the average alignment along a
common direction (ĉ) of the secondary axes (ŵ) of the helices
having their centre of mass on the same plane perpendicular
to the main director n̂. In the screw-like conguration, the
minor phase director ĉ, perpendicular to n̂, rotates around it
in a helical fashion with a pitch p. To determine this order
parameter, we have followed the following procedure. For
each conguration, aer having determined the main director
n̂ as explained in the previous item, an untwisting of �2pZi/p
around n̂ is enforced on the coordinates of the particles,
where Zi is the coordinate of the center mass of the i-th helix
along the Z axis parallel to n̂. Then, the quantity ŵ$ĉ is
calculated for each helix and nally hP1,ci is obtained by
averaging over all helices and congurations. The order
parameter hP1,ci thus enables us to distinguish between
the conventional (N) and the unconventional screw-nematic
(N*

S) phases.
� The smectic order parameter28,29 is dened as

hs1i ¼
����
�
ei2p

R$n̂
d

�����; (5)

with R the position of a particle’s centre of mass and d the
optimal layer spacing. Evaluated following standard prescrip-
tions (e.g. ref. 31 and 32), hs1i indicates the onset of a smectic
phase, where particles tend to organise in layers perpendicular
to the director n̂.

� The sixfold bond-orientational (hexatic) order parameter
and the average number of nearest-neighbours. The former
order parameter is dened as:

hj6i ¼
*
1

N

XN
i¼1

����� 1

nðiÞ
XnðiÞ
j¼1

e6iqij

�����
+
: (6)

Here qij is the angle that the i, j intermolecular distance vector
forms with a pre-xed axis in a plane perpendicular to n̂, while
n(i) is the number of nearest-neighbours of molecule i within a
single layer. As hs1i can only signal the onset of a generic
smectic phase, we will then be using hj6i to probe the onset of
hexatic order (e.g. ref. 31 and 33). The piece of information
stemming from hj6i can be supported by computing the
average number hni of nearest-neighbours within each layer,
This journal is © The Royal Society of Chemistry 2014
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that tends to 6 in the hexatic phase. This quantity is computed
by averaging n(i) over all helices in a plane, and over all possible
congurations. We remark here that the actual value of n(i) is
rather sensitive to the denition of nearest-neighbours
distance, which always has a certain degree of arbitrariness,
especially for hard-body particles, and here is taken to be 1.1.
Both j6 and hni display consistent behaviour for different
layers, and hence the results for a single, arbitrary chosen layer
will be shown below.

In addition to order parameters, we have calculated several
positional and orientational correlation functions that provide
a more detailed picture of a single thermodynamic state point.

� The parallel positional correlation function:34

gk
�
Rk

� ¼ 1

N

*
1

rLxLy

XN
i¼1

XN
jsi

d
�
Rk � Rij$n̂

�+
: (7)

� The perpendicular positional correlation function:34

gtðRtÞ ¼ 1

2pRtN

*
1

rLz

XN
i¼1

XN
jsi

d
�
Rt � ��Rij � n̂

���+: (8)

� The screw-like parallel orientational correlation function:15

gŵ1;k
�
Rk

� ¼
*XN

i¼1

XN
jsi

d
�
Rk � Rij$n̂

��
ŵi$ŵj

�
XN
i¼1

XN
jsi

d
�
Rk � Rij$n̂

�

+
: (9)

In eqn (7)–(9), r ¼ N/V is the number density of the system, V
is the volume of the sample, Lx and Ly are the computational box
dimensions along mutually orthogonal directions normal to n̂,
Lz is the computational box dimension along n̂, d() is the Dirac
d-function and Rij ¼ Rj � Ri is the vector joining the centres of
helices i and j.

The rst two positional correlation functions, eqn (7) and (8),
are used to distinguish a homogeneous (isotropic or nematic)
phase (both gk(Rk) and gt(Rt) liquid-like), a layered (smectic)
phase (gk(Rk) solid-like and gt(Rt) liquid-like), a columnar
phase (gk(Rk) liquid-like and gt(Rt) solid-like) or a crystalline
phase (both gk(Rk) and gt(Rt) solid-like). Eqn (9) is used in
connection with the screw-nematic order parameter, eqn (4), for
establishing and quantifying the existence of a screw-like type of
order in the system.
2.4 Density functional theory (DFT)

This section describes the general density functional theory35

framework that has been used for studying the I–N and N–N*
S

phase transitions.
Let us consider a pure systemof hard helices whosemechanical

state is described by a set of translational and rotational variables.
This journal is © The Royal Society of Chemistry 2014
The former are collected under the symbol R, and the latter under
the symbol U. The single-particle density function is then denoted
as r(R, U) ¼ r(x) and normalised such that

Ð
dxr(x) ¼ N.

By retaining only the second and third terms in the virial
expansion, the excess Helmholtz free energy of such a system is
given by:

bFex ¼ 1

2

ð
dxdx0rðxÞMðx; x0Þrðx0Þ

�
�
1þ 1

3

ð
dx00Mðx; x00Þrðx00ÞMðx00; x0Þ

	
; (10)

with b¼ 1/kBT andM(x, x0) theMayer function changed in sign.36

Let us assume that the system can form liquid crystal phases
and that the translational order, if any, is only present along one
direction, Z, with a periodicity equal to p. Thus, the single-particle
density function can be expressed as r(x) ¼ r(Z, U). Therefore the
excess free energy density of the system is given by:

bFex

V
¼ bfex ¼ 1

2p

ðp
0

dZdUrðZ;UÞ
ð
dZ0dU0rðZ0;U0Þ�

aexclðZ;U;Z0;U0Þ þ 1

3

ð
dZ00dU00rðZ00;U00Þa3ðZ;U;Z0;U0;Z00;U00Þ

	
;

