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In glassy dynamics, the rattling of particles in a cage formed by their neighbors is typically limited to

a length scale of the order of the particle diameter but is nevertheless strongly coupled to the overall

structural arrest of the system (solidification). Furthermore, the rattling amplitude and the structural

relaxation time have been recently shown to follow the same scaling form in various polymer melts

and supercooled liquids. In this paper we analyze from this perspective for the first time the glassy

dynamics emerging from the formation of a persistent network in a model colloidal gel at very low

density. The structural relaxation time of the gel network is compared with the mean squared

displacement at short times, corresponding to the localization length associated to the presence of

energetic bonds. Interestingly, we find that the same type of scaling as for the dense glassy systems

holds. Our findings elucidate the strong coupling between the cooperative rearrangements of the gel

network and the single particle localization in the structure, and support the general nature of the

scaling proposed.
1. Introduction

Crowding and caging effects play major roles in the glass

transition (GT) of molecular liquids of dense systems in soft

matter.1–10 The strong localization of the particles in the cage

formed by their neighbors typically shows up as a plateau in the

time dependence of the particle mean square displacement

(MSD). The value of the MSD plateau hu2i yields the amplitude

of the rattling motion inside the cage and hence the corre-

sponding localization length. In spite of the extreme time-scale

separation between the rattling motion (� 10�12 s) and the

structural relaxation (sa � 102 s at GT) strong correlations

between them are present and have been investigated by several

authors.11–30 In particular, it has been recently shown that the

structural relaxation time sa and the rattling amplitude hu2i1/2

measured in different numerical models, including linear poly-

mers, soft binary mixtures, prototypical glassformers like SiO2

and o-terphenyl (OTP), and one icosahedral glassformer,26–28

can be related in a unique scaling form.

Remarkably, the same resulting master curve well fits to the

experimental data from van der Waals and associating liquids,
aDipartimento di Fisica, ‘‘Sapienza’’ Universita di Roma, P.le A. Moro 2,
Roma, I-00185, Italy. E-mail: cristiano.demichele@romal.infn.it; Fax:
+3906463158; Tel: +390649913524
bETH Zurich, Department of Civil Engineering, Microstructure and
Rheology, CH-8093 Zurich, Switzerland. E-mail: delgado@ethz.ch
cIPCF-CNR and Dipartimento di Fisica ‘‘E.Fermi’’, Universita di Pisa,
Largo B.Pontecorvo 3, Pisa, I-56127, Italy. E-mail: leporini@df.unipi.it

† Part of a collection of articles dedicated to the International Soft
Matter Conference 2010.

This journal is ª The Royal Society of Chemistry 2011
polymers, metallic glasses, ionic liquids and network glass-

formers over many decades in time.26–29 These results elucidate

how the onset of a strong coupling between the overall relaxa-

tion, characterized by cooperative and heterogeneous processes,

and the average localization at the level of a single particle, is

a general, fundamental feature of glassy dynamics.

Structural arrest and glassy dynamics can be observed also in

very dilute particle suspensions when gelation occurs, displaying

significant hints of caging effects even at rather low volume

fractions.31–40

The similarities and differences with the dense glassy systems

are still at the center of an intense debate: the caging takes place

again over time scales well separated from the ones of structural

relaxation, but it is much weaker than in dense systems and it has

been associated to the particle bonding, rather than to the role of

excluded volume interactions.41–43 In fact, in gels a somewhat

more complex scenario for structural arrest takes place, with

different localization processes over different length-scales,

because particles get bonded into an interconnected network

structure. A numerical study of a model colloidal gel has recently

shown that the gel network indeed induces the same type of

strong coupling in particle motion which is typically observed in

dense glassy systems and that the glassy dynamics directly arises

from the cooperative processes induced by the network.39 With

the motivation to further investigate the presence and nature of

coupling between structural relaxation and particle localization

in colloidal gelation, here we study for the first time the corre-

lation between the structural relaxation time sa and hu2i in

a model diluted colloidal gel and find the same type of scaling as

in the dense system. This finding is remarkable because the
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caging mechanism and the origin of the slow dynamics are very

different in this type of systems and gives indeed a new contri-

bution to the understanding of glassy dynamics in diluted gel

systems by indicating the presence of a complex feedback

between the overall slow structural relaxation and the single

particle localization.

