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INVITED ARTICLE

Theory of self-assembly-driven nematic liquid crystals revised
C. De Michele

Dipartimento di Fisica, “Sapienza” Università di Roma, Rome, Italy

ABSTRACT
Concentrated solutions of short blunt-ended DNA duplexes at room temperature can form
liquid crystal phases due to stacking interactions between duplex terminals which induce the
aggregation of the duplexes into semi-flexible linear chains. Mesophases observed in these
systems include nematic, columnar and cholesteric ones. This experimental system is just one
of many examples, where liquid crystals ordering emerges as a result of molecular self-
assembly into linear chains. In the attempt to go beyond a simple Onsager theoretical
approach to understand the thermodynamic behavior of this system, we introduced some
years ago a general theoretical description, which models the isotropic-nematic transition by
properly taking into account molecular self-assembly, and we carefully verified the theoretical
predictions against numerical simulations of patchy hard cylinders. Here, we provide a revised
version of the theory in the attempt of understanding which assumptions are worth to be
improved. In particular, we focus on the Parsons-Lee approximation and the modeling of
orientational entropy. We compare the results from the revised version of the theory against
original ones, showing that the present version of the theory is able to capture more
accurately the phase boundaries of the isotropic-nematic transition.
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1. Introduction

The spontaneous formation, through free energy
minimization of reversible aggregates from basic
building blocks, is called self-assembly. Since build-
ing block size can vary from few angstroms to
microns, self-assembly is rather ubiquitous in nature.
In addition, the interactions between building blocks
can be conveniently tuned, so that through self-

assembly new materials with controlled physical
properties can be designed. It is for these reasons
that self-assembly is of interest in several fields, such
as material science, soft matter and biophysics [1–3].

A specific, but nonetheless less relevant, self-assembly
process is the formation of filamentous semi-flexible
aggregates induced by the anisotropy of attractive inter-
actions between the constituent building blocks.
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Examples are provided by micellar systems [4–6], for-
mation of fibers and fibrils [7–10], solutions of short
[11–18] and long B-DNA [19–22], chromonics [23–29]
and inorganic nanoparticles [30–33].

In these systems liquid crystal (LC) phases build up
above a critical concentration, if the filamentous aggre-
gates are sufficiently stiff. In order to grasp a physical
understanding of this complex behavior, building on the
venerable Onsager theory, we developed some years ago
a novel theoretical approach for these self-assembly-
driven LCs. Noticeably, our theory contains no adjustable
nor fitting parameters. Predictions for the isotropic-
nematic transition have been carefully tested through
computer simulations for polymerizing hard cylinders
[34], patchy cylinder-like superquadrics [35], a realistic
DNA coarse-grained model [36], patchy bent cylinders
[37], bifunctional spheres [38] and patchy disks [39]. The
theoretical treatment has been also extended to the calcu-
lations of chiral strength and elastic constants [39,40]. In
this theoretical treatment, the contribution of higher
order virial terms to free energy has been accounted for
by the Parsons-Lee (PL) decoupling approximation,
while the modeling of the orientational contribution to
the free energy depends on a constant (i.e. independent of
thermodynamic state point) parameter which discrimi-
nates the regimes of rigid and fully flexible chains.

In this manuscript, we discuss further these two
approximations used in the theory and we suggest
a possible way to improve them. The PL approximation
is not accurate at moderate and large packing fractions,
since in the form used in the original theoretical treat-
ment it has been used without taking into account the
effective volume occupied by a chain, which is larger
than the total volume occupied by its constituent
monomers. Concerning the constant parameter which
acts as threshold separating stiff and fully flexible
chains, in Ref [41]. it has been observed that it should
depend on the orientational ordering if one wants to
explain some experimental findings on the phase beha-
vior of a suspension of short amyloid fibrils. In Ref
[41]. it has been also noted that this parameter should
be comparable with, rather than the persistence length,
the deflection length, as defined and discussed in Refs
[42,43]. In the present manuscript a first attempt to go
beyond these two approximations will be provided,
which should be intended as a guide for further future
improvements of the theory.

In Sec. 2 we will illustrate briefly the patchy cylinder
model which will be used to test the theoretical predic-
tions. Sec. 3 provides an account of the theoretical
treatment where we discuss a possible way to improve
the approximations discussed so far. In Sec. 4 we show
the theoretical predictions of the novel theoretical

treatment and we compare them with the results for
patchy hard cylinder reported in Ref [34]. Finally, in
Sec. 5 the conclusions will be drawn.