(11)

where the functions aexcl(Z, U, Z0, U0) and a3(Z, U, Z0, U0, Z00, U0 0)
have been introduced. The rst is given by:

a
excl



Z;U;Z0;U0

�
¼

ð
dX 0dY 0M



0;Z;U;X 0;Y 0;Z0;U0

�
(12)

and is interpreted as the area of the surface obtained by cutting
with a plane perpendicular to the director and at position Z0 the
volume excluded to a particle with orientation U0 by a particle at
position Z and with orientation U.37 The second function in eqn
(11) is given by:

a3



Z;U;Z0;U0;Z00;U00

�
¼
ð
dX 0dY 0dX 00dY 00M



0;Z;U;X 0;Y 0;Z0;U0

�
M



0;Z;U;X 00Y 00Z00U00

�
M



X 0;Y 0;Z0;U0;X 00Y 00Z00U00

�
; (13)

but does not lend itself to a ready geometrical interpretation.
Since aexcl and a3 actually depend on the differences z0 ¼ Z0 � Z
and z0 0 ¼ Z0 0 � Z, the equation above can be re-written in a
slightly neater way as:

bFex

V
¼ bfex

¼ 1

2p

ðp
0

dZdUrðZ;UÞ
ð
dz0dU0rðZ þ z0;U0Þ

�
aexclðU; z0;U0Þ

þ 1

3

ð
dz00dU00rðZ þ z00;U00Þa3ðz0;U;U0; z00;U00Þ

	
(14)

The single-particle density function can be decomposed as
follows:

r(Z, U) ¼ r(Z)f(U|Z), (15)

with r(Z) the purely translational single particle density, nor-

malised such that ð1=pÞ
ðp
0
dZrðZÞ ¼ r, and f(U|Z) the particle
Soft Matter, 2014, 10, 8171–8187 | 8175
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orientational distribution function at position Z, normalised
such that

Ð
dUf(U|Z) ¼ 1, irrespective of Z. Thus:

bFex

V
¼ bfex ¼ 1

2p

ðp
0

dZrðZÞ
ð
dUf ðU|ZÞ

ð
dz0rðZ þ z0Þ

�
ð
dU0f ðU0|Z þ z0Þ

�
aexclðU; z0;U0Þ

þ 1

3

ð
dz00rðZ þ z00Þf ðU00|Z þ z00Þa3ðU; z0;U0; z00;U00Þ

	
:

(16)

In the I, N and N*
S phases the translational single-particle

density does not depend on Z, i.e. r(Z) ¼ r. Eqn (16) can thus be
re-written as:

bFex

N
¼ r

2

ð
dUf ðU|0Þ

ð
dz0

ð
dU0f ðU0|z0Þ

�
aexclðU; z0;U0Þ þ r

3

ð
dz00

ð
dU00f ðU00|z00Þa3ðU; z0;U0; z00;U00Þ

	
:

(17)

If the expansion is truncated at the second virial term, Onsager
theory20 is recovered. One approximate form of the excess free
energy density was proposed where the expansion is still trun-
cated at the leading order and a pre-factor is introduced that is
meant to correct for higher order terms:21,22

bFex

N
¼ GðhÞ

2
r

ð
dUf ðU|0Þ

ð
dz0

ð
dU0f ðU0|z0ÞaexclðU; z0;U0Þ (18)

where G(h) ¼ (4 � 3h)/4(1 � h)2, h being the volume fraction,
equal to rv0. This will be denoted as the Parsons–Lee (PL)
approximation. It was originally formulated for monodisperse
systems of hard rod-like particles. Later it was used for other
more complex systems (e.g. ref. 37 and 38).

The total free energy density also contains an ideal term36

and a contribution accounting for the entropy cost of orienta-
tional ordering, which is expressed as:

bFor

N
¼

ð
dUf ðUÞln�8p2f ðUÞ: (19)

The orientational distribution function in the I and N phases
is independent of Z, constant in the former and peaked at�n̂ in
the latter. In the N*

S phase it has an implicit dependence on Z
because of the local frame rotation around n̂with a period equal
to p. The equilibrium orientational distribution function is
obtained by functional minimization of the free energy density
under the constraint of normalisation. This leads to the non-
linear self-consistent equation:

ln½Kf ðU|0Þ� ¼ �r

ð
dz0

ð
dU0f ðU0|z0Þ

�
aexclðU; z0;U0Þ

þ r

2

ð
dz00

ð
dU00f ðU00|z00Þa3ðU; z0;U0; z00;U00Þ

	
;

(20)

with K ensuring that f(U) is correctly normalised. Once f(U) is
known, thermodynamic properties such as pressure and
8176 | Soft Matter, 2014, 10, 8171–8187
chemical potential are obtained by differentiating the free
energy.

We determined the I–N coexistence for helices using Ons-
ager theory with PL correction. Since the orientational distri-
bution function in the I and N phases is independent of the
position, f ¼ f(U), eqn (18) takes the form:14

bFex

N
¼ GðhÞ

2
r

ð
dUf ðUÞ

ð
dU0f ðU0ÞvexclðU;U0Þ (21)

where vexcl(U,U0) ¼ Ð
dz0aexcl(U,z0,U0) is the excluded volume. A

modied form of the Parsons–Lee factor was adopted, as
proposed in ref. 39 for non-spherical particles, using the helix
volume v0 calculated as in ref. 14. Numerical minimisation of
the Helmholtz free energy was performed under the constraint
of equal pressure, P, and chemical potential, m, in the two
coexisting phases: PI ¼ PN, mI ¼ mN. Starting from one point in
the isotropic phase (low density) and one in the nematic phase
(high density), calculations at increasing and decreasing
density, respectively, were performed. Coexistence was then
identied by the crossing of the curves for the I and N branches
in the (P, m) plot.