The paper is organized as follows. In Section 2 we briefly recall

the derivation of the scaling form subsequently discussed in the

analysis, in Section 3 we briefly summarize the main features of

the gel model as studied in Ref. 37–39 by molecular dynamics

and of numerical simulations. In Section 4 we provide a simple

protocol to test the universal scaling26 for the gel system studied

here. Finally in Section 5 we draw the conclusions of our anal-

ysis.
Fig. 1 Two level systems where structural relaxation is achieved through

a jump from one minimum to the other one overcoming an energy barrier

DE (see text for details).

2. Universal scaling form

Upon approaching the glass transition, particles are longer and

longer trapped into the cage formed by their neighbors. This

caging phenomenon shows up as a plateau-like regime at short

times in the MSD. The amplitude of the rattling motion hu2i1/2

during this caging regime, that occurs on very short time scales

(e.g. picoseconds in molecular liquids), is the so-called Debye–

Waller (DW) factor17,21 which is directly related to the short-time

elastic properties of the system.23 The DW factor is an experi-

mentally accessible quantity16 that can be also measured by using

the incoherent intermediate scattering function (ISF), evaluating

at the short times the height of the plateau which signals the cage

effects (see Ref. 27). We note that, as shown in Ref. 27 the DW

factor extracted from MSD hu2i and the one defined from ISF are

equivalent.

In spite of the fact that the DW factor is related to fast motion

of particles occurring on time scales much shorter than the ones

typical of structural relaxation, many studies evidence strong

correlations between slow and fast degrees of freedom in glass-

forming liquids.1,11,16,19–21,44–50

In order to express the correlation between DW factor and

structural relaxation time in a functional form, a classical argu-

ment estimating the height of the barrier between two potential

energy minima from the curvature around the minima can be

used. For glassy systems Hall and Wolynes14 applied this argu-

ment in their density functional theory where atomic motion is

restricted to cells, picturing the GT as the freezing into an

aperiodic crystal structure. In this approach the system relaxa-

tion towards equilibrium can be thought of as a series of acti-

vated jumps over energy barriers in its potential energy

landscape.22. Following Ref. 22 we now give a derivation of an

equation relating DW factor and structural relaxation, which is

useful in the context of this paper.

For the sake of simplicity we restrict to the one-dimensional

case where two minima are separated by a distance 2a (see

Fig. 1). Referring to Fig. 1, we expand the potential U(x) around

the minimum on the left, whose position is labeled by x1:

UðxÞ ¼ U0 þ
L

2
ðx� x1Þ2 (1)

Since system relaxation requires getting over the energy barrier

DE, if sa is the system relaxation time and s0 the microscopic

time:
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sa ¼ s0 exp

�
DE

kBT

�
(2)

From eqn (1) we can express DE as:

DE ¼ L

2
a2 (3)

and from equipartition theorem:

kB T ¼ Lhu2i (4)

where hu2i ¼ hx2i. Inserting eqn (4) and (3) into eqn (2) one

obtains finally:

sa ¼ s0 exp

�
a2

2 hu2i

�
(5)

It is important to note that eqn (5) is expected to fail if the

amplitude of rattling motion hu2i becomes comparable to a2.

