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Event-driven molecular dynamics is a valuable tool in condensed and soft matter physics when particles
can be modeled as hard objects or more generally if their interaction potential can be modeled in a
stepwise fashion. Hard spheres model has been indeed widely used both for the computational and
theoretical description of physical systems. Recently further developments of computational techniques
allow simulations of hard rigid objects of generic shape. In the present paper we will present some
optimizations for event-driven simulations that offered a significant speedup over previous methods.
In particular we will describe a generalization of the well-known linked cell list method and an
improvement on the nearest neighbor list method recently proposed by us.

 2010 Elsevier B.V. All rights reserved.

1. Introduction

Systems composed of many particles can be modeled as hard
rigid bodies (HRB) if excluded volume interactions are dominant
and despite the absence of any attraction they exhibit a rich phase
diagram especially if their shape is non-spherical [1,2]. The spheri-
cal version of these models has already proven to be quite flexible
and have been used to tackle, for example, several biological prob-
lems [3–5]. The generalization to non-isotropic objects increase
even more their flexibility and applicability.

Furthermore also attractive interactions between HRBs, pro-
vided that they are short-ranged and/or localized, can be properly
modeled employing sticky spots (SS) [6–8].

Several numerical techniques have been developed in the past
to perform molecular dynamics simulations of particles interacting
with only excluded volume interactions. Dealing with hard bodies,
the system is propagated in configuration space from one event
to next, giving rise to so-called event-driven molecular dynamics
(EDMD). The essence of these EDMD numerical algorithms involves
the evaluation of the overlap between different objects [9–12] or,
equivalently, their geometrical distance [13].

Recently we proposed a novel method for performing EDMD of
HRBs [13], that is summarized in Sections 2 and 3. In the present
paper we discuss two optimizations applicable to such EDMD,
namely: multiple linked cell lists (MLL) method and nearest neigh-
bor lists with null sticky spots (SNL).

* Tel.: +39 0649913524; fax: +39 064463158.
E-mail address: cristiano.demichele@roma1.infn.it.

SNL method offers a significant speedup for simulating parti-
cles with complicated shapes, like hard-ellipsoids (HE) [1] or su-
perquadrics (SQ) [10,13] and it is fully described in Section 4. In
Section 5 we investigate the performance of the SNL method in the
case of SQs. MLL method, that is discussed in Section 6, proved to
be very useful in simulating mixtures of hard spheres with very
different sizes and for such systems the performance of this novel
method is analyzed in Section 7. Finally in Section 8 the conclu-
sions are drawn.

2. Event-driven molecular dynamics of hard rigid bodies

In EDMD events, such as collisions between particles, cell-
crossings (if one uses linked cell lists), saving of a system snapshot,
output of measured quantities, etc. are processed serially one after
another. Hence given the set of all possible events Σ , commonly
called “the event calendar”, it is crucial to adopt an efficient strat-
egy in order to retrieve the next event to happen, to add new
events to Σ or to delete events from Σ . In the present case such
event calendar has been implemented using a hybrid approach as
explained in [14], where a bounded priority queue is built on top
of a binary tree implemented as described in Ref. [15]. All oper-
ations (insertion, deletion and retrieve of next event) with such
priority queue have a complexity O (1) with respect to particles
number. In order to avoid round-off problems for events very close
to each other, we shift forward time origin periodically.

A general algorithm to perform an EDMD of HRBs is outlined in
Fig. 1, where after an initialization step at the begin of the simula-
tion (step 1), events are serially retrieved from the event calendar
(step 2) and processed accordingly (steps 4–6). In steps 4(f) and
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1. Initialize the event calendar (predict collisions, cell-crossings, etc.).
2. Retrieve next event E and set the simulation time to the time of this event.
3. If final time has been reached terminate.
4. If E is the “NNL rebuild” event then:

(a) remove all events from calendar,
(b) update the system to current time,
(c) evaluate the escape times tbbi of all particles from their BB and calculate

the smallest escape time tr = mini{tbbi },
(d) using LL check for overlaps between BBs and build the NNL accordingly,
(e) predict all cell-crossings and schedule them,
(f) predict all the collisions between HRBs using the NNL and schedule them,
(g) schedule next “NNL rebuild” event,
(h) schedule all other remaining events removed from calendar (output of

summary, etc.).
5. If E is a collision between particles A and B then:

(a) change angular and center-of-mass velocities of A and B according to con-
servation laws of momentum and energy,

(b) remove from calendar all events (collisions, cell-crossings, etc.) in which A
and B are involved,

(c) evaluate new collision times tbbA and tbbB of A and B with their BBs and
schedule a new “NNL rebuild” event if tbbA or tbbB are less than tr ,

(d) predict and schedule the two cell-crossings events for A and B ,
(e) predict and schedule all possible collisions for A and B using the NNL of

A and B .
6. If E is a cell-crossing of a certain rigid body A:

(a) update LL data structures accordingly,
(b) remove from calendar all events (collisions, cell-crossings, etc.) in which A

is involved,
(c) predict and schedule all possible collisions for A using NNL of A.