For the second order N–N*
S phase transition we assumed

perfect orientational ordering, which can be justied by the fact
that in MC simulations this phase transition is observed at very
large values of the nematic order parameter. In this approxi-
mation, the functions aexcl and a3 in eqn (17) depend, respec-
tively, on (z0, g0) and (z0, g0, z00, g0 0), with g0 (g00) being the angle
between the ŵ axes of two helices whose centres of mass are
separated by a distance z0 (z0 0) along n̂. Thus eqn (17) becomes:

bFex

N
¼ r

2

ð
d~gf

�
~g|0

� ð
dz0

ð
d~g0f

�
~g0|z0

�
�
aexclðz0;g0Þ þ r

3

ð
dz00

ð
d~g00f

�
~g00 |z00

�
a3ðz0;g0; z00;g00Þ

	
;

(22)

where the angles ~g, ~g0, ~g0 0 dene the orientation of the ŵ axes of
helices in the laboratory frame, so that g0 ¼ ~g0 � ~g, g0 0 ¼ ~g0 0�~g.
In turn, in this approximation eqn (18) becomes:

bFex

N
¼ GðhÞ r

2

ð
d~gf

�
~g|0

� ð
dz0

ð
d~g0f

�
~g0|z0

�
aexclðz0;g0Þ: (23)

Calculations were performed using Onsager theory with and
without PL correction, as well as with the virial expansion
extended to the third order contribution. The orientational
distribution function at various density values was obtained
either by the numerical solution of the integral equation, eqn
(20), by adapting the method of ref. 40, or by numerical mini-
misation of the Helmholtz free energy.14 Compared to the
calculations at a second-virial level, the incorporation of the
third-virial terms called for a signicant, but still manageable,
increase in the computational cost. Note that it has been
assumed that the phase pitch coincides with that of the helix.
Exploratory calculations were performed in which this
constraint was released. These calculations conrmed that the
equilibrium phase pitch coincides with that of the helix, as was
indeed plainly expected and as the MC simulations were
showing.
This journal is © The Royal Society of Chemistry 2014
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3 Results
3.1 Phase diagrams from MC-NPT

We start by presenting the results obtained for the straightest
among the helices investigated, those corresponding to r ¼ 0.2
and p¼ 8. Fig. 5 shows the equation of state of this system, with
the reduced pressure P* ¼ bPD�3 plotted versus the volume
fraction h ¼ Nv0/V. Different phases can be distinguished with
the help of the order parameters and correlation functions
dened in Section 2.3. At low h the system is in the I phase, but
as h approaches a value z0.23, the helices tend to align their
long axis (û) along a common direction, the main director n̂.
The onset of the nematic phase is signaled by a jump of the
order parameter hP2i to a value �0.4, as shown in Fig. 6 (le
panel). This is the conventional N phase, as indicated by the
absence of translational order and the low or vanishing value of
all the other order parameters dened in section 2.3. Above hz
0.4, Fig. 6 (right panel) illustrates how the hP1,ci order parameter
has a marked upswing, the signature of screw-like ordering; the
C2 axes of the helices (ŵ) tend to preferentially align along a
common axis ĉ, orthogonal to n̂ and spiralling around it. Unlike
the nematic phase, this order is locally polar, i.e. the ŵ vectors
Fig. 5 Equation of state for helices having r ¼ 0.2 and p ¼ 8. Different
colours indicate the different phases: I ¼ isotropic, N ¼ nematic, N*

S ¼
screw-nematic, Sm*

A,S ¼ screw-smectic A, SmB,p ¼ smectic B polar, C
¼ compact.

Fig. 6 Order parameters hP2i and hP1,ci, for helices with r ¼ 0.2 and p ¼
(see Fig. 5).

This journal is © The Royal Society of Chemistry 2014
on a given plane perpendicular to n̂ preferentially point in the
same direction. Additional insights on the onset of the N*

S phase
are provided by the correlation functions gk(Rk) and gŵ1,k(Rk),
shown in Fig. 7, for two selected state points corresponding to
pressure P* ¼ 0.9 and P* ¼ 1.0, across the N–N*

S phase transi-
tion. One can clearly notice the difference in the behaviour of
gŵ1,k(Rk) at the two sides of the phase transition, with the func-
tion at P* ¼ 1.0 showing a well developed periodicity that
matches the pitch of the helices p. The sinusoidal behaviour of
gŵ1,k(Rk) is representative of an azimuthal correlation in planes
perpendicular to n̂, and is indeed a footprint of the N*

S phase. A
glance at two snapshots41 also reported in Fig. 7 gives a visual
support of this interpretation. Here, as well as in other snap-
shots reported henceforth, helices are colour coded according
to their P2(cos q) value, where P2 is the second Legendre poly-
nomial and q is the angle between the local tangent to helices
and an arbitrarily chosen axis, not parallel to the main director
n̂. This angle changes as the tangent moves along a helix, so that
P2(cos q) (and thus the colour) changes, with a periodicity equal
to half the pitch p. Therefore, the regular stripes occurring in
the bottom right snapshot of Fig. 7 corresponding to the NS

*

state point (P* ¼ 1), but absent in the bottom le snapshot
corresponding to the N state point (P* ¼ 0.9), highlight the
different organization occurring at the two pressures.

