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Short blunt-ended DNA duplexes comprising 6 to 20 base pairs self-assemble into polydisperse semi-

flexible chains due to hydrophobic stacking interactions between terminal base pairs. Above a critical

concentration, which depends on temperature and duplex length, such chains order into liquid crystal

phases. Here, we investigate the self-assembly of such double-helical duplexes with a combined

numerical and theoretical approach. We simulate the bulk system employing the coarse-grained DNA

model recently proposed by Ouldridge et al. [J. Chem. Phys., 2011, 134, 08501]. Then we evaluate the

input quantities for the theoretical framework directly from the DNA model. The resulting parameter-

free theoretical predictions provide an accurate description of the simulation results in the isotropic

phase and theoretical values for the isotropic–nematic phase boundaries which are in line with

experimental findings. In addition, the developed theoretical framework makes it possible to provide

a route to estimate the stacking free energy.
1 Introduction

Self-assembly is the spontaneous formation through free energy

minimization of reversible aggregates of basic building blocks.

The size of the aggregating units, e.g. simple molecules, macro-

molecules or colloidal particles, can vary from a few angstr€oms

to microns, thus making self-assembly ubiquitous in nature and

of interest in several fields, including material science, soft matter

and biophysics.1–5 Through self-assembly it is possible to design

new materials whose physical properties are controlled by tuning

the interactions of the individual building blocks.6–9

A relevant self-assembly process is the formation of filamen-

tous aggregates (i.e. linear chains) induced by the anisotropy of

attractive interactions. Examples are provided by micellar

systems,10–12 formation of fibers and fibrils,13–16 solutions of long

duplex B-form DNA composed of 102 to 106 base pairs,17–20

filamentous viruses,21–25 chromonic liquid crystals26 as well as

inorganic nanoparticles.27

If linear aggregates possess sufficient rigidity, the system may

exhibit liquid crystal (LC) phases (e.g. nematic or columnar)

above a critical concentration. In the present study we focus on

the self-assembly of short (i.e. 6 to 20 base pairs) DNA duplexes
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(DNADs)28–30 in which coaxial stacking interactions between the

blunt ends of the DNADs favor their aggregation into weakly

bonded chains. Such a reversible physical polymerization is

enough to promote the mutual alignment of these chains and the

formation of macroscopic orientationally-ordered nematic LC

phases. At present, stacking is understood in terms of hydro-

phobic forces acting between the flat hydrocarbon surfaces

provided by the paired nucleobases at the duplex terminals,

although the debate on the physical origin of such interactions is

still active and lively.31,32 In this respect, the self-assembly of

DNA duplexes provides a suitable way to access and quantify

hydrophobic coaxial stacking interactions.

In order to extract quantitative information from DNA–DNA

coaxial stacking experiments, reliable computational models and

theoretical frameworks are needed. Recent theoretical

approaches have focused on the isotropic–nematic (I–N) tran-

sition in self-assembling systems,33,34 building on previous work

on rigid and semi-flexible polymers.35–43 In a recent publication44

we investigated the reversible physical polymerization and

collective ordering of DNA duplexes by modeling them as super-

quadrics with quasi-cylindrical shape45 with two reactive sites46,47

on their bases. Then we presented a theoretical framework, built

on the theories of Wertheim48–50 and Onsager,51 which is able to

properly account for the association process.

Here, we employ this theoretical framework to study the

physical properties of a realistic coarse-grained model of DNA

recently proposed by Ouldridge et al.,52 where nucleotides are

modeled as rigid bodies interacting with site–site potentials.

Following ref. 44, we compute the inputs required by the theory,

i.e. the stacking free energy and the DNAD excluded volume, for

the model of Ouldridge et al.52 Subsequently we predict the
This journal is ª The Royal Society of Chemistry 2012
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polymerization extent in the isotropic phase as well as the

isotropic–nematic phase boundaries.

To validate the theoretical predictions, we perform large-scale

molecular dynamics (MD) simulations in the NVT ensemble of

a bulk system comprising 9600 nucleotides, a studymade possible

by the computational power of modern Graphical Processing

Units (GPUs). The parameter-free theoretical predictions provide

an accurate description of the simulation results in the isotropic

phase, supporting the theoretical approach and its application in

the comparison with experimental results.

The article is organized as follows. Section 2 provides details of

the coarse-grained model of DNADs and of the MD computer

simulations; Section 3 presents a summary of the theory. Section

4 describes the protocols implemented to evaluate the input

parameters required by the theory via MC integrations for two

DNADs. We also discuss some geometrical properties of the

bonded dimer configurations. We then compare the theoretical

predictions with simulation and experimental results. Finally, in

Section 5 we discuss estimates for the stacking free energy and

present our conclusions.
2 Methods

2.1 Model

We implement a coarse-grained model for DNA recently devel-

oped by Ouldridge et al.52,53 In such a model, designed via a top-

down approach, each nucleotide is described as a rigid body (see

Fig. 1). The interaction forms and parameters are chosen so as to

reproduce structural and thermodynamicproperties ofboth single-

(ssDNA) and double- (dsDNA) stranded molecules of DNA in B-

form. All interactions between nucleotides are pairwise and, in the

last version of the model,52 continuous and differentiable. Such

feature makes the model convenient for MD simulations.