A natural generalization of eqn (5) can be achieved by

adopting a proper distribution p(a2) of the squared displacement

a2 needed to overcome energy barriers, i.e. in our present study to

break bonds. We note that the squared displacement a2 is the

cumulative displacement of the particles that move,14 hence

according to Central Limit Theorem a suitable choice for p(a2) is

a truncated Gaussian form, i.e.

pða2Þ ¼

8><
>:

A exp �
ða2 � �a2Þ2

2s2
a2

" #
if a . amin

0 otherwise:

(6)

where A is a normalization factor and a2
min is the minimum

displacement to reach the transition state. Averaging the eqn (5)

over the distribution given by eqn (6), the following generalized

HW equation is obtained:

sa ¼ s0 exp �a2

2hu2i þ
s2

a2

8hu2i2

" #
(7)

The Gaussian form for p(a2) is supported also by other

considerations. For example if we substitute back kBT into eqn

(7) using eqn (4) we end up with the following equation:
This journal is ª The Royal Society of Chemistry 2011



sa ¼ s0 exp

2
64L�a2

2kBT
þ

L2 s2
a2

8ðkBTÞ2

3
75 (8)

Experimental data for both supercooled liquids51 and poly-

mers52 together with theoretical approaches53 and numerical

simulations54 support Gaussian form for p(a2) in eqn (8).

Furthermore putting eqn (3) into eqn (6) to eliminate a2

a Gaussian distribution for energy barriers is attained in accor-

dance with other studies.55

These ideas have been originally developed for the glassy

dynamics of dense systems, where the caging occurs due to the

high density. In the following we would like to try and apply

them to the glassy dynamics of colloidal gels, where caging can

take place at very low densities, because persistent bonds lead to

an interconnected network structure.
Fig. 2 Static structure factor at lowest temperatures investigated for all

volume fractions. qmin and qmax are also pointed out where qmin is the

minimum wave vector allowed by finite size of simulation box and qmax is

the wave vector corresponding to the maximum of S(q) at length scales

comparable to particles diameter.
3. Methods

3.1 Model

We refer to the studies carried out on in Ref. 37–39: the colloidal

gel model considers identical particles of diameter s interacting

via a phenomenon-based potential Veff, designed to account for

the presence of directional interactions.

In gelling colloidal suspensions there are in fact several

possible sources of anisotropic effective interactions, since the

particle surface may not be smooth or the building blocks of the

gel are not the primary particles but larger aggregates of irregular

shape.56 Confocal microscopy images obtained in recent experi-

ments57–59 confirm this scenario: the distribution of the particle

coordination number n in very diluted gel networks is strongly

peaked around n x 2,3. In the chosen model, therefore, the

interaction potential is given as the sum of three different

contributions, Veff ¼ VLJ + Vd + V3, where VLJ is a Lennard-

Jones type of potential producing a narrow attractive well, and

Vd + V3 contains directionality and rigidity of inter-particle

bonding.39 Here we consider the same choice of parameters as in

Ref. 37–39 and the range of volume fractions as investigated in

Ref. 39.

As reported in the previous studies, in this model at low

temperatures the system aggregates into an open persistent

network of chains connected by a few bridging points (nodes).

This takes place via a random percolation mechanism, but once

a percolating structure is formed, it rapidly evolves towards

a persistent, fully connected open network. The formation of the

persistent network produces the coexistence, in the gel, of very

different relaxation processes at different length scales: the

relaxation at high wave vectors is due to the fast cooperative

motion of pieces of the gel structure (e.g. the chains connecting

two nodes), whereas at low wave vectors the overall rearrange-

ments of the heterogeneous gel make the system relax via

a stretched exponential decay of the time correlators. The coex-

istence of such diverse relaxation mechanisms is characterized by

a typical crossover length which is of the order of the network

mesh size. The slow glassy dynamics at low wave vectors results

in being directly connected to the presence of cooperative

processes which can be recognized, for example, in the rear-

rangements of the network nodes along the complex structure of
This journal is ª The Royal Society of Chemistry 2011
the network itself.39 This scenario is in agreement with the results

of other recent studies on model colloidal gels.60,61

3.2 Simulations details

We have used a MD code where the potential Veff has been

implemented via a suitable combination of the algorithms

RATTLE and SHAKE.62 The unit of time is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=3