In Fig. 7 one can further notice a small amplitude oscillation
in function gk(Rk) at P* ¼ 1, which is absent in the corre-
sponding lower pressure case P* ¼ 0.9. This is indicative of an
incipient smectic order, which sets in at the slightly higher
pressure P* ¼ 1.1, as conrmed by the solid-like behaviour of
gk(Rk) shown in Fig. 8 (top le). Here we can recognize a peri-
odicity of �12, only slightly longer than the effective length of
the helices, which is equal to 10.88. This is different from the
periodicity of gŵ1,k(Rk) (top right), which corresponds to the helix
pitch p, here equal to 8. Thus the screw-like order has combined
with layer ordering to give rise to a new chiral smectic phase.
The presence of two different periodicities is evident in the
snapshot in Fig. 8. The correlation function gt(Rt) (Fig. 8,
bottom le) does not provide an indication of translational
order within each single layer, and hj6i is found to be very
small. This screw-smectic phase, globally uniaxial with themain
director perpendicular to the layers, is of type A and labelled as
Sm*

A,S. At higher pressure, P*¼ 1.3 (hz 0.52), hexatic order sets
in within each single layer, as shown by the behavior of gt(Rt),
8. Different colours indicate state points belonging to different phases

Soft Matter, 2014, 10, 8171–8187 | 8177
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Fig. 7 The gk(Rk) and gŵ1,k(Rk) correlation functions for helices with r ¼ 0.2 and p ¼ 8, calculated for P* ¼ 0.9 in the N phase (left) and P* ¼ 1.0 in
the N*

S phase (right). Also depicted are two corresponding snapshots, colour coded according to the local tangent as explained in the text.
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which exhibits well developed characteristic double peak
structure, with maxima at

ffiffiffi
3

p
s and 2s (Fig. 9, le panel), s

being the position of the main, nearest-neighbour peak. The
presence of hexatic order is further conrmed by the high value
of hj6i (Fig. 10 le panel) and by the fact that the average
number of nearest-neighbours hni tends to 6 at h z 0.52. The
plot of gŵ1,k(Rk) (Fig. 9, top right panel) shows a clear in-plane
azimuthal correlation, but an absence of the helical periodicity
that was present in the Sm*

A,S phase. The correlation now is only
within layers, which are uncorrelated from each other. This
difference from the Sm*

A,S phase clearly appears from compar-
ison of the relative snapshot of Fig. 8 with those of Fig. 9. We
refer to this phase as smectic B polar (SmB,p), to highlight the
presence of hexatic order combined with polarity within the
layers. Note that the gaps appearing in the gŵ1,k(Rk) are indicative
of the absence of particles with those particular Rk values and
are specic to state points at very high density.

On increasing the helical twist, the onset of unconventional
screw-like phases becomes more and more pronounced. We
rst keep the radius xed at r¼ 0.2 and decrease the pitch down
to p ¼ 4. The equation of state and corresponding order
8178 | Soft Matter, 2014, 10, 8171–8187
parameters are reported in Fig. 11. As for the case of r ¼ 0.2 and
p ¼ 8, there are both N and N*

S phases present, but the latter
becomes predominant in this case. Also the higher density
smectic phase exhibits new features, with the hP1,ci order
parameter being large throughout the entire smectic range with
a nal sudden drop only at the onset of the compact phase C.
Thus all smectic phases exhibit screw-like order. However they
are distinguished by the prole of gt(Rt) and by a substantially
different behaviour of hj6i, which is larger in the state points
belonging to the phase denoted as Sm*

B,S than those of the Sm*
A,S

phase. Perhaps surprisingly, the average nearest-neighbour
number hni in the Sm*

B,S phase remains signicantly smaller
than 6, in spite of the large value of hj6i. As remarked, this
quantity is very sensitive to the denition of the nearest-
neighbour distance, which contains a signicant degree of
arbitrariness, and hence might be more accurate for some state
points than others. A top view of the relative snapshots none the
less conrms the presence of a hexatic ordering in the state
points labelled as Sm*

B,S and not in those labelled as Sm*
A,S.

The “curliest” among the investigated helices are those with
r ¼ 0.4 and p¼ 4, whose morphology is displayed in the inset of
This journal is © The Royal Society of Chemistry 2014
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Fig. 8 The functions gk(Rk) (top left) and gŵ1,k(Rk) (top right) at P* ¼ 1.1, for helices with r ¼ 0.2 and p ¼ 8 (Sm*
A,S phase). Also depicted is gt(Rt)

(bottom left) and a corresponding snapshot colour coded according to the local tangent to helices (bottom right).

Fig. 9 Behaviour of gt(Rt) (top left) and gk(Rk) (top right) and relative snapshots, colour coded according to the local tangent (bottom left) and
to the C2 axis (bottom right) at P* ¼ 1.3, in the case r ¼ 0.2 and p ¼ 8. This state point belongs to the SmB,p phase. Note that in the case of the C2

axis, azimuthal rotations of angles in the range [90�, 180�] are colour coded in the same way as in the case [0�, 90�] because of the limitations in
the QMGA software.41 For this reason, this color coding will not be further exploited in the rest of the paper.
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Fig. 12 showing the equation of state. This exhibits important
differences with the phase diagrams reported in Fig. 5 and 11,
with only two intermediate high-density liquid crystal phases
This journal is © The Royal Society of Chemistry 2014
being present, the N*
S and Sm*

B,S. The system then undergoes a
direct rst-order transition from the I to the N*

S phase, without
an intermediate N phase. This behaviour can be ascribed to the
Soft Matter, 2014, 10, 8171–8187 | 8179
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Fig. 10 Hexatic order parameter hj6i and average nearest-neigbour number hni, both indicative of in-plane hexatic ordering, for helices with r¼
0.2 and p ¼ 8. State points belonging to different phases are coloured as in Fig. 5.

Fig. 11 Equation of state and order parameters hP2i, hP1,ci, hs1i, hj6i and average nearest-neighbours hni (in typewriter order) in the case of r ¼
0.2 and p ¼ 4. Note that in the plot for the equation of state (top, left), additional points between the two extrema have been included in the N*

S

phase, for completeness.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

' d
i R

om
a 

L
a 

Sa
pi

en
za

 o
n 

25
/0

8/
20

15
 1

5:
57

:4
0.