2. Model

For testing the revised version of the theory developed
in Refs [35]. we consider the same model adopted in
Ref [34]., which will be illustrated briefly in the follow-
ing. We consider hard cylinders (HC) of length L and
diameter D, which are complemented with two attrac-
tive sites on their bases (Figure 1).

These two attractive sites are placed along the symme-
try axis of the HC at a distance L=2þ 0:15D=2 from its
center of mass, so that no branching can occur in the
system. Attractive sites which belong to distinct HCs
interact via the following square-well (SW) potential uSW :

βuSW ¼ �βu0 if r � δ
0 if r > δ

�
(1)

where r is the distance between the interacting sites,
δ ¼ 0:25D is the interaction range, βu0 is the ratio
between the binding energy u0 and the thermal energy
kBT ¼ β�1, with kB the Boltzmann constant. It is con-
venient to define an adimensional temperature
T� ¼ kBT=u0, which will be used in the following.
Note that u0 is assumed to be independent of aggregate
size, which is equivalent to assume that the self-

Figure 1. (Colour online) Patchy hard cylinder model used in
the theoretical calculations.D andL diameter and length of
cylinders respectively. The centers of the two small yellow
spheres placed on the bases of the cylinders are the sites
interacting via a square-well potential. The diameter of the
yellow spheres coincides with the interaction range (i.e. the
well width), while the depth of the well u0 is the binding
energy.
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assembly process is isodesmic [44,45].

3. Theory

In the systems, which we are considering in the present
study, particles aggregate to form chains of various
lengths. Hence, the system is a polydisperse mixture
of semi-flexible polymers, which continuously change
their lengths, by merging with other polymers or
breaking of the constituting bonds. The original theo-
retical approach developed in Ref [35]. followed the
work of van der Schoot and Cates [6,46] and its exten-
sion to higher volume fractions with the use of the
Parsons-Lee approximation [47,48] as suggested by
Kuriabova et al. [49]. For a polydisperse mixture of
self-assembling linear aggregates, the Helmholtz free
energy F can be naturally expressed as a functional of
the number density of aggregates νðlÞ, where l is the
length (or number of monomers) of the aggregate to
which a monomer belongs. The function νðlÞ has to
obey the normalization conditionX

l

lνðlÞ ¼ ρ (2)

where ρ ¼ N=V , with N the number of monomers and
V the volume, is the number density of monomers. In
the following we assume an exponential aggregate
length distribution, i.e.

νðlÞ ¼ ρMðl�1Þ=ðM � 1Þðlþ1Þ (3)

with M the average number of monomers in the aggre-
gate, i.e.

M ¼
P1

1 lρðlÞP1
1 ρðlÞ : (4)

The Helmholtz free energy comprises the following
contributions [34,35,40]:

F ¼ F id þ F st þ F or þ F excl (5)

In this equation Fid is the free energy of an ideal gas
composed of a polydisperse mixture of chains with
chain length distribution νðlÞ, where vd ¼ LD2π=4 is
the volume of a monomer. This ideal gas contribution
can be written in terms of the chain length distribution
νðlÞ as follows:

F id ¼ V β�1
X1
l¼1

νðlÞ ln vdνðlÞ½ � � 1f g: (6)

The term, Fst, is the stacking free energy, which
accounts for monomer aggregation. Expressed in
terms of the chain length distribution νðlÞ it takes the
following form:

Fst ¼ V β�1ΔðTÞ
X1
l¼1

ðl� 1ÞνðlÞ (7)

where ΔðTÞ is the bonding free energy [35,36], i.e.

ΔðTÞ ¼ �ðβu0 þ σbÞ (8)

with u0 the (positive) stacking energy and σb the entro-
pic free energy penalty for bonding, i.e. the contribu-
tion to free energy due to the entropy which is lost by
forming a single bond. The quantity σb can be
expressed in terms of the bonding volume Vb, which
has been introduced within the Wertheim theory [50],
as follows:

σb ¼ ln
2Vb

vd

� �
(9)

The bonding volume Vb can be conveniently calculated
via Monte Carlo (MC) integration as described in
detail in Ref [35]. For the present model Vb has been
already evaluated in Ref [34].