p
, with m the

mass of a particle and the data reported here refer to a time step

of 0.002. The data refers to micro-canonical simulations per-

formed with 8000 particles in cubic boxes of size L ¼ 37.64,

43.09, 55.10 in unit of s, corresponding respectively to particle

densities of r ¼ 0.15, 0.1, and 0.05, i.e. to approximately volume

fractions fx0.075, 0.05, and 0.025. In the simulations 5 to 8

independent samples have been equilibrated starting from initial

high temperature random configurations by replacing particle

velocities with values extracted from a Maxwell-Boltzmann

distribution every D time steps (where D varied with temperature

from 10 to 103 MD steps). After equilibration the energy is

constant, showing no significant drift over the simulation time

window, and different one- and two- time autocorrelation

functions display the equilibrium behavior, i.e. do not show any

sign of aging. The data production starts from these equilibrated

samples: the equilibration time grows with the relaxation time in

the system and at the lowest temperatures equilibration required

up to 2 � 107 MD steps.

4. Results and discussion

4.1 Relaxation and transport properties

We use the static structure factor S(q), defined as follows:

SðqÞ ¼ 1

N

X
i; j

�
eiqc�½ri�rj �i (9)

to quantify the extent of spatial correlation in the system and

obtain informations on the gel structure. In Fig. 2 (from the data

in Ref. 39) S(q) of the gel network (i.e. at the lowest temperature

considered) displays a peak around qmax z 8 corresponding
Soft Matter, 2011, 7, 4025–4031 | 4027



roughly to the particle diameter. This peak basically arises from

excluded volume interactions between particles, i.e. it approxi-

mately corresponds to the first peak of radial distribution func-

tion. In glassy systems the slow relaxation arises first, and has its

strongest signature, at these wave vectors. It is clear from the

figure that in the gel significant spatial correlations are present

also at smaller wave vectors. In Ref. 39 S(q) has been compared

to the static structure factor of a polymer chain solution63: length

scales matching smaller wave vectors 2.0 < q < 7.0 can inter-

preted as an intra-molecular regime for spatial correlations of the

aggregates (i.e. chains). Mesoscopic and macroscopic length

scales q # 2.0 can instead be thought of as corresponding to inter-

molecular regime, due to the long-range interactions induced by

the formation of the persistent gel network. Correlations in the

particle motion over different length scales can be effectively

quantified in terms of ISF:

Fsðq; tÞ ¼
1

N

XN

j

heiqc�½riðtÞ�rj ð0Þ�i (10)

The analysis of its behavior37–39 indicates that in the gel the

slowest modes correspond to the inter-molecular regime of wave

vectors. In Fig. 3 Fs(q, t) is plotted as a function of the time,

rescaled by the relaxation time sa(q), at the lowest temperature

T¼ 0.05 for different wave vectors. sa(q) has been calculated from

Fs(q, sa(q))¼ 1/e. The figure shows that the stretched exponential

decay exp {– [t/sa(q)]b} with b < 1, typical of glassy dynamics,

arises only at low wave vectors (q # 1.0). In other words, the slow

structural relaxation modes of the gel structure can be detected

only at low q. In contrast, at higher wave vectors, the time decay of

correlations is faster than exponential (b x 1.4): in Ref. 38, 64

these processes have been carefully analyzed and it has been

shown that they are due to fast coherent motion of pieces of the gel

network (i.e. the chains between two bridging point or nodes).