7. Go to step 2.

Fig. 1. Outline of EDMD algorithm for simulating HRBs.

5(e) the collision time between two particles must be evaluated
and an algorithm for such purpose has been extensively discussed
in Ref. [13]. In Ref. [13] we have also shown how to make use of
linked cell lists (LL) and nearest neighbor lists (NNL) with generic
HRBs. The remaining aspects of the algorithm presented in Fig. 1
are pretty standard and the interested reader can find all the de-
tails also in textbooks [15,16].

We will not provide all the details of the general EDMD devel-
oped in Ref. [13], but, since the two novel optimization techniques
presented in this paper concern NNL and LL methods described
therein, we believe that it is useful to discuss them briefly. NNL
are widely used in time-driven molecular dynamics simulations
but the implementation in an EDMD is not straightforward [17].
In [13] we proposed the following NNL implementation for EDMD:
if one considers the oriented bounding box (BB) which is built
around each particle and which encloses it completely, the near-
est neighbor list for a given particle A is the set of particles having
their BB overlapping with the BB of A. Moreover each BB associ-
ated to particle i is immobile and encloses only the particle i; if
tbbi is the time when the particle i will collide with its BB (all the
details for its calculation can be found in Ref. [13]), the NNL will
have to be rebuilt not after the time tr = mini{tbbi }. In addition, if
a collision between two particles i and j occurs, then the new es-
cape times tbbi and tbbj of these two particles with their BBs have to

be evaluated and the new time t′r = min{tr, tbbi , tbbj } for rebuilding
the NNL has to be set. If HRBs have a pronounced non-spherical
shape, i.e. a large aspect ratio, it is mandatory to use NNL in order
to minimize the number of collision predictions.

LL are also commonly employed in molecular dynamics sim-
ulations in order to avoid to check all the N2 possible collisions
among N simulated particles. In the LL method, the simulation box
is partitioned into cells and only collisions between particles in-
side the same cell or its 26 adjacent cells are accounted for. This
also means that, whenever an object crosses a cell boundary go-
ing from cell a to a new cell b, it has to be removed from the
linked cell list of a and added to the linked cell list of b. In the
algorithm illustrated in Fig. 1 LL are not directly used to calculate

collision times between particles but they are used to rebuild the
NNL instead. Given a BB corresponding to an HRB labelled by A,
one searches for overlapping BBs in the same cell of A or in one
of the 26 neighboring cells, assuming that the cells side length is
greater than the length of the diagonal of the BBs. We note that if
one wants to use only LL without NNL step 4 in Fig. 1 must be ig-
nored and in steps 6(c) and 5(e) LL will be used instead of NNL to
predict collisions between particles.

3. Simulating hard rigid bodies with sticky spots

Particles interacting through a hard core potential may be deco-
rated with spherical sticky spots (SS) that interact via a square well
potential [8]. In this case for predicting the next possible collision
between two particles1 we have to take into account both colli-
sions between SSs and hard core collisions between HRBs in steps
4(f), 5(e) and 6(c) of Fig. 1. More specifically if tSW is the next col-
lision time between the SSs of two particles A and B and tHC is
the next collision time between their hard cores, the next event
between A and B will occur at time tnext = min{tSW , tHC}. All the
details for an efficient algorithm to find collision times between
SSs can be found in [6].

SSs belonging to a particle i have also to be considered in cal-
culating the escape time from the BB2 of i, i.e. in steps 4(c) and
5(c) of the algorithm illustrated in Fig. 1. If tbbHC(i) is the escape
time of the i-th HRB from its BB and tbbSS (i) is the escape time of
its SSs, then the escape time tbbi of such particle from its BB will be
tbbi = min{tbbHC(i), tbbSS (i)}. tbbHC(i) can be calculated tracking the time
evolution of the geometrical distances between the HRB and its BB
planes dip (t), where ip = 1, . . . ,6 labels each of the 6 BB planes, as
described in detail in Ref. [13]. In a similar fashion the escape time
of the SSs can be calculated tracking the simultaneous evolution of
all the geometrical distances dis ip (t) between the SSs labelled by is
and the 6 BB planes labelled again by ip . An efficient strategy to
find the zeros of the distances dis ip (t), similar to the one discussed
in Ref. [6] for collisions between SSs, is outlined in Fig. 2.