In passing, we note that if the term Fst is missing in
the free energy, i.e. there is no aggregation between
molecules, other theories have been also proposed to
deal with aggregate flexibility, which rely on other
approaches than that of Khokhlov and Semenov
[51,52].

For accounts for the orientational entropy lost due to
the alignment of the chains in the nematic phase
(including the contribution due to their flexibility).
An analytic expression for this contribution will be
proposed and discussed in Sec. 3.2

The fourth term Fexcl arises from excluded volume
interactions between chains and thus it comprises
a sum over vexclðl; l0Þ, which is the excluded volume of
two chains with lengths l and l0, i.e.

F excl ¼ Vβ�1 ηðζϕÞ
2

X
l

X
l0

νðlÞνðl 0 Þvexclðl; l 0 Þ (10)

where ηðζϕÞ is a modified Parsons-Lee factor [47,48]
introduced to account for higher order terms in the
virial expansion, with

ηðxÞ ¼ 1
4
4� 3x

ð1� xÞ2 (11)

and the system volume fraction ϕ ¼ ρvd is scaled by the
factor ζ , as suggested in Ref [38]. The motivation for
introducing the factor ζ is that the so-called effective
molecular volume of non-convex chains is expected to
be larger than the sum of the volume of the constituent
monomers, as suggested and discussed in Ref [53],
where a system of linear fused hard sphere chains was
studied. In the present approach ζ has to be regarded

LIQUID CRYSTALS 3



as an adjustable parameter which will assume different
values in the isotropic (ζI) and nematic (ζN) phases.
This modification of the Parsons-Lee factor is the first
improvement of the original theory which we propose
in this work.

The final expression for the free energy F in terms of
the chain length distribution νðlÞ is:

βF
V

¼
X1
l¼1

νðlÞ ln vdνðlÞ½ � � 1f g þ
X1
l¼1

νðlÞσoðlÞ

þ ηðζϕÞ
2

X1
l¼1
l 0¼1

νðlÞνðl0Þvexclðl; l0Þ þ ΔðTÞ
X1
l¼1

ðl� 1ÞνðlÞ

(12)

Here, we will provide an explicit expression for calcu-
lating vexclðl; l0 Þ and later on we will suggest simple
analytic formulas for the isotropic and nematic phases,
which are more tractable in the theoretical calculations.
If we define R1 ¼ fr1;1 . . . r1;lg, R2 ¼ fr2;1 . . . r2;l0 g,
U1 ¼ fu1;1 . . . u1;lg and U2 ¼ fu2;1 . . . u2;l0 g, where rγ;i
and uγ;i are the position and the orientation (unit
vector) of monomer i belonging to chain γ ¼ 1; 2, the
average excluded volume is:

vexclðl; l 0 Þ ¼ � 1
Vlþl0�1

ð 0

dR1dR2dΩ1dΩ2e
ll
0

12

ðR1;U1;R2;U2ÞFcðU1ÞFcðU2Þ
(13)

where dRγ ¼
Ql

i¼1 drγ;i, dΩγ ¼
Ql

i¼1 d!γ;i with d!γ;i

the infinitesimal solid angle around the orientation

uγ;i, ell
0

12 is the Mayer function [54], i.e.:

ell
0

12ðR1;U1;R2;U2Þ ¼ exp �UhðR1;U1;R2;U2Þ=kBTf g � 1;

(14)

with UhðR1;U1;R1;U2Þ the hard-core pair potential:

UhðR1;U1;R2;U2Þ ¼ 1 if 1; 2 overlap
0 if 1; 2 do not overlap:

�

(15)

and FcðUÞ is the orientational distribution function of
the chain. The meaning of the prime in the integral of
Equation (13) is that it has to be evaluated over all
positions and orientations of monomers such that (i)
within each chain only two monomers are single
bonded and all the remaining monomers (if any) are
double bonded1 and that (ii) chains do not self-overlap.
The orientational distribution function of the chain can
be expressed in terms of the orientational distribution
function of the monomers as follows:

FcðUαÞ ¼
Yl
i¼1

f ðuα;iÞ (16)

with α ¼ 1; 2.

3.1. Isotropic phase

In the isotropic phase the orientational distribution
function of a monomer f ðuÞ (where u is the orientation
of the monomer) in Equation (16) is uniform, i.e.:

f ðuÞ ¼ 1
4π

(17)

The excluded volume in Equation (13) for chains of
hard cylinders can be calculated by MC integration for
l; l

0 � 10 and then the results can be fit to the following
function:

vexclðl; l 0Þ ¼ 2 kIvd
lþ l 0

2
þ BIX

2
0 ll

0
� �

(18)

where the BI and kI are fitting parameters.
Under equilibrium conditions, the value of M has to

minimize the free energy, i.e.