The interactions between nucleotides account for excluded

volume, backbone connectivity,Watson–Crick hydrogen bonding,
Fig. 1 (a) Schematic representation of the coarse graining of the model for

stacking and hydrogen-bonding sites are highlighted on one nucleotide and

following strands will be shown as ribbons and bases as extended plates a

configuration. (e) An equilibrium configuration of the same object at T ¼ 30

effect. (f) A chain of length Nb ¼ 48 extracted from a simulation at c ¼ 241
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stacking, cross-stacking and coaxial-stacking. The interaction

parameters have been adjusted in order to be consistent with

experimental data.52,54,55 In particular, the stacking interaction

strength and stiffness have been chosen to be consistent with the

experimental results reported for 14-base oligomers by Holbrook

et al.55 Hydrogen-bonding and cross-stacking potentials were

adjusted to give duplex and hairpin formation thermodynamics

consistent with the SantaLucia parameterization of the nearest-

neighbormodel.54 Interaction stiffnesses were also further adjusted

inorder toprovide correctmechanical properties of themodel, such

as the persistence length. The model does not have any sequence

dependence apart from the Watson–Crick pairing, meaning that

the strength of the interactions acting between nucleotides is to be

considered as an average value. In addition, the model assumes

conditions of high salt molarity (0.5M). In this model, the coaxial-

stacking interaction acts between any two non-bonded nucleotides

and is responsible for the duplex–duplex bonding. It has been

parametrized56 to reproduce experimental data which quantify the

stacking interactions by observing the difference in the relative

mobility of a double strand where one of the two strands has been

nickedwith respect to intactDNA57,58 and by analyzing themelting

temperatures of short duplexes adjacent to hairpins.59

To cope with the complexity of the model and the large number

of nucleotides involved in bulk simulations, we employ amodified

version of the CPU-GPU code used in a previous work,60 and

extend it to support the force-fields.61 Harvesting the power of

modern Graphical Processing Units (GPUs) results in a 30-fold

speed-up. The CPU version of the code, as well as the Python

library written to simplify generation of initial configurations and

post-processing analysis have been released as free software.62
2.2 Bulk simulations

To compare numerical results with theory, we perform Brownian

dynamics simulations of 400 dsDNA molecules made up of 24
a single nucleotide. (b) Model interaction sites. For the sake of clarity,

the base repulsion site on the other. For visualization reasons, in the

s depicted in (c). (d) A 12 base-pairs DNAD in the minimum energy

0 K. The nucleotides at the bottom are not bonded, the so-called fraying

mg ml�1 and T ¼ 270 K.
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nucleotides each, i.e. 400 cylinder-like objects with an aspect

ratio of z2 (see Fig. 1(d)). The integration time step has been

chosen to be 0.003 in simulation units which corresponds, if

rescaled with the units of length, mass and energy used in the

model, to approximately 1 � 10�14 seconds.

We study systems at three different temperatures, namely

T ¼ 270 K, 285 K and 300 K, and for different concentrations,

ranging from 2 mg ml�1 to 241 mg ml�1. The T ¼ 270 K state

point, despite being far from the experimentally accessed T, is

here investigated to test the theory in a region of the phase

diagram where the degree of association is significant. To

quantify the aggregation process we define two DNADs as

bonded if their pair interaction energy is negative. Depending on

temperature and concentration, we use 106 to 107 MD steps for

equilibration and 108 to 109 MD steps for data generation on

NVIDIA Tesla C2050 GPUs, equivalent to 1–10 ms.
3 Theory

We build on the theoretical framework previously developed to

account for the linear aggregation and collective ordering of

quasi-cylindrical particles.44 Here, we provide a discussion of

how such a theory can be used to describe the reversible chaining

and ordering of oligomeric DNADs at the level of detail adopted

by the present model. According to ref. 44, the free energy of

a system of equilibrium polymers can be written as

bF

V
¼

XN
l¼1

nðlÞfln½vdnðlÞ� � 1g þ hðfÞ
2

XN
l¼1

l
0 ¼1

nðlÞn�l 0�vexcl�l; l 0�

� bDFb

XN
l¼1

ðl � 1ÞnðlÞ þ
XN
l¼1

nðlÞsoðlÞ (1)

where V is the volume of the system, vd is the volume of

a monomer, f h vdr (r ¼ N/V is the number density of mono-

mers) is the packing fraction, v(l) is the number density of chains

of length l, normalized such that
XN
l¼1

lnðlÞ ¼ r, DFb, as discussed

in Section 4.2, is a parameter which depends on the free energy

associated to a single bond and vexcl(l, l
0) is the excluded volume

of two chains of length l and l0. h(f) is the Parsons–Lee factor63

hðfÞ ¼ 1

4

4� 3f

ð1� fÞ2 (2)

and so(l)
43 accounts for the orientational entropy that a chain of

length l loses in the nematic phase (including possible contribu-

tions due to its flexibility). The explicit form for so(l) can be

found in ref. 44.