The algorithm consists in adaptively increasing the time look-
ing for any sign change of the tracked distances disip (t). Step 6
requires a short discussion because it corresponds to the possible
occurrence of a “grazing collision” between an SS and a BB plane,
i.e. a collision in which the SS and the BB plane touches slightly
[9,13]. The quadratic interpolation, performed in order to find if
the distance becomes negative within the time interval [t, t + "t],
does not ensure that the “grazing” collision is not missed. Anyway
to remedy this problem a simple and effective trick is to consider a
BB whose dimensions (i.e. the sides lengths) are 2εd smaller than
the dimensions of the corresponding BB which is used to build the
NNL by checking for overlaps with BBs associated to different par-
ticles.

4. A novel method to compute the escape time

In [13] the calculation of the escape time tbbHC of an HRB from
its enclosing BB (steps 4(c) and 5(c) in Fig. 1) requires the eval-
uation of the collision time between the HRB and its BB. This is
computationally quite expensive (although much faster than the
prediction of the collision time between two HRBs) and a trick
to reduce the cost of such calculation is to consider a polyhe-
dron enclosing the HRB and to evaluate the escape time of such
polyhedron from its BB (see Fig. 3). This polyhedron must fit the
HRB, i.e. given a certain shape (e.g. a parallelepiped) it should have
the smallest possible size in order to enclose completely the HRB.

1 Particle here means “HRB plus its SSs”.
2 Note that in this case the BB must enclose both the HRB i and all its SSs.
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1. Set t = ti0, where ti0 is the current time of particle i.
2. Evaluate all the distances dis ip (t) between the SSs (is) of particle i and the 6

planes (ip ) of its BB. Considering that the plane ip divides the space in two
half spaces, the distance dis ip (t) is positive if the SS is is completely inside the
half space which contains the particle i.

3. Choose a time increment "t as follows:

"t =






minis ip {dis ip (t)/ḋmax
is ip

} if dis ip (t) > εd;

εd/minis ip {ḋmax
is ip

}, otherwise,
(1)

where εd is a parameter which has to be much smaller than the particle di-
mension and ḋmax

is ip
is an overestimate of ḋis ip (t) (time derivative of the distance

dis ip (t)) within the time interval [t, t + "t] (see Ref. [6] for an explicit expres-
sion for this quantity).

4. Evaluate the distances at time t + "t , i.e. calculate dis ip (t + "t).
5. For every SS is and BB plane ip such that dis ip (t + "t) < 0 and dis ip (t) > 0

calculate their contact time with best possible accuracy.
6. For every SS is and BB plane ip such that 0 < dis ip (t) < εd and 0 < dis ip (t +

"t) < εd , evaluate the distances dis ip (t + "t/2), perform a quadratic interpo-
lation of the points (t,dis ip (t)), (t + "t/2,dis ip (t + "t/2)), (t + "t,dis ip (t +
"t)) and find the time tmin corresponding to the minimum of the resulting
parabola. If dis ip (tmin) < 0 calculate the contact time between is and ip with
best possible accuracy.

7. If no contact time has been found in steps 5 and 6 go to step 8, otherwise
find the smallest contact time among the ones calculated in steps 5 and 6 and
terminate, because this time is just the escape time tbbSS .

8. Increment time by "t .
9. Go to step 2.

Fig. 2. Outline of the algorithm to find the escape time tbbSS .

Fig. 3. SQ enclosed in its bounding box (cyan parallelepiped) with SSs of null diam-
eter, represented here as finite size yellow spheres. (For interpretation of colors in
this figure, the reader is referred to the web version of this article.)

Latter requirement will ensure that the escape time of such poly-
hedron tsbbHC will be an underestimate of the escape time tbbHC , i.e.
tsbbHC < tbbHC . Evaluation of tsbbHC consists in calculating the smallest es-
cape time of all vertices of the polyhedron. Because such vertices
can be thought as SSs of null diameter, the same algorithm illus-
trated in Section 3 and used for calculating the escape time of SSs
from the HRB BB can be employed to evaluate the escape time
tsbbHC .