@ðβF=VÞ
@M

¼ 0 (19)

Substituting equations (3) and (18) into (12) and cal-
culating the sums over chain lengths, one obtains:

βFI
V

¼ ρ

M
ln

vdρ
M

� �
� 1

h i
þ ρ

M� 1
M

lnðM� 1Þ � ρ ln Mþ

þ ηðζIϕÞ BIX
2
0 þ

vdkI
M

� �
ρ2 � ρðβu0 þ σbÞð1�M�1Þ

(20)

By plugging the isotropic free energy of Equation (20)
into Equation (19), one obtains the following formula:

MI ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϕeKIϕηðϕÞ=vdþβu0þσb

q� �
(21)

which provides the isotropic average chain length MI

as a function of temperature and volume fraction.

3.2. Nematic phase

In the nematic phase the For contribution is different
from zero and the average excluded volume takes
a different form, since the orientational distribution
function of monomers f ðuÞ changes due to HCs
alignment. The total free energy in Equation (5) is
expressed as a function of the average aggregate
length M and of the orientational parameter α,
whose equilibrium values at a given volume fraction
and temperature are obtained by minimizing the free
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energy. It is also assumed, as in the isotropic phase,
that the chain length distribution is exponential (see
Equation (3)).

For f ðuÞ we adopted the form suggested many years
ago by Onsager [55], i.e.:

f ðuÞ ¼ fOðuÞ ¼ α

4π sinh α
coshðα cos θÞ (22)

where θ is the angle between the monomer’s symmetry
axis and the nematic direction and α, which controls
the width of the angular distribution, is related to the
nematic order parameter S as follows:

S ¼
ðπ
0
dθ sin θ

3
2
cos2 θ� 1

2

� �
fOðcos θÞ

¼ 1� 3
coth α
α

þ 3
α2

�!highα
1� 3

α
(23)

As in the isotropic phase, the excluded volume in
Equation (13) for chains of hard cylinders can be calcu-
lated, for different chain lengths l and value of α, by MC
integration of Equation (13) using the Onsager orienta-
tional distribution function fOðuÞ (see Equation (22)) and
then the results can be fit to the following function:

vexclðl; l0; αÞ ¼ 2 kNðαÞvd lþ l0

2
þ BNðαÞX2

0 ll
0

� �
(24)

where the parameters kN and BN are now functions of
α. As in Ref [34]., the functional forms adopted for
kNðαÞ and BNðαÞ are:

kNðαÞ ¼ kHCN ðαÞ (25)

BNðαÞ ¼ π

4
D3 η1 þ

η2
α1=2

þ η3
α

� �
(26)

where the term 2vdkHCN ðαÞ is the end-midsection contribu-
tion (i.e. the termwhich scales as l) to the excluded volume
of two hard cylinders which is known analytically (see Ref
[36].) and ηk with k ¼ 1; 2; 3 are fitting parameters.

The excluded volume vexcIðl; l0; αÞ is calculated numeri-
cally by generating Ntrial pairs of chains of length l (for
more details see Refs [35,36]) in a box of volume V , where
monomer orientations were randomly extracted from the
Onsager distribution in Equation (22) for a given α.

With such procedure, ifNoverlap is the number of times
that the two generated chains overlap, the excluded
volume is:

vexclðl; αÞ ¼
Noverlap

Ntrial
V: (27)

The excluded volume vexcl is calculated for several values
of α ranging from 10 to 45, and l ranging from 1 to 5 and
by fitting Equation (24) to these numerical estimates of
vexcl for different l and α, we determined ηi and thus

BNðαÞ. In Equation (24) we implicitly assume that all
aggregates, independently from their length, are nematic
with the same orientational distribution function, since α
is independent of l. A better approach would be to intro-
duce an l-dependent α, although this way theoretical
calculations would become rather demanding.
A simpler strategy consists in assuming short aggregates
with l< liso (in the present case liso ¼ 2) isotropic and all
other aggregates with l � liso nematic with the same
orientational distribution (i.e. with the same α).
According to this simplifying assumption a correction
term has to be calculated and added to the free energy
as discussed in Ref [35].