The free energy functional (eqn (1)) explicitly accounts for the

polydispersity inherent in the equilibrium polymerization process

using a discrete chain length distribution and for the entropic and

energetic contributions of each single bond through the param-

eter DFb.
3.1 Isotropic phase

In the isotropic phase, so ¼ 0 and the excluded volume can be

written as follows (see Appendix A):
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vexclðl; l0;X0Þ ¼ 2BIX
2
0 ll

0 þ 2vdkI
l þ l0

2
(3)

where the parameters BI and kI can be estimated viaMC integrals

of a system composed of only two monomers (see Appendix A)

and X0 is the aspect ratio of the monomers. We assume that the

chain length distribution v(l) is exponential44 with an average

chain length M

v(l) ¼ rM�(l+1)(M � 1)l�1 (4)

where

M ¼

XN
l¼1

lnðlÞ
XN
l¼1

nðlÞ
: (5)

With this choice for v(l) the free energy in eqn (1) becomes:

bFI

V
¼ �rbDFb

�
1�M�1

� þ hðfÞ
�
BIX

2
0 þ vdkI

M

�
r2

þ r

M

h
ln
�vdr
M

�
� 1

i
þ r

M � 1

M
lnðM � 1Þ � r ln M: (6)

Minimization of the free energy in eqn (6) with respect

to M provides the following expression for the average chain

length M:

M ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4fekIfhðfÞþbDFb

p� �
: (7)

3.2 Nematic phase

In the nematic phase the monomer orientational distribution

function f(q) depends explicitly on the angle q between the

particle and the nematic axis, i.e. the direction of average

orientation of the DNAD, since the system is supposed to have

azimuthal symmetry around such an axis. We assume the form

proposed by Onsager,51 i.e.:

faðqÞ ¼ a

4p sinha
coshða cos qÞ (8)

where a controls the width of the angular distribution. Its equi-

librium value is obtained by minimizing the free energy with

respect to a. As discussed in Appendix A, we assume the

following form for the excluded volume in the nematic phase:

vexcl
�
l; l

0
;X0;a

� ¼ 2BNðaÞX 2
0 ll

0 þ 2vdk
HC
N ðaÞ l þ l0

2
(9)

where the term 2vdk
HC
N (a) is the end–midsection contribution to

the excluded volume of two hard cylinders (see Appendix B) and

BNðaÞ ¼ p

4
D3

�
h1 þ

h2

a1=2
þ h3

a

�
(10)

where D is the diameter of the monomer and hk with k ¼ 1, 2, 3

are three parameters that we chose in order to reproduce the

excluded volume calculated fromMC calculations as discussed in

Appendix A.

Inserting eqn (9) and (4) into eqn (1), and assuming once more

an exponential distribution for v(l), one obtains after some

algebra:
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 Snapshots taken from simulations at T ¼ 300 K. At low

concentrations (c ¼ 2 mg ml�1, top) chain formation is negligible and the

average chain length is approximately 1. As the concentration is increased

(c ¼ 80 mg ml�1, bottom), DNADs start to self-assemble into chains and

the average chain length increases.
bFN

V
¼ ŝo � rbDFb

�
1�M�1

�þ hðfÞ
�
BNðaÞX 2

0 þ vdk
HC
N ðaÞ
M

�
r2

þ r

M

�
ln
h vdr
M

i
� 1

�
� r ln M þ r lnðM � 1ÞM � 1

M

(11)

where ŝoh
X
l

soðlÞnðlÞ. The explicit calculation of the param-

eters BN and kHC
N is explained in Appendices A and B.

Assuming that the orientational entropy ŝo can be approxi-

mated with the expression valid for long chains,43 minimization

with respect to M results in

M ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ afekNðaÞfhðfÞþbDFb

p� �
: (12)

while using the approximated expression for short chains,43 one

obtains

M ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4afekNðaÞfhðfÞþbDFb�1

p� �
: (13)

The equilibrium value of a is thus determined by further

minimizing the nematic free energy in eqn (11), which has

become only a function of a. The parameter a is related to the

degree of orientational ordering in the nematic phase as

expressed by the nematic order parameter S as follows:

S(a) ¼ Ð
(3cos2q � 1)fa(q)psin q dq z 1 � 3/a. (14)

Further refinements of the theory can be obtained by

including a more accurate description of the orientational

distribution fa(q) in the proximity of the I–N phase transition,

along the lines of eqn (40)–(42) of ref. 44. For the sake of

simplicity we have just presented the basic theoretical treatment.

However, in the theoretical calculations in Section 4 we will make

use of the refined and more accurate free energy functional

proposed in ref. 44.