In Fig. 3 the polyhedron is a parallelepiped which encloses the
given cylindrical-like HRB and whose vertices are represented as
yellow finite size spheres. Note that if the shape of particles is
more complicated than the one shown in Fig. 3 a polyhedron with
a better fitting shape can be used. The improved efficiency of this
novel method for evaluating the escape time of HRBs, which we
called SNL method, is due to the fact that there is no need to
calculate numerically any Jacobian and its inverse for determining
distances and contact times, as in the method originally proposed
in [13].

5. Nearest neighbor lists with null spots: Performance results

In this section we will test the performance of the novel
method described in Section 4 within the algorithm discussed in
Section 2. We consider here superquadrics (SQ), whose surface is
defined as follows:

f (x, y, z) = |x/a|n + |y/b|m + |z/c|p − 1 = 0 (2)

where the parameters n,m, p are real numbers and a, b, c are the
SQ semi-axes. A monodisperse system of N = 512 SQs has been
simulated with n = 8, m = p = 2 and with two equal semi-axes, i.e.
b = c. Such SQs can be characterized by the elongation X0 = a/b
and if elongation X0 < 1 particles are called “oblate”, while if
X0 > 1 particles are called “prolate”. For this test we have taken
into account only prolate SQs, whose shape resembles that of a
cylinder with smoothed edges (see Fig. 3). In particular elongations
X0 = 1.0,2.0,3.0 have been studied. The system of prolate SQs has
been simulated in a cubic box of volume V with periodic boundary
conditions at the volume fractions φ = 0.20,0.30,0.35,0.40. The
length of the smallest semi-axes is chosen to be the unit of length
(b = 1.0), the mass of the SQ is the unit of mass (m = 1) and the
moment of inertia is spherically symmetric and equal to 1.0. To
create the starting configuration at a desired φ, an extremely di-
luted crystal has been melted; afterwards, the particles have been
grown independently up to the desired packing fraction (quench in
φ at fixed N , X0), similarly to what was done in [13].

To test the algorithm speed, we use the CPU time3 per collision,
i.e. τc = Ttot/Ncoll , where Ttot is the (real) time needed to perform
Ncoll collisions during a simulation.

We can define the speedup SSQ as follows:

SSQ = τ N
c /τ S

c (3)

where N refers to simulations that use NNL originally proposed in
[13] and S refers to simulations that make use of SNL discussed
in Section 4. Fig. 4(a) shows SSQ as a function of elongation X0
for two different volume fractions and it is apparent that use of
SNL offers a speedup around 2 independently of elongation. In a
similar way Fig. 4(b) shows the speedup SSQ for two elongations
X0 = 1.0, 3.0 as a function of φ and it turns out again that SSQ is
also independent of φ. Independence of X0 and φ for the speedup
SSQ stems from the fact that the number of collision predictions
for a given X0 and φ is nearly independent of the method used to
calculate the escape time (either SNL or NNL).

6. Polydisperse systems: Multiple linked cell lists

Several variants of original LL method have been proposed in
literature [18] with a view to improving the original LL method
(as discussed for example in [16]). All these improved LL methods
are intended to avoid unnecessary distance calculations but they
do not tackle the case of a system composed of different species
having very different sizes. Here we consider the case of a system
composed of Ns several species having different sizes {σ1, . . . , σNs }
and for the sake of simplicity we assume that particles are spher-
ical. We use again the EDMD algorithm discussed in Section 2 but
without NNL. Therefore the prediction of collision times relies only
on LL (or MLL).

For making use of the original LL method, the simulation box
must be partitioned into cubic cells and each cell must have a side
length greater than σmax = maxi{σi}. In general, this restriction
can considerably compromise the algorithm performance. To un-
derstand this, consider mi particles of diameter σi inside a cell and

3 CPU time means the real time spent by the CPU for calculations.



Author's personal copy

C. De Michele / Computer Physics Communications 182 (2011) 1846–1850 1849

Fig. 4. (a) Speedup SSQ versus elongation X0 for φ = 0.20,0.40. (b) Speedup SSQ versus φ for X0 = 1.0,3.0.

Fig. 5. Pictorial representation of Multiple Linked Lists for a binary mixture of two
particles where diameter σA of particles A is bigger than diameter σB of particles
B . For each possible interaction AA, AB and BB a different partitioning of simulation
box into cells is employed, i.e. multiple linked cell lists are used.