The overall scenario of relaxation modes in the gel is therefore

rather different from the one discussed in Ref. 26 and 27 for

glassy systems at high densities. It is interesting to note that here

the particle bonding is the basic ingredient of the structural

arrest, since the persistence of the gel network certainly relies
Fig. 3 Self part of the intermediate scattering function for different q

from qmin to values around qmax. Solid and dashed black lines are fits to

a stretched exponential with b ¼ 0.58 (dashed) and b ¼ 1.4 (solid)

respectively for minimum and maximum wave vectors.
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upon the long living bonds. On the other hand, the analysis of the

relaxation modes well elucidate that formation of single bonds

cannot be responsible, on its own, for the cooperative glassy

dynamics which instead arises from the long-range correlations

between them induced by the network.39 Within this picture, the

question of the existence and nature of a direct correlation

between the single particle average localization and the structural

arrest, as discussed in Section 4.2, becomes particularly

intriguing and is the main focus of this work.

To this aim, we have calculated the relaxation time sa associ-

ated to the structural relaxation of the gel as sa ¼ sa(qmin), where

qmin is the smallest wave vector compatible with periodic

boundary conditions in our simulations boxes, i.e. it corresponds

to length scales of the order of the box size.

For evaluating the rattling amplitude of the particle motion

corresponding to caging, we consider the MSD:

hr2ðtÞi ¼ 1

N

XN

i

h k riðtÞ � rið0Þ k2 i: (11)

Fig. 4 shows MSD divided by time for all temperatures at

volume fraction f ¼ 0.05 (from Ref. 37). Since the system is very

diluted, localization phenomena can be very weak and this type

of plot helps to better recognize different regimes. At very short
Fig. 4 Top: hr2(t)i/t as a function of time at f¼ 0.05. Inset: Logarithmic

derivative showing the minimum corresponding to caging. The arrows

indicate the regime chosen for the evaluation of the DW factor. Bottom:

DW factor for f ¼ 0.05 as a function of T. Dashed line shows the purely

ballistic behavior of hu2i(T) for t* z 1, where the slope, according to eqn

(14) is 3kBt*2/m z 3 in reduced units.

This journal is ª The Royal Society of Chemistry 2011



times a ballistic regime is found where MSD increases according

to hr2(t)i x (3kBT/m)t2 (i.e.hr2(t)i/t f t). Formation of bonds

with other particles slows down the displacement and hr2(t)i/t
shows an inflection point. At high temperatures, bonds break

within a time interval much smaller than sa and particle starts

diffusing, i.e. hr2(t)i/t eventually reaches a plateau. At T < 0.1

bond lifetime sets instead the longest relaxation time-scale in the

system and in this regime the formation of the gel network starts,

with the MSD becoming increasingly sub-diffusive over times

much longer than the localization process related to the rattling

of the particle within the bonding length scale. Therefore we

evaluate the caging from this first localization process as

explained in the following.
Fig. 5 Scaling of gel data for all densities investigated, i.e. f ¼ 0.025,

0.05, 0.075. Dashed line is a fit of all data to the function log sa ¼ a0 +

bhu2i�1 + ghu2i�2 with a0 ¼ 1.893, b ¼ 0.0177 and g ¼ 0.00144.
4.2 Scaling between relaxation and caging dynamics

Following the discussion in Ref. 27, we evaluate the DW factor in

our gel system in order to provide a suitable characteristic length

scale for the particle temporarily trapped into the cage over

length scales typical of the energetic bonds. DW factor can be

defined picking a suitable value of MSD within a time window

that begins just after ballistic regime and that ends just before

structural relaxation sets in. First we have to identify such time

window and to do that we consider the slope D(t) of MSD in

a log-log plot, i.e.:

DðtÞ ¼ v log hr2i
v log t

(12)

Representative plots of D(t) for our gel system can be found in

the inset of Fig. 4 (top). The short-time ballistic regime corre-

sponds to D(t) z 2 while the long time diffusive regime corre-

sponds to D(t) z 1. Between these two regimes an intermediate

regime is present where caging of particles gives rise to a clear

minimum of D(t) (see Fig. 4). We thus define the DW factor hu2i
as follows:

hu2i ¼ hr2(t ¼ t*)i (13)

where t* is the time corresponding to the minimum of D(t) within

this intermediate regime.