3.3 Phase coexistence

The phase boundaries, at which the aggregates of DNAD are

sufficiently long to induce macroscopic orientational ordering,

are characterized by coexisting isotropic and nematic phases in

which the volume fraction of DNADs are, respectively, fN ¼
vdrN and fI ¼ vdrI. The number densities rI and rN can be

calculated by minimizing eqn (6) with respect to MI and by

minimizing eqn (11) with respect to MN and a. In addition, the

two phases must be at equal pressure, i.e. PI ¼ PN, and chemical

potential, i.e. mI ¼ mN. These conditions yield the following set of

equations:

v

vMI

FIðrI;MIÞ ¼ 0

v

vMN

FNðrN;MN;aÞ ¼ 0

v

va
FNðrN;MN;aÞ ¼ 0

PIðrI;MIÞ ¼ PNðrN;MN;aÞ
mIðrI;MIÞ ¼ mNðrN;MN;aÞ

(15)
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4 Results and discussion

4.1 Properties of the model

To characterize structural and geometrical properties of mono-

mers and aggregates, we analyze conformations of duplexes

extracted from large-scale GPU simulations (see Fig. 2 for some

snapshots).

In the following, the volume vd occupied by a single DNAD of

length X0D and double helix diameter D (D x 2 nm) will be

considered as the volume of a cylinder with the same length and

diameter, i.e. vd ¼ pX0D
3/4. When comparing numerical and

experimental results with theoretical predictions we use the

number of base pairs Nb in place of X0 (X0 x 0.172Nb) and the

concentration c instead of the packing fraction f, which can be

related to the former via:

f ¼ 0:172D3p

8mN

c (16)
Soft Matter, 2012, 8, 8388–8398 | 8391



Fig. 3 Probability distributions for (a) the azimuthal angle g and (b) the

end-to-end distance r.
wheremN¼ 330 Da is the average mass of a nucleotide. Hence, in

the following cI and cN will be used in place of fI and fN.

First we calculate the dimensions (height L and widthD) of the

DNADs for different c and T. We observe no concentration

dependence on both quantities, while the variation in T is

negligible (of the order of 0.1% between DNADs of samples at

270 K and 300 K). The effect of this small change does not

substantially affect the value of the aspect ratio, which we

consider constant (X0 ¼ 2.06) throughout this work.

The geometrical properties of end-to-end bonded duplexes are

not well-known since there are no experimental ways to probe

such structures. In a very recent work, the interaction between

duplex terminal base pairs has been analyzed by means of large-

scale full-atom simulations by Maffeo et al.64 They found that

blunt-ended duplexes (i.e. duplexes without dangling ends) have

preferential binding conformations with different values of the

azimuthal angle g, defined as the angle between the projections

onto the plane orthogonal to the axis of the double helix of the

vectors connecting the O50 and O30 terminal base pairs. They

report two preferential values for g, namely g ¼ �20� and

g ¼ 180�.
In the present model the continuity of the helix under end-to-

end interactions is intrinsic in the model and the azimuthal angle

probability distribution is peaked around a single value g0 z 40�

(see Fig. 3(a)). This is very close to the theoretical value g z 36�

given by the pitch of the B-DNA double helix. The qualitative

difference between conformations of bonded DNADs found in

this work and in ref. 64 should be addressed in future studies, in

order to describe the coaxial end-to-end interaction in a more

proper way.

In addition, we calculate the average distance r between the

centres of mass of the terminal base pairs. Fig. 3(b) shows P(r),

the probability distribution of r. P(r) is peaked at 0.39 nm,

whereas Maffeo et al.64 found an average distance of rz 0.5 nm.

This difference can be understood in terms of the effect of the salt

concentration which, being five times higher than the one used in

ref. 64, increases the electrostatic screening, thus effectively

lowering the repulsion between DNA strands.

The effect of the temperature is small, as lowering T leads only

to more peaked distributions for both P(g) and P(r) (and a very

small shift towards smaller angles for g) but does not change the

overall behavior.
4.2 Stacking free energy and excluded volume

In this section we discuss the procedure employed to evaluate the

input quantities required by the theory, namely DFb and

vexcl(l, l
0). To this aim we perform aMonte Carlo integration over

the degrees of freedom of two duplexes. DFb is defined as44

bDFb ¼ ln

�
2
DðTÞ
vd

�
(17)

where65

DðTÞ ¼ 1

4

	ð
Vb



e�bVðr12 ;U1 ;U2Þ � 1

�
dr12

�
: (18)

Here r12 is the vector joining the center of mass of particles 1 and

2,Ui is the orientation of particle i and h.i represents an average

taken over all possible orientations. Vb is the bonding volume,
8392 | Soft Matter, 2012, 8, 8388–8398
defined here as the set of points where the interaction energy

V(r12, U1, U2) between duplex 1 and duplex 2 is less than kBT. To

numerically evaluate D(T) we perform a MC integration using

the following scheme:

(1) Produce an ensemble of 500 equilibrium configurations of

a single duplex at temperature T.

(2) Set the counter Ntries ¼ 0 and the energy factor F ¼ 0.

(3) Choose randomly two configurations i and j from the gener-

ated ensemble.

(4) Insert a randomly oriented duplex i in a random position in

a cubic box of volume V ¼ 1000 nm3. Insert a second duplex j in

a random position and with a random orientation. Compute the

interaction energy V(i, j) between the two duplexes i and j and, if

V(i, j) < kBT, update the energy factor, F ¼ F + (e�bV(i,j) � 1).

Increment Ntries.