qi = (σmax/σi)
3, at a fixed volume fraction, if qi → 0 then mi → ∞

and the performance is severely compromised.
A possible generalization of the original LL method for dealing

with such polydisperse system, which we called the MLL method,
consists in using a different LL for each pair of species. To imple-
ment the MLL method, for each pair of species a different subdivi-
sion of the simulation box into cells is used, as illustrated pictori-
ally in Fig. 5 for a binary mixture of hard spheres. In general if the
number of species is Ns , Ns(Ns +1)/2 different subdivisions of the
simulation box into cells are needed and the side length of cells
associated to species l and m4 must be greater than (σl + σm)/2.
A cell associated with species l and m will be denoted by clm and
each particle of species k belongs to all cells clm with l = k or
m = k, inside which center of A lies. The set of cells to which
A belongs will be indicated by C(A). For predicting possible col-
lisions of a particle A, all the particles inside the cells C(A) and
in their neighboring cells have to be checked except for particles
of the same species of A belonging to cells clm with l &= m in or-
der to not take into account collisions between particles of same
species twice.5 As in the original LL method the program keeps
track of cell changes for all cells to which a particle belongs and
cell-crossings events are scheduled into the event calendar. The
only remark for MLL method is that if particles, as they cross sim-
ulation box boundaries, are reinserted into the box with periodic
boundary conditions, one has to ensure that reinsertion happens
only once.

7. Speedup of multiple linked cell lists

In this section we will test performance of the MLL method for
a binary mixture of spheres having a very different size. The two

4 Assuming that they are additive.
5 Possible collisions of A with other particles of same species k are already con-

sidered checking particles inside cells ckk .

species (labeled by A and B) are characterized by a diameter ra-
tio q = σA/σB > 1 and their masses are chosen to be equal and
unitary. NA and NB will be the number of particles A and B re-
spectively and N = NA + NB . The number of particles A will be
kept fixed to 250, i.e. NA = 250. We will investigate the algorithm
performance varying N , the volume fraction φ and the size ratio q.
The simulation box is cubic with periodic boundary conditions.

Again we define the speedup SSQ as follows:

SBM = τ LL
c /τMLL

c (4)

where LL refers to simulations that use the original LL method pro-
posed in [13], MLL refers to simulations that employ the new MLL
method described in Section 6 and τc is the CPU time per collision.
Fig. 6(a) shows SBM as a function of φ for two different size ratios
q. It is remarkable that speedup reaches values up to 40.

The number of spheres of type B , Ncell
B , within a cell using con-

ventional LL method is roughly:

Ncell
B = 6q3φ

π [q3(1 − φ)NA/NB + 1] (5)

and an analytical estimate SthBM for the speedup turns out to be6:

SthBM = KNcell
B (6)

where K is an arbitrary constant. Fig. 6(a) and (b) shows also fits
to simulations data of function SthBM defined in Eq. (6). Agreement
between numerical data and SthBM proves that SthBM is a reasonable
estimate.

8. Conclusions

In this paper two novel techniques easy to implement have
been proposed for optimizing the EDMD algorithm summarized in
Fig. 1 and extensively discussed in Refs. [6,13]. The SNL method
offers a nearly constant speedup around 2 with respect to the old
method proposed in [13] and it can be easily adapted to more
complicated shapes of simulated particles. The SNL method is ac-
tually used for simulating a recently developed model of DNA
duplexes (DNAD) [19] consisting in cylindrical-like SQs decorated
with two sticky spots on their two bases in order to model stack-
ing interactions between DNADs. The details of latter study will be
given in a future publication.

MLL have been already used in [20] where spherical particles,
evolving according to event-driven Brownian dynamics [21], can
be absorbed by one fixed spherical sink whose size may be much
greater than the diffusing particles. MLL are also currently used

6 For MLL method Ncell
B is of the order of 1.
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Fig. 6. (a) Speedup SBM versus total volume fraction φ for binary mixtures for q = 2,5 with N = 30000 for all points. (b) Speedup SBM versus size ratio q for N = 10000,
30 000 with φ = 0.60 for all points. Dashed lines are fits to function SthBM defined in Eq. (6).

for investigating the phase diagram of a binary mixture of hard
spheres whose size ratio q = 5 upon changing the partial volume
fractions of the two species. For this system it is possible to cal-
culate a theoretical phase diagram with respect to glass transition
within the framework of Mode Coupling Theory and recently jam-
ming lines for such system have been evaluated both theoretically
and numerically [22]. In view of growing interest for this system
it is crucial to have an efficient algorithm to explore the whole
phase diagram. It is worth noting that also conventional time-
driven molecular dynamics may benefit from MLL. Huge increase
in performance provided by MLL, when the length scales between
the components is so important, could play a relevant role in mul-
tiscale simulations, a topic that is attracting a lot of interest for
biological and material applications. Finally the two optimization
methods, SNL and MLL, illustrated in this paper can be used to-
gether, like LL and NNL, by using MLL to generate SNL.
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