As evidenced in Fig. 4 (top) t* is independent of temperature,

hence one could be tempted to ascribe the decrease of hu2i with

temperature to a ‘‘ballistic slowing down’’ rather than to an

increasing localization (caging) of particles. If the motion of

a particle up to t* can be approximately considered ballistic one

has that:

hu2iz3kBT

m
t�2 (14)

and being t* independent of temperature hu2i should exhibit

a linear dependence on T. Anyway Fig. 4 (bottom) shows that

hu2i is not linearly dependent on T indicating that the decrease in

hu2i with T cannot be ascribed to the ballistic slowing down and

is instead due to the particle caging.

We are now in a position to establish a correlation between

structural relaxation and caging dynamics. In Fig. 5, log(sa) is

plotted against the inverse of DW factor 1/hu2i for the three

volume fractions investigated. The figure clearly shows that sa is

strongly correlated to the DW factor. Furthermore, the
This journal is ª The Royal Society of Chemistry 2011
correlation has a very specific form (see the fitting curve in the

figure) agreeing well with the prediction of eqn (7). This is far

from being obvious because here the structural relaxation is

related to length scales of the order of the simulation box (i.e. 2p/

qmin) whereas the DW factor corresponds to caging phenomena

occurring on much smaller length scales of the order of first

neighbor distance, i.e. q z 2p/s z qmax (see Fig. 2), where the

relaxation is rather dominated by other mechanisms (see Fig. 3).

It is also remarkable that the all data for different volume frac-

tions collapse onto the same scaling curve, because the structure,

as described by spatial correlations in Fig. 2, changes signifi-

cantly with f at small q (S(qmin) increases in fact by almost an

order of magnitude from f ¼ 0.075 to f ¼ 0.025), whereas it is

not affected by changes in f at large wave vectors q.

The correlation between DW factor and structural relaxation

time sa points to a strong correlation between the long-range

correlations established by the network and the localization

within the structure at the level of the single particle.

To better elucidate the nature of the scaling found, we have

also investigated the existence of correlations at different wave

vectors. In the gel network, sa(q) displays a complex dependence

on q as discussed in Ref. 38 and 39. In particular, sa(q) f q�1.4 at

large q, corresponding to the regime where relaxation is domi-

nated by fast collective motion of pieces of the structures (i.e.

chains between two nodes). Therefore in Fig. 6 we have used the

same type of plot as in Fig. 5 where sa(q) has been rescaled with

q1.4. The data refer to different q at f¼ 0.075. At the largest q the

data well collapse on top of each other and display a very

different dependence on 1/hu2i. Upon decreasing q the data

depart from the q1.4 scaling in q and also approach the scaling

form of Fig.5. This analysis further demonstrates that the scaling

found specifically relates the average localization at the level of

the single particle (as quantified by hu2i) to the relaxation modes

associated to the arising of glassy, cooperative dynamics.

4.2.1 Comparison with other MD Studies. In Ref. 27 it has

been shown that, for several model glassformers and experi-

mental systems, by plotting log(sa) versus hug
2i/hu2i (where hug

2i
is the DW factor at the GT) all data scale onto the same master

curve, i.e.:
Soft Matter, 2011, 7, 4025–4031 | 4029



Fig. 6 Plot of log(sa(q)$q1.4) versus 1/hu2i for different q at f ¼ 0.075.

Upon increasing the wave vector from qmin, the data strongly depart from

the scaling form of eqn (7).