Finally, the term For has to be evaluated. At present
there is no exact analytic expression for this term, but
there exist the following two analytic expressions of σo for
the limiting cases of very stiff (RC) and very flexible (FC)
chains [35,36,43,56, 7], i.e. when l � lp (where lp is the
persistence length) and l � lp respectively:

σoðlÞ ¼ l
8lp

ð
@f
@θ

� �2

f�1dΩ � 2 ln

ð
f 1=2dΩ

� �

þ lnð4πÞ ðlp � lÞ
(28)

σoðlÞ ¼
ð
f lnð4πf ÞdΩ þ l

12lp

ð
@f
@θ

� �2

f�1dΩ

ðlp � lÞ (29)

By plugging into Equations (28) and (29) the exponential
chain length distribution, as in Equation (3), and the
Onsager orientational distribution function, and carrying
out the calculations one obtains the following limiting
expressions for σo:

σ RC
o ðlÞ ¼ logðαÞ � 1þ α� 1

6lp
l αl � lp (30)

σ FC
o ðlÞ ¼ logðα=4Þ þ α� 1

4lp
l αl � lp (31)

As discussed in detail in Ref [35], the orientational con-
tribution For to free energy can be expressed as the sum of
contributions having the form of either one or the other
of the two limiting expressions RC and FC, i.e.

For ¼ Vβ�1
Xl¼l0�1

l¼1

νðlÞ logðαÞ � 1½ � þ þ α� 1
6lp

l

� 


þ
Xl¼1

l¼l0

νðlÞ logðα=4Þ þ α� 1
4lp

l

� 


(32)
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where the contribution of chains of length l< l0 is treated
with the RC approximation, while the contribution of
longer chains enters with the FC expression. The persis-
tence length lp for the present model have been already
evaluated in Ref [34], while the details on the numerical
procedure adopted for its calculation can be found in
Ref [35].

In the original formulation of the theory, the parameter
l0 – of the order of the persistence length lp –was fixed and
conveniently adjusted depending on the specific model
used in the calculations [35,36,39]. Anyway, in Ref [41]. it
has been observed that, according to Ref [43,57], l0 has to
be related to the deflection length λ ¼ lp=α, rather than to
the persistence length lp. The rationale behind this is that
bending fluctuations make linear aggregates effectively
more flexible on increasing α, since they are more signifi-
cant if α is large, i.e. if monomers are more aligned. Hence,
following the same approach of Ref [41], we set
l0ðαÞ ¼ �λ ¼ �lp=α, where � is an adjustable parameter,
which, as in Ref [41], is set equal to 0:29.

In summary, the free energy in the nematic phase
can be written as follows:

βFN
V

¼ ρ

M
ln

vdρ
M

� �
� 1

h i
þ ρ

M � 1
M

lnðM � 1Þ � ρ ln M

þ ηðζNϕÞ BNX
2
0 þ

vdkN
M

� �
ρ2 þ�ρðβu0 þ σbÞ 1� 1

M

� �

þ
Xl¼l0�1

l¼1

νðlÞ logðαÞ � 1½ � þ α� 1
6lp

l

� 


þ
Xl¼1

l¼l0

νðlÞ logðα=4Þ þ α� 1
4lp

g
�

(33)

If we assume that the orientational entropy σo can be
approximated by the expression in Equation (31) valid
for long chains, minimization with respect to M yields:

MN ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αϕeKNðαÞϕηðϕÞ=vdþβu0þσb

q� �
(34)

while if Equation (30) valid for short chains is assumed,
one obtains:

MN ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αϕeKNðαÞϕηðϕÞ=vdþβu0þσb�1

q� �
(35)

3.3. Phase coexistence

Coexistence lines can be calculated by imposing the
conditions of equal pressure and chemical potential in
the isotropic and in the nematic phase, along with the
requirements that the free energy of isotropic phase in
Equation (20) is minimum with respect to isotropic

average chain length MI and that the free energy of
nematic phase in Equation (33) is minimum with
respect to both the nematic average chain length MN

and the parameter α. These conditions translate into
the following set of equations:

@FIðρI;MIÞ
@MI

¼ 0 (36)

@FNðρN ;MN ; αÞ
@MN

¼ 0 (37)

@FNðρN ;MN ; αÞ
@α

¼ 0 (38)

PIðρI ;MIÞ ¼ PNðρN ;MN ; αÞ (39)

μIðρI ;MIÞ ¼ μNðρN ;MN ; αÞ (40)

where I stands for isotropic and N for nematic and ρI and
ρN are the number densities of the isotropic and nematic
phase respectively. In the calculation of phase boundaries
we had to adjust the values of ζ I and ζN to 1:075 and 1:165
to best match theoretical predictions with numerical
results. As already observed, the modified PL approach
has been introduced to account for the larger effective
volume occupied by each aggregate, hence it is reassuring
that optimal values both for ζI and ζN are greater than 1.

