
Journal of Computational Physics 229 (2010) 3276–3294
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Simulating hard rigid bodies

C. De Michele *

Dipartimento di Fisica, Università di Roma ‘‘La Sapienza”, P.le Aldo Moro 2, 00185 Roma, Italy

a r t i c l e i n f o
Article history:
Received 5 March 2009
Received in revised form 15 December 2009
Accepted 5 January 2010
Available online 11 January 2010

Keywords:
Event-driven molecular dynamics
Molecular liquids
Hard rigid bodies
Computer simulations
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.002

* Tel.: +39 0649913524; fax: +39 064463158.
E-mail address: cristiano.demichele@roma1.infn
a b s t r a c t

Several physical systems in condensed matter have been modeled approximating their
constituent particles as hard objects. The hard spheres model has been indeed one of the
cornerstones of the computational and theoretical description in condensed matter. The
next level of description is to consider particles as rigid objects of generic shape, which
would enrich the possible phenomenology enormously. This kind of modeling will prove
to be interesting in all those situations in which steric effects play a relevant role. These
include biology, soft matter, granular materials and molecular systems. With a view to
developing a general recipe for event-driven molecular dynamics simulations of hard rigid
bodies, two algorithms for calculating the distance between two convex hard rigid bodies
and the contact time of two colliding hard rigid bodies solving a non-linear set of equations
will be described. Building on these two methods, an event-driven molecular dynamics
algorithm for simulating systems of convex hard rigid bodies will be developed and illus-
trated in details. In order to optimize the collision detection between very elongated hard
rigid bodies, a novel nearest-neighbor list method based on an oriented bounding box will
be introduced and fully explained. Efficiency and performance of the new algorithm pro-
posed will be extensively tested for uniaxial hard ellipsoids and superquadrics. Finally
applications in various scientific fields will be reported and discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Systems which are composed of many particles can often be modeled as an ensemble of hard rigid bodies. Such descrip-
tion is particularly successful when excluded volume interactions are dominant and internal vibrational degrees of freedom
are negligible. Despite the absence of any attraction, particles interacting with only excluded volume interactions exhibit a
rich phase diagram with a multiplicity of phases, especially when the shape is a non-spherical one [1–5].

Hard spheres (HS) are a classical example of hard-body model, which has been particularly useful to understand the basic
correlation which develops in simple fluids [6–10] and provides hints on the slow dynamics which characterize liquids
approaching the glass transition, where packing effects become even more significant [11–13]. Even in the case of molecular
fluids, HS models are a good starting point for sophisticated liquid matter theories [6].

Non-spherical models of rigid bodies are crucial to understand the role of the rotational degrees of freedom, as well as the
role played by the shape in determining the system’s physical properties. Onsager, introducing a hard sphero-cylinder model
(HSC) for liquid crystals, showed that, by only changing the aspect ratio of the particles, a nematic phase can become
thermodynamically stable [14]. In Onsager’s theory, the internal energy of the system is zero and only the entropy, coming
from translational and rotational degrees of freedom of the particles, contributes to the free energy of the system. Systems
. All rights reserved.
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showing an ‘‘entropically driven” phase transition have been extensively studied over the last 60 years [15,16]. The study of
such transitions has been based on extensions of the original Onsager’s theory [17–20], and complemented by experiments
(for a recent review see [16]).

Most of the information for hard-body systems has been calculated using numerical simulations [19,21]. Several numer-
ical techniques have been developed in the past to simulate particles interacting with only excluded volume interactions.
The essence of these numerical algorithms involves the evaluation of the overlap between different objects or, equivalently,
their geometrical distance. The first simulations of HS [22] were carried out by Alder and Wainwright in 1957, and they pro-
vided the first evidence of a crystal phase in the case of spherical hard particles (disks and spheres). In 1972 Vieillard-Baron
[23] published a numerical investigation of the phase diagram of a two-dimensional hard ellipsoids (HEs) fluid, introducing
an overlap criterion for HEs suitable for a Monte-Carlo (MC) simulation. Building on the work of Viellard-Baron, Frenkel et al.
[21] investigated in 1984 the phase diagram of a tridimensional system of HEs, through MC simulations. Perram and Wert-
heim [24] introduced a simpler overlap criterion, which has been recently used by Donev et al. to perform molecular dynam-
ics simulations of HE [25–27] and which has been also generalized to any couple of smooth convex shapes [28–31].
Simulations of particles with more complex shapes have also been reported. For example in 1986 Stroobants et al. carried
out MC simulations of a system of hard sphero-cylinders (HSC), i.e. molecules consisting of a hard cylindrical rod of length
L and diameter D, capped at each end by hard hemispheres also of diameter D. These simulations are computationally less
demanding [32] than the HE ones. More recently, MC simulations of hard-cylinders (HCY) have been performed [33] in order
to look for a cubatic phase, which had been reported for cut hard spheres [34]. The oblate version of HSCs (i.e. the solid
resulting from the intersection of two spheres) has been investigated by MC simulations under the name of UFO (the name
comes from the shape of the particles) [35].