Fig. 7 Scaling of the structural relaxation time vs. the reduced DW

factor of polymers,26 soft binary mixtures (Soft BM)27 and colloidal gel

(present work). For the colloidal gel hug
2i1/2 ¼ 0.104 and data have been

shifted vertically by – 2.32 in log scale. Dashed line is the universal curve

defined in eqn (15). Solid lines bound the accuracy of eqn (7) obtained

fitting data from polymer models studied in Ref. 26 and correspond to the

two definitions hu2i h hr2(t ¼ 0.6)i (magenta) and hu2i h hr2(t ¼ 1.4)i
(red) (see Ref. 27 for more details).
logsa ¼ aþ b~
hu2

gi
hu2i þ ~g

 
hu2

gi
hu2i

!2

(15)

where:

a ¼ �0.424(1) (16)

~b ¼ �a2

2 ln10hu2
gi
¼ 1:62ð6Þ (17)

~g ¼
s2

a2

8 ln10hu2
gi

2
¼ 12:3ð1Þ (18)

The scaling form obtained in Fig. 5 for the colloidal gel is

superimposed on the universal curve of eqn (15) with the vertical

shift a – a0 ¼ � 2.32 and upon using the scaled variable hu2i/hug
2i

with hug
2i ¼ 0.104 on the x-axis. It is found that hug

2i1/2¼ 0.104 of

the colloidal gel is close to hug
2i1/2 ¼ 0.129 of polymer melts and

binary mixtures.26,27

It is worth noting that the Lindemann ratio f h hug
2i1/2/d (d� 1

being the average next-neighbour distance of the particles) has

been proposed to be, as in crystals,65 a quasi-universal number

close to the glass transition (f � 0.1).66 Although our scaling

procedure does not rely on this criterion, our results are consis-

tent with it.

As to the vertical shift to superimpose the colloidal data with

the ones of polymer melts and binary mixtures, we note that,

according to our simplified treatment of the system relaxation as

activated jumps over energy barriers in the potential energy

landscape, a ¼ log s0 where s0 is the infinite temperature limit of

eqn (2), i.e. s0(f) can be interpreted as the relaxation time of

a system with only excluded volume interactions. The colloidal

gel volume fractions are almost two orders of magnitude smaller

than typical volume fractions of polymers and soft binary

mixtures, which are around 0.50–0.60. This huge difference in

volume fraction between gel and glasses should reflect in

a significantly different s0, i.e. in a significant vertical shift of the

curve log sa vs. 1/hu2i.
Using such vertical shift and such value for hug

2i to adjust gel

data we can compare them to the results obtained from soft
4030 | Soft Matter, 2011, 7, 4025–4031
binary mixtures27 and polymer systems26 as shown in Fig. 7. It is

clear from this figure that within the accuracy (marked by solid

lines) the scaling procedure also works well for the colloidal gel

model considered in the present paper.

5. Conclusions

We have investigated possible correlations between the locali-

zation at the level of the single particle and the structural relax-

ation in a model colloidal gel at very low volume fractions, with

directional effective interactions and local rigidity. We have

found that strong correlations are present over different length

scales. In this type of systems, the localization of particles due to

persistent bonding is of course the initiator of the process that

leads to gelation, but cannot be responsible, on its own, for

structural arrest, which arises thanks to the formation, eventu-

ally, of an interconnected network structure. Remarkably, we

have found that relaxation modes at the lowest wave vectors, i.e.

over length scale much larger than the bond localization length,

strongly correlate to the localization of single particles within the

typical bonding length. We think that these findings indicate

a type of feedback mechanism between dynamical processes at

different length-scales: particle bonding leads to the network

formation and long range correlations induced by the presence of

the network actually transforms the particle bonding into

a glassy caging, coupling eventually the particle localization to

the glassy structural arrest. This complex structural arrest

scenario is consistent with the observed mechanical/rheological

behaviour of this type of systems,67 where the role of energetic

bonds and of the network topology explicitly manifests. More-

over, we have shown that the gel data display the same scaling

form found for a large class of dense glassy systems in experi-

ments and simulations (molecular glasses, polymers, etc.): this

result strongly suggests that the scaling captures the essential,

basic ingredients in the physics of glassy structural arrest. Future
This journal is ª The Royal Society of Chemistry 2011



work will try to test these conclusions against different experi-

mental results and compare the behavior of attractive colloidal

gels (diluted and dense) and dense colloidal glasses.
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