 
View Article Online
combined effect of signicant twist and small effective aspect
ratio, in agreement with the interpretation given above of the
results obtained for the less curly helices. One more novel
feature is a direct transition from the N*

S phase to a smectic
phase with in-plane ordering of Sm*

B,S. The prole of gk(Rk)
obtained at P* ¼ 1.5 (Fig. 13 top panel) indicates layering with a
periodicity close to the effective helix length, 9.47 in the present
case. Hexatic in-plane order is inferred from the behavior of
gt(Rt) (Fig. 13 central panel) and from the corresponding high
value of hj6i. However, differently from the SmB,p phase (Fig. 9),
8180 | Soft Matter, 2014, 10, 8171–8187
here there is additional screw-like ordering, with a period equal
to the helix pitch p ¼ 4, which is evidenced by the correlation
function gŵ1,k(Rk) (Fig. 13 bottom panel) and by the high hP1,ci
order parameter. Another interesting feature supporting the
Sm*

B,S nature of the smectic phase is included in the (red) dotted
line of gt(Rt) (Fig. 13 central panel) that reports the behaviour
of gt(Rt) when the average is limited to a single layer. In
particular, the absence of the rst peak at Rt z 0 in this case,
and conversely present when the average is carried out over all
layers, is a clear indication of a AAA structure, reminiscent of a
This journal is © The Royal Society of Chemistry 2014
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Fig. 12 Equation of state for helices with r ¼ 0.4 and p ¼ 4. Filled
circles refer to the same initial conditions used throughout this work,
whereas filled darker squares refer to different initial conditions, as
detailed in the text.

Fig. 13 Top panel: plot of gk(Rk) in the case of r ¼ 0.4, p ¼ 4, at
reduced pressure P* ¼ 1.5 (Sm*

B,S phase). Central panel: profile of
gt(Rt) calculated by averaging over all layers (solid line) and over a
single layer (red dotted line). Bottom panel: behavior of gŵ1,k(Rk).

This journal is © The Royal Society of Chemistry 2014
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columnar structure, where a helix belonging to a given layer
locks with the one that is stacked immediately on its top, and
belonging to the successive layer, to form an essentially
“innite” helix spanning the full computational box. This
essential difference between the structure of the Sm*

B,S and the
Sm*

B,p phases is summarized in the sketch in Fig. 14. While in
the Sm*

B,S phase (Fig. 14 le) the helices are azimuthally corre-
lated within each plane with a screw-like correlation between
different planes, in the SmB,p phase (Fig. 14 right) only intra-
plane azimuthal correlation is present, with different layers
being uncorrelated both positionally and orientationally. Given
the crucial role that starting congurations may have at high
density, as a nal point it is instructive to dwell on their effect
on the nal phase diagram. We remind at this stage that all the
results discussed so far were obtained by starting from a very
compact initial conguration, obtained by the ISM, and then
equilibrated at the appropriate value of P*. While for the
isotropic and nematic phases a different initial condition would
result in an almost indistinguishable picture, this is not
necessarily true for higher density phases, as it also happens in
the case of hard spherocylinders.23 This turns out to also be the
case here, as reported in Fig. 12, where the original results
(lled circles) are contrasted with those obtained starting from
an equilibrated conguration at the immediately lower pressure
(lled squares). In both cases the rst smectic point was
obtained from the original compact conguration. This small
region of hysteresis indicates a maximal range of uncertainty of
the true thermodynamic coexistence pressure. The results
Fig. 14 Cartoon of the smectic B phases discussed in the text. Circles
represent transversal sections through the center of helices and
arrows represent the corresponding ŵ vectors. I, II, III indicate adjacent
layers. Left: Sm*

B,S phase, with through-layers positional correlation
(AAA structure, highlighted by the dashed lines) and screw-like
(orientational) correlation of ŵ vectors. Right: SmB,p phase, with in-
layer correlation of ŵ vectors and neither positional nor orientational
correlation between layers.

Soft Matter, 2014, 10, 8171–8187 | 8181
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collected so far point to the existence of a rst-order transition
between the compact and the smectic phases; the hysteresis
observed may be interpreted as a signal of it.
3.2 Locating the isotropic-to-nematic phase transition

It proves of interest, at this stage, to discuss how to properly
locate the volume fractions and pressure at the isotropic–
nematic coexistence. The most direct method is a technique
known as Successive Umbrella Sampling (SUS),42 originally
developed for the calculation of the gas–liquid coexistence in
the grand-canonical ensemble. In the isotropic–nematic coex-
istence of hard rods, this has been discussed in ref. 43.
Although it could be clearly applied to the present case as well,
we have found this to be particularly problematic as a result of
the combination of the sole hard-core interactions and the
reduced aspect ratio. As the aspect ratio decreases, the I–N
transition shis to higher densities, and insertion of a particle
becomes increasingly harder. This agrees with a similar obser-
vation made by the authors of ref. 43 in the case of hard sphero-
cylinders, who estimated 15 as the minimum aspect ratio to
study the phase transition with a reasonable computational
effort, whereas our helices have typical aspect ratios of the order
of 10 or less. This notwithstanding, SUS can still be applied to a
helical particle system by using a somewhat more elaborate
procedure that will be discussed elsewhere.