(5) Repeat from step 3, until DðTÞy1

4

V

Ntries

F converges within

a few per cent precision.

The procedure employed to compute vexcl(l, l
0) is fairly similar

except that it is performed for duplexes with a various number of

bases (i.e. with different X0) and the quantity F counts how many

trials originate from a pair configuration withV(i, j) > kBT (i.e. in

step 4, F ¼ F + 1). In the nematic case, the orientations of the

duplexes are extracted randomly from the Onsager distribution

given by eqn (8). With such procedure,

vexclðl ¼ 1; l0 ¼ 1;X0Þ ¼ V

Ntries

F (19)

We calculate vexcl for 8 values of a, ranging from 5 to 45 (see

Appendix A). Since the X0 and l dependences of eqn (3) and (9)
This journal is ª The Royal Society of Chemistry 2012



Fig. 4 D(T) calculated with the procedures described in Section 4.2 for

all investigated T.
Fig. 5 Average chain length M in the isotropic phase at low concen-

tration. Symbols are numerical results and dashed lines are theoretical

predictions. Dotted lines are theoretical predictions using the excluded

volume of HCs vHC
excl (see Appendix B).
are the same and theX0 dependence of the numerically calculated

vexcl on the shape of DNADs is negligible, the evaluation of the

excluded volume as a function of X0 provides the same infor-

mation as the evaluation of vexcl as a function of l.

We have checked that the dependence of D(T) and vexcl(l, l
0) on

the energy threshold employed in step 4 is negligible.

Fig. 4 shows D(T) for all investigated T in a ln D vs. 1/T plot. A

linear dependence properly describes the data at the three T. An

alternative way to evaluate D(T) is provided by the limit r/ 0 of

eqn (7). Indeed in the low density limitM and D(T) are related via

the following relation:

DðTÞ ¼ Mð1�MÞ
2r

: (20)

Therefore it is also possible to estimate D(T) by extrapolating

the low density data for M at T ¼ 270 K, 285 K and 300 K. The

results, also shown in Fig. 4, are in line with the ones obtained

through MC calculations. The Arrhenius behavior of D(T)

suggests that bonding entropy and stacking energy are in first

approximation T independent. The coaxial stacking free energy

GST is related to D(T) as follows

GST ¼ �kBT ln[2rD(T)] (21)

Substituting the fit expression provided in Fig. 4 for D(T)

results in a stacking free energy G0
ST ¼ �0.086 kcal mol�1 at

a standard concentration 1 M of DNADs and T ¼ 293 K

comprising a bonding entropy of �30.6 cal mol�1 K�1 and

a bonding energy of �9.06 kcal mol�1.
4.3 Isotropic phase: comparing simulation results with

theoretical predictions

Fig. 5 shows the concentration c dependence of M calculated

from the MD simulation of the Nb ¼ 12 system. The average

chain length increases progressively on increasing c. The figure

also shows the theoretical predictions calculated by minimizing

the isotropic free energy in eqn (6) with respect to M using the

previously discussed estimates for DFb and vexcl. The theoretical

results properly describe the MD simulation data up to

concentrations around 200 mg ml�1, which corresponds to
This journal is ª The Royal Society of Chemistry 2012
a volume fraction f z 0.20. In ref. 44 similar observations have

been made and the discrepancy at moderate and high f has been

attributed to the inaccuracy of the Parsons decoupling approxi-

mation. The M values calculated using the excluded volume of

two hard cylinders (HC) are also reported to quantify the rele-

vance of the actual shape of the DNA duplex. Indeed the

HC predictions appreciably deviate from numerical data beyond

100 mg ml�1.
4.4 Phase coexistence: theoretical predictions

A numerical evaluation of the phase coexistence between the

isotropic and the nematic phases for the coarse-grained model

adopted in this study is still impossible to obtain given the

current computational power. We thus limit ourselves to the

evaluation of the I–N phase coexistence via the theoretical

approach discussed in Section 3. Fig. 6 shows the theoretical

phase diagram in the c–Nb plane for T ¼ 270 K and 300 K. As

expected, both cI and cN decrease on increasing Nb, since the

increase of the number of bases results in a larger aspect ratio. On

decreasing T, theory predicts a 10% decrease of cI and a similar

decrease of cN, resulting in an overall shift of the I–N coexistence

region toward lower c values. This trend is related to the increase

of the average chain length M with increasing bDFb (see Fig. 4).

Fig. 6 also shows the phase boundaries calculated using the

excluded volume of two hard cylinders. Assimilating DNADs to

hard cylinders results in a 10–15% widening of the isotropic–

nematic coexistence region.
4.5 Comparison between theory and experiments

The theoretical predictions concerning the isotropic–nematic

coexisting concentrations can be compared to the experimental

results reported in ref. 28 and 30 for blunt-ended DNADs.

Fig. 7 compares the experimentally determined nematic

concentrations cN at coexistence with the values calculated from

the present model for T ¼ 293 K. Despite all the simplifying

assumptions and despite the experimental uncertainty, the results

provide a reasonable description of the Nb dependence of cN.
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Fig. 6 I–N phase diagram in the c vs. Nb plane for T ¼ 270 K (top) and

300 K (bottom). Dotted lines are theoretical phase boundaries calculated

using the excluded volume of HCs vHC
excl (see Appendix B).