4. Results and discussion

For the model discussed in Sec. 2, by using the revised
theoretical approach, we calculated the phase bound-
aries in the ϕ-T plane, which are shown in Figure 2
(Th. Revised) together with the results obtained by the
original version of the theory (Theory) as reported in
Ref [34].

In this figure, results from MC simulations reported
in Ref [34]. are also shown. Since on increasing
T chains on average are shorter (as it can be evinced
from Equations (21) and (34)), thus reducing the driv-
ing force for nematization, the volume fractions of
both the isotropic and nematic phases at coexistence
are expected to increase as shown in Figure 2. In this
figure it can be seen that the revised version of theory
captures much better the isotropic branch of the phase
boundaries and the accuracy of the nematic branch is
improved as well.

If the phase diagram in the ϕ-MX0 plane is consid-
ered as shown in Figure 3, similar conclusions can be
drawn, even though the improvement is much less
apparent.

6 C. DE MICHELE



The theoretical isotropic branch of the revised the-
ory is closer to numerical results from MC simulations,
although the nematic branch at higher volume frac-
tions underestimates the numerical results to the same
extent at which the original theory overestimates them.

An interesting feature of the phase diagram in the
ϕ-MX0 plane is the reentrant (non-monotonic) beha-
vior of the nematic branch of the phase boundaries.
We note that Onsager theory predicts a monotonic
behavior of both branches [34], hence this non-

monotonic behavior is a distinctive feature of self-
assembly-driven nematic liquid crystals. Nevertheless,
self-assembly alone is not enough to guarantee the
emergence of the reentrance, since it is crucial to
accurately calculate the excluded volume between
polymers. Indeed, as shown in Figure 5(b) of Ref
[34]. the results predicted by Lu and Kindt’s theory
[58] and the ones from the work of Kuriabova et al.
[49] do not exhibit the reentrant behavior of the
phase diagram in the ϕ� X0M plane.

If one introduces the ratio R between the average
chain length of the nematic phase and that of the isotropic
phase, i.e.

R ¼ MN=MI (41)

this quantity at coexistence strongly depends on pack-
ing fraction through an entropic contribution related
to the orientational order in the system.

At high temperatures nematization takes place at
large ϕ and from Equations (21) and (34) one has:

R ¼ MN

MI
	 ffiffiffi

α
p

(42)

According to Equation (22) the width of the orienta-
tional distribution of monomers is controlled by α,
hence α is expected to increase dramatically at large
ϕ, thus making R very large. At the same time, at large
volume fractions MI 	 1 [35], hence from Equation
(42) it follows that MN is also very large. Likewise, at
low temperatures from Equations (21) and (34) one has
that [36]:

0.1 0.15 0.2 0.25 0.3
T*

0.2

0.3

0.4

0.5

0.6
φ

Th. Revised
MC
Theory

I

I+N

N

Figure 2. (Colour online) Isotropic-nematic phase diagram in
the packing-fraction ϕ vs temperature T� plane. Circles are
results from MC simulations from Ref [34]. Straight lines indi-
cate theoretical predictions according to the present revised
version of the theory. Dashed line are theoretical predictions
from Ref [34], which were obtained by the original version of
the theory.
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Figure 3. (Colour online) Isotropic-nematic coexistence lines in the average aspect ratio X0M and volume fraction ϕ plane. Symbols
are numerical results from MC simulations of Ref [34]. Solid lines are theoretical predictions from the present revised version of the
theory, while dashed lines are original theoretical predictions as found in Ref [34]. Full circles along the isotropic (ϕI) and nematic
(ϕN) phase boundaries, which are joined by dotted lines, indicate ϕ and M for isotropic and nematic phases at coexistence at the
same temperature.

LIQUID CRYSTALS 7



MN /
ffiffiffiffiffiffiffiffi
eβu0

p
; (43)

which can increase unbounded. We deduce that MN

can reasonably exhibit a minimum as a function of
ϕ, i.e. a reentrant behavior as shown in Figure 2.