Under these conditions, we have here found it more conve-
nient to resort to a different procedure that, albeit less direct, is
still able to provide a rather accurate value of the coexisting
densities and pressure. The basic idea is to perform, via MC-
NVT simulations, a detailed description of the equation of state
across the I–N transition, and then use an equal area
construction to infer the coexisting volume fractions and pres-
sure. This is depicted in Fig. 15 in the case of r ¼ 0.2 and p ¼ 4,
Fig. 15 Equal area construction in the case of r¼ 0.2 and p¼ 4. Points
are results from MC simulations, traversed by their Akima spline
interpolation. Resulting values for coexisting volume fractions are hI ¼
0.2642 � 0.0002 and hN ¼ 0.2772 � 0.0001 (crossed points) at
pressure PIN ¼ 0.4805 � 0.0035 (dotted line). Also displayed are the
results from DFT (thick solid line).

8182 | Soft Matter, 2014, 10, 8171–8187
which is an expansion of the case analyzed in Fig. 11 close to the
I–N phase transition. The Mayer–Wood loop44 is consistent with
a rst order transition, and an equal area construction provides
the two coexisting volume fractions hI ¼ 0.2642� 0.0002 and hN

¼ 0.2772 � 0.0001 (crossed points) at pressure PIN ¼ 0.4805 �
0.0035 (dotted line). Notwithstanding the nite size effects, it is
worth noticing that the precision and reliability of this result
does not unfavourably compare with those usually obtained via
SUS calculations.

These ndings can be contrasted with those obtained via
DFT theory, eqn (21), as illustrated in Section 2.4. This result is
also reported in Fig. 15 as a thick solid line. Roughly speaking,
we nd that DFT underestimates the coexistence pressure by
z15% and the coexistence densities byz4%. This is consistent
with previous comparison with NPT simulations14 and with the
typical accuracy achieved by DFT calculations.
3.3 Theoretical description of the nematic–screw-nematic
phase transition

In this subsection, we will assess the accuracy of the various
DFT approximations introduced in section 2.4 to investigate the
N–N*

S transition, through a direct comparison with numerical
simulations. To this end, we will consider the particular case of
helices having full translational and azimuthal freedom, but
with their û axis parallel to the n̂ director. This assumption,
partly justied by the observation that the N–N*

S phase transi-
tion occurs at large values of the nematic order parameter, has
the advantage of simplifying the theoretical treatment and
considerably reducing its computational cost. This notwith-
standing, it can still be useful for several different reasons.
Firstly, it provides direct insights into the order of the N–N*

S

transition and its relationship with the helix morphology,
decoupled from the effects of the particle structure on the
stability of the nematic phase. Secondly, it allows us to probe
the reliability of theory to describe this rich and unconventional
scenario. Finally, it is an interesting problem in its own right as
the behavior of non-convex hard particles has so far been largely
overlooked in spite of the large number of examples in real
systems.
Fig. 16 The function aexcl(z0, g0) (see eqn (22)), calculated for helices
with r ¼ 0.4 and p ¼ 4.322.

This journal is © The Royal Society of Chemistry 2014
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Fig. 17 Equation of state (top) and screw-nematic order parameter as a function of the volume fraction h (bottom), for perfectly aligned hard
helices with r¼ 0.2 and p ¼ 9.925 (left) and p ¼ 4.839 (right). Results are shown from Onsager theory (dotted), frommodified PL theory (dashed)
and from third-virial theory (solid). Top panels: green is for the N phase and red for the N*

S phase. Symbols are results from MC simulations: N
(empty circles), N*

S (full circles) and Sm*
S (full squares).
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We remark that, unlike previous cases, we have used here the
number of complete turns (n) as an input variable, thus
resulting in a non-integer pitch value p. The relation between n
and p can be found in ref. 14. Fig. 16 gives an example of the
function aexcl(z0, g0) (eqn (22)), for the case with r ¼ 0.4 and p ¼
4.322. This function exhibits oscillations, whose number
reects the number of turns in the helix. Oscillations are
comprised of the values of excluded area for cylinders enclosing
the whole helix (aexcl ¼ p (2r + 1)2) and for cylinders enclosing a
Fig. 18 Equation of state (top) and screw-nematic order parameter as a
helices with r ¼ 0.4 and p ¼ 9.679 (left) and p ¼ 4.322 (right). Results are s
and from third-virial theory (solid). Top panels: green is for the N phase
(empty circles), N*

S (full circles) and Sm*
S (full squares).

This journal is © The Royal Society of Chemistry 2014
linear chain of beads (aexcl ¼ p), as they should. The decrease of
aexcl resulting from the interpenetration of helices is related to
the entropy gain that drives the formation of the N*

S phase.
Fig. 17 shows the equation of state and screw-nematic order

parameter as a function of h for the cases with r ¼ 0.2 and p ¼
9.925 and 4.839, while Fig. 18 shows the same quantities for the
cases with r ¼ 0.4 and p ¼ 9.679 and 4.322. These gures
provide results from second- and third-virial theories along with
corresponding MC simulation data. We can see that for these
function of the volume fraction h (bottom), for perfectly aligned hard
hown fromOnsager theory (dotted), frommodified PL theory (dashed)
and red for the N*

S phase. Symbols are results from MC simulations: N

Soft Matter, 2014, 10, 8171–8187 | 8183
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Fig. 19 The screw-like coupled translation and rotation.

Fig. 20 Cartoons of the cholesteric (top) and screw-nematic (middle)
organizations. Here, ĥ is a unit vector parallel to the axis around which
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helices, which have a pitch larger than the bead diameter, the
location of the phase transition is essentially determined by the
radius r, depending mildly on p, and in particular it occurs at
increasing density with decreasing radius. This can be under-
stood by considering that less curly helices have weaker oscil-
lations of aexcl, thus a lower entropy gain is achieved for them
upon the settling in of the screw-like order. Present results
would seem to hardly reconcile with the phase diagrams shown
in Sec. III A, where the N–N*

S phase transition occurs at a volume
fraction that increases on moving from r ¼ 0.2, p ¼ 4, to r ¼ 0.4,
p ¼ 4 and then to r ¼ 0.2, p ¼ 8. However, it has to be recalled
that, on one hand, the hard helices considered here have the
same contour length and their effective aspect ratio thus
decreases on going from straight to curly particles and, on the
other hand, that in the MC-NPT simulations the helices are
freely rotating. The onset of any liquid-crystalline order thus
always competes with the I phase, which is favoured at low
densities and whose stability shis to higher densities as the
effective aspect ratio becomes smaller.