Fig. 7 Critical nematic concentrations cN as a function of the number of

base pairs per duplexNb for the present model, calculated theoretically at

T ¼ 293 K using the computed stacking free energy G0
ST (short dashed

lines), GST ¼ �0.49 kcal mol�1 (long dashed lines), and for experiments28

(circles and squares). Squares are cN for different sequences at the same

Nb ¼ 12. The grey band has been built considering for GST an upper

bound of �0.4 kcal mol�1 and a lower bound of �2.4 kcal mol�1.
The experimental data refer to different base sequences and

different salt concentrations. According to the authors, cN is

affected by an error of about �50 mg ml�1. In particular, for the

case Nb ¼ 12 the critical concentrations cN for distinct sequences

show that blunt-end duplexes of equal length but different

sequences can display significantly different transition concen-

trations. Hence, for each duplex length, we consider the lowest

transition concentration among the ones experimentally deter-

mined, since this corresponds to the sequence closest to the

symmetric monomer in the model. Indeed the dependence of cN
on the DNADs sequence is expected to be larger for the shortest

sequences, i.e. Nb & 12, for which DNAD bending could be

significant.30 Unfortunately, quantitative experimental data on

this bending effect are still lacking. In general it is possible that

cN, for Nb < 12 (for Nb ¼ 12, where a large number of sequences

have been studied, see Fig. 7), would be corrected to lower values

if a larger number of sequences was explored. For more details

on this phenomenon, we refer the reader to the discussions in ref.

30,44 and 66.

The overestimation of the phase boundaries for Nb $ 12 with

respect to experimental results suggests that the DNA model of

Ouldridge et al.52 overestimates the coaxial stacking free energy.

Such a discrepancy can perhaps be attributed to the restricted

number of microstates allowing for bonding states in the DNA
8394 | Soft Matter, 2012, 8, 8388–8398
model,52,56 as discussed in Section 4. Indeed, allowing DNADs to

form end-to-end bonds with more than one preferred azimuthal

angle would increase the entropy of bonding, thus effectively

lowering GST. Allowing for both left- and right-handed binding

conformations, a possibility supported by the results of Maffeo

et al.,64 would double D(T) in eqn (21) and hence add an entropic

contribution equal to �kBT ln(2) to GST, which would result in

a value G0
ST � 0.403 kcal mol�1 ¼ �0.49 kcal mol�1 for T ¼

293 K. Fig. 7 also shows the theoretical predictions for such an

upgraded GST value.

In Fig. 7 theoretical calculations of the I–N transition lines are

shown for GST ¼ �0.4 kcal mol�1 and GST ¼ �2.4 kcal mol�1 at

T ¼ 293 K as the upper and lower boundaries of the grey band,

respectively. To calculate these critical lines we retain the

excluded volume calculated in Section 4.2 and, given the value

of GST, we evaluate DFb according to eqn (17) and (21) for T ¼
293 K and r corresponding to the standard 1 M concentration.

The selected points with Nb $ 12 fall within the grey band

shown in Fig. 7, enabling us to provide an indirect estimate of

GST between�0.4 kcal mol�1 and�2.4 kcal mol�1. For the points

with Nb < 12, where duplex bending might play a role, it would

be valuable to have more experimental points corresponding to

more straight sequences in order to validate the theoretical

predictions.

It is worth observing that for all DNAD lengths Nb, the

electrostatic interactions are properly screened. For Nb ¼ 20

a concentration 1.2 M of NaCl has been added to the solution

resulting in a Debye screening length k�1
D z 0.23 nm. For all

other lengths (i.e. Nb # 16) we note that at the lowest DNA

concentration of 440 mg ml�1 corresponding to Nb ¼ 14 k�1
D z

0.40 nm. Therefore the experimental k�1
D is always smaller than

the excluded volume diameter for the backbone–backbone

interaction of our coarse-grained model52 (z0.6 nm), thus

enabling us to neglect electrostatic interactions.
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On the other hand, if electrostatic interactions are not properly

screened the effective aspect ratio for such DNAD sequences

would be smaller than the ones used in our theoretical treatment

and this would result in an underestimate of cN. To account for

this behavior one should at least have a reasonable estimate of

the effective size of DNADs when electrostatic interactions are

not fully screened. Moreover, the role of electrostatics can be

subtle and not completely accounted for by simply introducing

an effective size of DNADs. A possible route to include elec-

trostatics in our treatment can be found in ref. 20 and it will be

addressed in future studies.

4.6 Comparison with Onsager theory

The experimental average aggregation numbers are estimated in

ref. 13 and 28 by mapping the self-assembled system onto an

‘‘equivalent’’ mono-disperse system of hard rods with an aspect

ratio equal to MX0. In ref. 44 it has been shown that the theo-

retically estimated isotropic–nematic coexistence lines for the

case of polymerizing superquadric particles in the MX0–f plane,

parametrized by the stacking energy, are significantly different

from the corresponding Onsager original predictions (as re-
Fig. 8 Isotropic–nematic coexistence lines in the average aspect ratio

MX0 and concentration c plane for two values of Nb, namely Nb ¼ 12

(top) and Nb ¼ 20 (bottom). Solid lines indicate theoretical predictions,

dashed lines indicate Onsager original predictions, as re-evaluated in ref.