We note that the reentrant behavior of the
nematic branch has been by now robustly con-
firmed by both theoretical predictions and simula-
tions but it still awaits an experimental
confirmation. The revised version of the theory of
self-assembly-driven liquid crystals embodies two
improvements: (i) the α dependence of l0 and (ii)
the use of a modified PL factors. In order to assess
the relative role of these two improvements, in
Figure 4 we show the phase boundaries where
both improvements are used (Th. Revised) and
where only the modified PL factors are used (Th.
Revised PL) with l0 fixed and equal to 4 (i.e. the
value used in Ref [34]). Resorting only to the mod-
ified PL factors the isotropic branch of the phase
boundaries is almost unchanged while the nematic
branch is clearly a bit off from MC results. If we
switch to the phase diagram in the ϕ-MX0 plane,
we have a similar situation where the nematic
branch overestimates the numerical results and the
isotropic branch is even closer to MC results than
the full revised version of the theory. We can con-
clude that the modified PL factors mostly affect the
isotropic branch while the nematic branch is mostly
controlled by the α dependence of l0. In other
words, both improvements surely matter in predict-
ing correct results.

5. Conclusions

In this paper we proposed two possible improvements
of the theory developed in Ref [35] for hard cylinder-
like particles: (i) the use of a modified PL factor and (ii)
the introduction of a α-dependent l0 parameter. The
predictions from the original theory were also com-
pared against MC simulations of hard cylinder in Ref
[34]. In this work, we compare novel predictions from
the revised theory against simulations and original
theoretical results, providing evidence of a significant
improvement. Modeling of orientational entropy is still
based on the two limiting expressions for rigid and
flexible rods proposed many years ago by Khokhlov
and Semenov [43,56,59], where the threshold separat-
ing the two regimes l0 is now α-dependent to account
for bending fluctuations [57]. A better description of
the intermediate regime instead of resorting to an α-
dependent l0 would be advisable to have a better
description of this contribution. On the other hand,
a better estimate of the isotropic branch could be
achieved by a better treatment of higher order terms
in the virial expansion, which are at present accounted
for by the PL factor. In the present version of the
theory two adjustable parameters are introduced in
the modified PL factors of the isotropic and nematic
phases and they have been adjusted to maximize the
agreement between theory and simulations. A future
goal would be to avoid the use of adjustable parameters
by a suitable microscopic treatment of the higher order
contributions to the virial expansion. Despite the lim-
itations of the present approach, where these two
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0.5

0.6

φ

Th. Revised
Th. Revised PL
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N

Figure 4. (Colour online) Isotropic-nematic phase diagram in
the packing-fraction ϕ vs temperature T� plane. Symbols and
lines as in Figure 2 except that dashed lines are now theoretical
predictions from the revised version of the theory, where only
the modified Parsons-Lee approximation is used and l0 ¼ 4 (i.e.
l0 is kept fixed and does not depend on α).
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Figure 5. (Colour online) Isotropic-nematic coexistence lines in
the average aspect ratio X0M and volume fraction ϕ plane.
Symbols and lines as in Figure 3 except that the dashed lines
are now theoretical predictions from the revised version of the
theory where only the modified Parsons-Lee approximation is
used and l0 ¼ 4 (i.e. l0 is kept fixed and does not depend on α).
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parameters have to be adjusted ad-hoc for a given
model, the importance of the present findings relies
on the fact that they clearly point towards the need of
going beyond the PL decoupling approximation.

A further improvement of the theory would be to
employ a joint orientation and chain length distribution,
as suggested first for non self-assembling systems by van
der Schoot and Cates [6,46]. A first attempt in this
direction has been done in Ref [49] and the present
approach can be modified accordingly. A possible sim-
pler strategy would be to introduce an l-dependent α. In
Ref [38], where bifunctional hard spheres are studied, it
has been observed that if the theory accounts for the l-
dependence of α, the nematic phase is expected to be
favored against the isotropic phase, thus resulting in
a wider coexistence region, i.e. an isotropic branch closer
to numerical results. Although theoretical calculations
become rather demanding and cumbersome by introdu-
cing an l-dependent α, the residual gap found between
theoretical predictions and numerical results, as shown
in Figure 1, could possibly be filled this way.

Note

1. The only exception is when we have two chains, each
constituted of two monomers.
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