Compared to the MC data for perfectly aligned helices, while
a purely second-virial theory alone proves overall inadequate,
signicant improvements are achieved when including PL
correction and the third-virial term. By looking at each and
comparing all these gures, it seems that the predictions of a
third-virial theory improve as r increases and p decreases, to
such an extent that, for the cases with r ¼ 0.4, quantitative
agreement is found between theory and simulations. This
situation is in a way spoilt by the fact that the phase observed in
the simulations at higher densities is actually a Sm*

S § rather
than a N*

S phase. Theoretical calculations that include the
former are not available at present (it would amount to dealing
with eqn (16) rather than the simpler eqn (17)). In spite of this
caveat, results from the third-virial theory are considered
encouraging overall.

4 Discussion

We are now in the position to try and understand the physical
origin of the phase sequence exhibited by helical particles. The
nematic phase spans a density range that can be subdivided
into two regions, the rst being the conventional N phase at
lower densities, the second being the screw-like N*

S phase at
higher density. The relative width of the two regions varies
depending upon the helix parameters, but with the screw-like
N*
S phase always popping out at the right edge of the nematic

window, while the N phase may or may not be present. Indeed,
the latter can be absent altogether for a sufficiently high degree
of curliness as shown by our results in the case of r ¼ 0.4 and p
¼ 4. Indeed, on increasing the helical twist, the relative width of
the screw-like region increases with respect to the conventional
N region, until the latter eventually disappears. The underlying
mechanism is as follows.

Imagine having two neighbouring helices that are suffi-
ciently far apart to be able to rotate about their own main axis.
§ We did not pursue the further characterisation of this screw-smectic phase as
this would have been unnecessary here.

8184 | Soft Matter, 2014, 10, 8171–8187
Effectively, they behave as cylinders, their specic helix char-
acter being rather irrelevant, and the liquid-crystal phase they
may be in is the conventional N phase. This is however no
longer the case if the two helices are in close contact one
another so that neighbouring grooves signicantly intrude into
each other into a in-phase locked conguration, as illustrated in
Fig. 19. Because of this azimuthal locking of the C2 axes, there is
then a severe limitation on the rotational entropy and there
must then be a correspondingly higher gain in translational
entropy in order for the new chiral nematic phase to be stable
with respect to the N phase. This is achieved through a screw-
like organization, schematically illustrated in Fig. 19, where the
right helix rotates about its own axis by performing an addi-
tional translation along the same axis. The N*

S is a novel kind of
chiral nematic phase, different from the well known cholesteric
phase. The latter may be formed in general by any kind of chiral
mesogenic particle, whereas the former is specic to helical
particles. It may be useful to highlight the analogies and
differences between these phases. In the cholesteric phase the û
either the molecular axis û (cholesteric) or ŵ (screw-nematic) spirals.
In the latter case, the tip of the tangent to the helices T̂ forms a conical
path (bottom).

This journal is © The Royal Society of Chemistry 2014
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Table 1 Summary of the different phases exhibited by hard helices. (a)
û axes oriented along n̂; (b) as in N with azimuthal coupling of ŵ axes
along ĉ that in turn spirals about n̂; (c) as in SmA with azimuthal
coupling of ŵ axes along ĉ that in turn spirals about n̂; (d) as in SmA

with additional in-plane polar and hexatic order; (e) as in Sm*
A,S with

additional hexatic order

Phase Code Organisation type

Conventional nematic N (a)
Screw-nematic N*

S (b)
Screw-smectic A Sm*

A,S (c)
Polar smectic B SmB,p (d)
Screw-smectic B Sm*

B,S (e)
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axes of the helices spiral around a perpendicular axis (ĥ) as
illustrated in Fig. 20 (top). The order of the û axes is non-polar,
i.e. there is up-down symmetry. In the N*

S phase the û axes of the
helices are preferentially aligned along the same direction
throughout the sample, but the transversal ŵ axes spiral around
this direction, as depicted in Fig. 20 (center). In this case the ŵ
axes have polar order, i.e. they preferentially point in the same
direction. Another important difference between screw-nematic
and cholesteric phases is the length scale of the phase period-
icity, which is equal to the pitch of the helical particles in the
former, and orders of magnitude longer in the latter. This is the
reason why the screw-like organization, unlike the cholesteric,
can be observed in simulations with box sizes of a fewmolecular
lengths and standard periodic boundary conditions.

A different description of the screw-nematic phase could be
made, in terms of the Frenet frame routinely used for the
description of exible and semi-exible polymers (e.g. ref. 45).
This however provides a redundant description for rigid objects
of nite lengths such as the helices considered in the present
work. Using this picture, the tip of the local tangent to the
helices (T̂) follows a conical path on moving along the director
n̂, due to the variation of the azimuthal angle at a xed polar
angle, as shown in Fig. 20 (bottom). This was the description
used in ref. 16 to explain the experimental results for helical
agella and that led to denoting this phase as conical.46,47 We
also have found it useful for the visualization of snapshots
colour coded according to the local tangent of helices.

