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This remark details a number of source changes that are required to the software package associated with [3]

(1) to ix bad estimates of roots for some rare polynomials
(2) to improve overall accuracy of roots of polynomials with random coeicients, which were used for the

statistical analysis in [3, Section 3.2]

In the routine oqs_quartic_solver if �2, as deined in [3, (65)], is close to 0, the ���� decomposition on
which the present algorithm is based cannot be achieved and a diferent strategy is required as discussed in [3].
Assessing whether �2 can be considered zero or not is a delicate point and it turned out that, for some polynomials,
the original strategy wrongly identiied �2 ≠ 0, which led to large errors in the estimated roots. For example,
correct estimates of the roots of the following polynomial

�4 + 2.2459773428819827�3 − 14.480985471938862�2 − 17.678187643398402� + 1.0 = 0.0 (1)

are

−1.177171432473146, 0.05418276103215475

−4.560692070110519, 3.437703398669528

however the original codes provides the following bad estimates

2.299680318701711 − 1.98613863196097 × 10−8�

2.299680318701711 + 1.98613863196097 × 10−8�

−3.422668990142702 − 2.956017430098731 × 10−8�

−3.422668990142702 + 2.956017430098731 × 10−8�

This issue arises, since the condition for �2 ≈ 0 used in the original code (see [3, (65)]) is too stringent and the set
of coeicients �1, �1, �2, �2 is erroneously calculated as if �2 ≠ 0. This condition was adapted from a termination

Author’s address: Cristiano De Michele, Dipartimento di Fisica, łSapienzaž Università di Roma, P.le A. Moro, 2, Rome, I-00185, Italy,

cristiano.demichele@uniroma1.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2020 Association for Computing Machinery.

0098-3500/2020/1-ART1 $15.00

https://doi.org/10.1145/3386241

ACM Trans. Math. Softw.

HTTPS://ORCID.ORG/0000--0002--8367--0610
https://orcid.org/0000--0002--8367--0610
https://doi.org/10.1145/3386241


1:2 • Cristiano De Michele

criterion for inding the zeros of a polynomials discussed in [1], where a less stringent criterion is also discussed.
For our problem this amounts to using the condition

�2 ≤ ��
(

|2�/3| + |�0 | + �
2
1

)

(2)

instead of [3, (65)]. Note that, since this condition is less stringent, it is more likely that the code will check for
the best set of coeicients �1, �1, �2, �2 (see the discussion on [3, page 10]). As a result of this ix, we have added
the polynomial given by (1) to our accuracy tests as case 25.
In addition, an improvement has been implemented in the Newton-Raphson (NR) algorithm discussed in [3,

Section 2.3] and implemented in the routine oqs_NRabcd. This improvement relies on the following observations:

(1) An improper termination criterion in NR may lead to large errors in the roots, if NR were to terminate
too early without suiciently improving the initial guess. The original termination criterion is based on
the total relative error �� , of coeicients �1, �1, �2, �2, as deined in [3, (105)], i.e. if �� increases, then NR
terminates. If this criterion is replaced with a one based on the increase of the absolute error

���� =
︁

�

|�� | (3)

where �� is the �-th component of vector F deined in [3, (104)], very large errors in the roots can be obtained,
as in case 19 of accuracy tests discussed in [3, Section 3.1]. With this termination criterion large errors
occur in the quartic roots, since NR terminates during initial iterations when the set of coeicients �1, �1,
�2, �2 are far from the solution and the total absolute error is still large. Note also that if NR is able to
overcome these initial steps, both absolute and relative total errors converge to values close to zero.

(2) On searching for the best set of coeicients �1, �1, �2, �2, if we attempt to minimize the total absolute error
���� (instead of the total relative error), more accurate roots of the quartic equations are found (see Fig. 1
below and the related discussion).

Hence, in the new NR algorithm, we decided to keep the original termination criterion based on the total relative
error, but to choose the set of coeicients �1, �1, �2, �2 associated to the minimum absolute error ���� obtained
over all NR iterations.
To implement this new algorithm, the one described in [3, Section 2.3] must be replaced with the following

(where changes are underlined):

(1) Being z = (�1, �1, �2, �2)

(2) Calculate the vector F.
(3) Calculate the absolute error ���� , as in Eq. (3), and total relative error �� as in [3, (105)].

(4) set ���� = ���� and z��� = z.

(5) If ���� = 0 terminate

(6) If J =
�F(�1,�1,�2,�2 )

� (�1,�1,�2,�2 )
, i.e. J is the Jacobian matrix of F, calculate its inverse J−1 (see [3, (106)])

(7) If det(J) = 0 terminate.
(8) Store the actual value of �� , i.e. set �� = ��
(9) Update z as follows

z← z − J−1F (4)

(10) Calculate the new values of F, �� and ���� .
(11) if ���� < ���� , set ���� = ���� and z��� = z.

(12) If ���� = 0, terminate.
(13) If �� > �� , terminate.
(14) Go to step 6.
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Fig. 1. Plot of the cumulative distribution function � (���� ) for samples A − F where straight lines are results from original

algorithm and symbols are ones from codes with changes discussed in the present remark paper.

We also increased the maximum number of possible iterations from 8 to 20. Accuracy tests as reported in [3,
Table 1] are unafected to all digits by the above changes and roots are identical in all cases. Similarly, the above
changes do not impact on algorithm eiciency at all. In Fig. 1 we show the curves of the statistical analysis, as
discussed in the original paper (see [3, Section 3.2]), obtained with both the original code and the new code. The
present statistical analysis was carried out by generating a set of 2 × 1011 quartic polynomials for all samples.
It can be seen that the cumulative probabilities in samples A-E are almost identical to original ones, while for
sample F the change implemented in the routine oqs_abcdNR provides a signiicant better accuracy, since in
this case the old cumulative probability is up to twice as large than the new one. We inally note that identical
changes have been applied to the version of the quartic solver for polynomials with complex coeicients.

In addition to sources and drivers which accompany the present paper, a C++ implementation of the algorithm
is freely available (see [2]).
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