34 for fI and fN and here reported in terms of the concentrations cI and

cN expressed in mg ml�1. Symbols along the isotropic and nematic phase

boundaries at coexistence are joined by dotted lines, to indicate the

change in concentration and average chain length at the transition.

This journal is ª The Royal Society of Chemistry 2012
evaluated in ref. 35). In light of the relevance for interpreting the

experimental data, we show in Fig. 8 the same curves for the

DNA model investigated here. In this model, a clear re-entrant

behavior of the transition lines in the c–MX0 plane is observed.

The re-entrant behavior occurs for values of the stacking free

energy accessed at temperatures between 270 K and 330 K and it

arises as a result of the competition between steric (entropic) and

temperature (energetic) contributions to the free energy in

driving the self-assembly process which leads the system to the

isotropic–nematic transition. We believe that the re-entrance of

the transition lines in the c–MX0 plane is a peculiar mark of the

system’s polydispersity, which results from the reversible self-

assembly of chains.
Fig. 10 Excluded volume as a function of aspect ratio X0 in the nematic

phase together with analytic approximations for several a. The dashed

lines are obtained plotting the function reported in eqn (9) and setting

h1 ¼ 0.386419, h2 ¼ 1.91328 and h3 ¼ �0.836354.

Fig. 9 Excluded volume in the isotropic phase together with analytic

approximations. From the linear fit one has BI ¼ 0.959D3 and kI ¼ 3.084,

while we assume AI ¼ 0.
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5 Conclusions

In this article we have studied an equilibrium bulk solution of

blunt ended DNA duplexes undergoing reversible self-assembly

into chains, promoted by stacking interactions. The simulation

study, carried out at different concentrations and temperatures,

provides a clear characterization of the c and T dependence of

the average polymerization length M and an indirect estimate

of the stacking free energy. We have provided a theoretical

description of the self-assembly process based on a theoretical

framework recently developed in ref. 44. The inputs required by

the theory (the DNAD excluded volumes and the stacking free

energy) have been numerically calculated for the present DNA

model, allowing for a parameter free comparison between

molecular dynamic results and theoretical predictions. Such

a comparison has been limited to the isotropic phase, due to the

difficulties in simulating the dense nematic phase under equi-

librium conditions. The description of the isotropic phase is

satisfactory: quantitative agreement between theory and simu-

lations is achieved for concentrations up to c z 200 mg ml�1.

The stacking free energy value that properly accounts for the

polymerization process observed in the molecular dynamics

simulations is G0
ST ¼ �0.086 kcal mol�1 at a standard concen-

tration 1 M of DNADs and T ¼ 293 K comprising a bonding

entropy of �30.6 cal mol�1 K�1 and a bonding energy

of �9.06 kcal mol�1.

Theoretical predictions for the I–N transition have been

compared with experimental results for several DNA lengths,

ranging from 8 to 20 bases. For Nb $ 12, the model predicts

values for cN which are higher than experimental ones. This

suggests that the DNA model employed overestimates GST. In

view of the recent results of Maffeo et al.,64 we speculate that the

bonding entropy is underestimated, in agreement with the

observation that the probability distribution of the azimuthal

angle between two bonded DNADs, which is designed to be

single-peaked, is too restraining. In this respect, the present study

calls for an improvement of the coarse-grained potential52 in

regard to the coaxial stacking interaction.

The value of GST can also be used as a fitting parameter in the

theory for matching cN with the experimental results, retaining

the excluded volume estimates calculated for the coarse-grained

DNA model. Such a procedure shows that values of the stacking

free energy between �0.4 kcal mol�1 and �2.4 kcal mol�1 are

compatible with the experimental location of the I–N transition

line. In the work of Maffeo et al., the authors report a quite

smaller value of GST, namely GM
ST ¼ �6.3 kcal mol�1, a value

which was confirmed by the same authors by performing an

investigation of the aggregation kinetic in a very lengthy all-atom

simulation of DNAD with Nb ¼ 10. If such GST value is selected

as input in our theoretical approach (maintaining the same

excluded volume term), then one finds cMN z 250 mg ml�1, a value

significantly smaller than the experimental result (cN ¼ 650 �
50 mg ml�1). This casts some doubts on the effectiveness of the

employed all-atom force-field to properly model coaxial

stacking.