The situation is expectedly much more complex in smectic
phases, where screw-like organization, layering and hexatic
order may compete and combine one another. As the system is
entering a smectic phase, there still exists a non-negligible
fraction of interlayer helices while positional ordering along the
n̂ direction progressively increases. These helices lying in the
interlayer regions provide a bridge between two adjacent layers,
and allow a screw-like organization to be present throughout
the whole smectic phase. When the concentration of helices is
still moderate, hexatic ordering is not signicantly present and
the rst smectic phase encountered upon increasing density is
Sm*

A,S. As in the nematic phase, this roto-translational coupling
may be more or less effective depending upon the morphology
of the helix, but it is always present in the initial part of the
smectic phases.

As pressure is further increased, the hexatic order gradually
sets in, typically accompanied by a concomitant increase in the
azimuthal correlation of the ŵ axes of the helices within each
layer. This may lead to two different, and up to a certain extent
competing, effects. The rst possibility is that the helices are
azimuthally aligned within each layer, but with neither posi-
tional nor orientational correlations between the layers. Each
layer can also in principle rigidly slide with respect to adjacent
layers to gain translational entropy. Under these conditions,
layering is very strong as testied by the solid-like peaks in the
observed gk(Rk). This situation, depicted in the cartoon of Fig. 14
(right panel), differs from the conventional smectic B phase in
the presence of the in-plane (polar) correlation between the ŵ
axes of helices, and hence the phase was denoted as SmB,p.
This journal is © The Royal Society of Chemistry 2014
The alternative scenario stems from the possibility that the
tips of the helices protruding out from a layer are still able to
propagate the ordering to the neighboring layers. Thus, helices
belonging to different layers stack on top of each other along n̂
to form parallel, “innitely” long, helices. The alignment of the
ŵ axes then translates into a screw-like ordering propagating
across the layers. Under these conditions, clearly different
layers are strongly correlated with each other. The layer struc-
ture along n̂ is preserved, but positional ordering along n̂ is less
effective, due to the presence of protruding helices, as testied
by the reduced peaked structure of gk(Rk). This is the situation
represented in the le panel of Fig. 14. We denoted this phase
as Sm*

B,S, because it couples layering with hexatic positional
ordering and screw-like azimuthal correlations. The entropic
advantage of this scheme is to form a set of “innite” parallel
helices, which allows the favourable screw-like motion to be still
operative. One may envisage the additional presence of a
columnar phase in the case of helices with sufficiently long
contour lengths, well beyond those considered here. This is a
subject that deserves a dedicated study.
5 Conclusions and outlook

In this work, we have studied the self-assembly properties of
systems of hard helices as a function of helix morphology.
Helical particles have been modelled as a set of fused hard
spheres properly arranged to form a rigid helix of a xed
contour length. Using a combination of numerical simulations
and density functional theory, we have analyzed the sequence of
different liquid crystal phases appearing at increasing density,
using a set of suitable order parameters and correlation
functions.

The rich and unconventional polymorphism that we found is
in striking contrast with the conventional wisdom of approxi-
mating the phase behaviour of helical particles to that of rods,
an assumption commonly adopted also in the analysis of
experiments on helical (bio)polymers. Table 1 summarizes the
distinctive features of all phases discussed in this work.

The rst novel phase encountered with increasing density is
the screw-nematic (N*

S) phase. As neighboring helices tend to
lock into an in-phase nematic conguration by an azimuthal
correlation of the helix ŵ axes along a common direction ĉ,
there must be a concomitant gain in translational entropy
Soft Matter, 2014, 10, 8171–8187 | 8185
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counterbalancing that loss of rotational entropy for this new
phase to be stable. This is achieved through a translational-
rotational coupling where ĉ spirals around the main nematic
director n̂, with a periodicity equal to the pitch of the single
helix. We have also implemented density functional theory with
increasing degrees of accuracy for the screw-nematic N*

S phase,
under the assumption of perfectly aligned helices, and tested its
accuracy with numerical simulations on the same system. We
nd the results of the most accurate versions of the theory in
reasonably good quantitative agreement with numerical
simulations.

With increasing density a smectic A phase with screw-like
order (Sm*

A,S) can appear, which differs from the N*
S in the

presence of layers. However, helices laying in the interlayer
regions provide a bridge between adjacent layers, which allows
retention of the screw-like organization. As density increases,
positional ordering along n̂ also increases, while in-plane hex-
atic order tends to set in. This leads to the formation of either a
polar SmB,p phase, characterized by the fact that different layers
can rotate and translate independently of each other with no
coupling between orientations of ŵ axes in different layers, or of
a Sm*

B,S phase, with screw-like coupling between adjacent layers.
Our results indicate that a SmB,p phase is more favoured for
slender helices, with a gradual transition to screw-smectic Sm*

B,S

phases for curlier particles. At even higher densities, a very
compact phase, that we generally labelled as C, is achieved. This
phase is likely to display some regular crystal structure, as
indicated by the regular peaks in several correlation functions
that we have monitored. A detailed study of this phase will be
discussed elsewhere.

The results presented here call for experimental verication.
To this purpose, an important distinctive feature of most of the
novel phases identied in our study is the presence of a phase
modulation with the periodicity equal to the pitch of the
constituting helical particles. In principle, helical biopolymers
such as DNA or helical colloidal particles appear to be good
candidates for this investigation.48–50 Indeed, a screw-nematic
phase was already observed a few years ago in colloidal
suspensions of helical agella isolated from prokaryotic
bacteria.16 The helical pitch p of these particles is mm in size and
hence the phase modulation is easily visible under polarized
optical microscopy. However, for chiral polymers typical values
of the pitch are in the nm range, which is far too small to be
observable by any optical microscopy. In this case the experi-
mental determination of the phase periodicity constitutes an
experimental challenge. We hope that our study can stimulate
new work in this direction.
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