Finally, our work draws attention to the errors affecting the

estimate of the average chain length M via a straightforward

comparison of the nematic coexisting concentrations with

analytic predictions based on the original Onsager theory for
8396 | Soft Matter, 2012, 8, 8388–8398
mono-disperse thin rods.13,28 We have found that such an

approximation significantly underestimates M at the I–N tran-

sition concentration cN. In addition, the theoretical approach

predicts a re-entrant behavior of the transition lines in the c–MX0

plane, a distinct feature of the polydisperse nature of the equi-

librium chains.
Appendix A: excluded volume contributions

Here we further discuss the calculation of the excluded volume

term vexcl(l, l0) for the present model. Following ref. 44, the

excluded volume is assumed to be the following second order

polynomial in l and l0:

vexcl½l; l0; f ðqÞ� ¼ 2

ð
f ðqÞf ðq0ÞD3

�
J1ðg;X0Þ þ l þ l

0

2
J2ðg;X0ÞX0

þJ3ðg;X0ÞX 2
0 ll

0
�
dUdU

0

(22)

where the functions Ja, a ¼ 1, 2, 3, describe the angular

dependence of the excluded volume. The orientational proba-

bility f(q) is normalized such that

Ð
f(q)dU ¼ 1 (23)

The three contributions to the excluded volume in eqn (22)

come from end–end, end–midsection and midsection–midsection

steric interactions44 between two chains.

In the isotropic phase the orientational distribution does not

have any angular dependence, i.e. f(q) ¼ 1/4p, and eqn (22)

reduces to the form

vexclðl; l0;X0Þ ¼ BIX
2
0 ll

0 þ kIvd
l þ l0

2
þ AI: (24)

The parameters BI, kI and AI appearing in eqn (24) can be

calculated viaMC integration procedures as discussed in Section

4.2 and in ref. 44. We expect that these parameters do not depend

on X0 because each DNAD comprises Nb stacked base pairs

which are all identical with respect to excluded volume interac-

tions (i.e. they all have the same shape). In particular, the

calculated excluded volume of two DNADs is reported in Fig. 9

for 5 different aspect ratios, together with the resulting values for

the above parameters.

Using the Onsager angular distribution fa(q) in eqn (24), the

excluded volume in the nematic phase depends also on the

parameter a, i.e. the general form in eqn (22) reduces to

vexclðl; l0;X0;aÞ ¼ BNðaÞX 2
0 ll

0 þ kNðaÞvd l þ l0

2
þ ANðaÞ: (25)

Assuming that AN(a) ¼ 0, kN(a) ¼ kHC
N (a) and BN(a) is given

by eqn (10), the three parameters hk with k ¼ 1, 2, 3 have to be

estimated. For l ¼ l0 ¼ 1 and several values of a (a ¼ 5.45 in

steps of 5) and X0 we calculated numerically the nematic

excluded volume for two DNADs. The results are shown in

Fig. 10, where we plot vexcl/vd vs. X0 for various a. The dashed

lines shown in Fig. 10 are obtained through a two-dimensional fit

to numerical data for vexcl(1, 1, X0, a) using eqn (9) as the fitting

function.
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Appendix B: excluded volume of hard cylinders

For two rigid chains of length l and l0 which are composed of

hard cylinders (HCs) of diameterD and lengthX0D, vexcl(l, l
0) can

be described by ref. 51.

vHC
excl½l; l0; f ðqÞ� ¼

ð
f ðqÞ f ðq0ÞD3

hp
2
sin gþ p

2
X0


1þ jcos gj

þ 4

p
Eðsin gÞ

�
l þ l0

2
þ 2X 2

0 ll 0sing
i
dUdU0

(26)

where cos g ¼ u$u0, u and u0 are the orientations of two HCs and

E(sin g) is the complete elliptical integral.

Eðsin gÞ ¼ 1

4

ð2p

0

�
1� sin2

g sin2
j
�1=2

dj: (27)

The integrals in eqn (26) can be calculated exactly in the

isotropic phase, while in the nematic phase the calculation can be

done analytically only for suitable choices of the angular distri-

bution f(q). Here we assume that the angular distribution is given

by the Onsager function in eqn (8).

Using the Onsager orientational function the following

approximate expressions for the coefficients kN(a), BN(a) and

AN(a) can be derived43

~BNðaÞ ¼ D3ðp=4ÞraðaÞ
~kNðaÞ ¼ pD3

X0

vd


1� 1

a

�

~ANðaÞ ¼ D3ðp=4Þ2raðaÞ

(28)

where

ra ¼ 4ðpaÞ�1=2


1� 15

16a
þ 105

512a2
þ 315

8192a3

�
: (29)

We evaluate numerically the excluded volume in eqn (26) for

many values of a and, building on the expressions in eqn (28), we

perform a fit to these data using the following functions:

BHC
N ðaÞxD3ðp=4Þ

�
raðaÞ þ

c4

a9=2
þ c5

a11=2

�
(30)

kHC
N ðaÞ ¼ 4


1� 1

a

�
þ
XN
i¼2

bi

ai
x

4

p

X4

i¼0

di

ai
(31)

AHC
N ðaÞxD3ðp=4Þ2

�
raðaÞ þ

c4

a9=2
þ c5

a11=2

�
(32)

The coefficient values resulting from the fitting procedure are

c4 ¼ 1.2563, c5 ¼ �0.95535, d0 ¼ 3.0846, d1 ¼ �4.0872, d2 ¼
9.0137, d3 ¼ �9.009 and d4 ¼ 3.3461.
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