Molecular dynamics simulations of hard bodies are less common than the Monte-Carlo ones, since the implementation of
the overlap criterion between hard bodies must be complemented with an algorithm estimating the collision time between
them. The evolution of the system in configuration space is propagated from one collision to the next, giving rise to the so-
called event-driven molecular dynamics (EDMD). In EDMD the predicted collision times between hard bodies are computed
and stored into a time-ordered event calendar (as it was first done for HSs by Rapaport [36], although different techniques
also exist in literature [37]). Such technique has been recently extended to Brownian dynamics of HSs [38,39].

A basic scheme for simulating hard non-spherical bodies is based on the standard MD algorithms, where at the end of
each time step a check for possible overlaps is performed and the simulation is ‘‘rewinded” when an overlap occurs
[40,41]. This scheme is obviously inefficient. An overlap potential of two hard bodies A and B is a function FðA;BÞ, such that
F < 0 if A and B overlap. In general it is not easy (and not necessarily possible) to find an analytic form for the overlap po-
tential of two rigid bodies of arbitrary convex shape, except for the aforementioned cases of UFO, HSC, HCY, HCS and HE.
Overlap potentials for hard rigid convex bodies can be found in [3].

An EDMD algorithm for non-spherical objects employing an event calendar has been recently proposed by Donev et al.
[25] and tested on several systems of hard particles [26,29–31] . Such algorithm [25,26] requires the use of overlap potentials
[24,23], like in MC simulations. In the present paper a different route to provide a general algorithm to simulate hard par-
ticles will be presented.

If the surface of two hard rigid bodies (HRB) is smooth enough (i.e. first and second order derivatives are defined over the
whole surface) a possible overlap potential is provided by the minimum distance between the two surfaces (defining the
distance as negative when two rigid bodies overlap). In this paper we illustrate a method to calculate the distance between
two generic convex HRBs based on a Newton–Raphson (NR) method. We will also illustrate a simple algorithm to efficiently
evaluate a guess of the collision contact point and time. Starting from this guess true collision point and time can be calcu-
lated by solving a reduced system of equations, again through a Newton–Raphson method. It is worth noting that this algo-
rithm can handle grazing collisions, i.e. collisions in which two rigid bodies touch slightly [26], without tuning the algorithm
parameters significantly. Furthermore, in the case of HEs and superquadrics (SQs), we illustrate a new kind of neighbor list
based on oriented bounding boxes that can also be easily generalized to more complex shapes. Like the algorithm proposed
by Donev et al. [30,31], our method can be easily generalized to arbitrary convex shapes (but also decorated with localized
patchy interactions, see below) with similar efficiency.

The present algorithm has been already applied successfully to the simulation and to the study of various systems. It has
been implemented in the study of structural and dynamical properties of uniaxial HE [42,43]. With this code, adding the pos-
sibility of having localized patchy square-well interactions, it has been possible to study the statics and the dynamics of
primitive models of Water [44] and Silica [45], as well as the irreversible gelation of a model inspired by stepwise polymer-
ization of bifunctional diglycidyl-ether of bisphenol-A with pentafunctional diethylenetriamine [46–48]. More recently this
code has also been generalized in order to simulate a coarse-grained model of biological systems and primitive models of
proteins.

In Section 2 we introduce the general algorithm for the EDMD of rigid bodies. This requires discussing the HRB motion,
the evaluation of the distance and the time of collision among HRBs and the optimized linked list method. In Section 3 we
specialize the results of Section 2 to the specific case of HEs; in particular, we discuss a new nearest-neighbors list method,
that over-performs the simple linked lists method usually employed in EDMD in the case of very elongated HRBs. In Section
4 the performance in the case of HEs at various densities, elongations and with respect to the main parameters of EDMD is
analyzed, while in Section 5 the performance of the algorithm in the case of SQs is investigated. In Section 6 some perspec-
tives and applications of this new algorithm are discussed, and in Section 7 conclusions are drawn. For the sake of readability
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many details and equations in Sections 2 and 3 (e.g. explicit evaluations of Jacobians) were omitted, the interested reader
may find them in [49].

2. An event-driven algorithm for rigid bodies

2.1. Geometry of rigid bodies

The orientation of a HRB can be represented by the three column eigenvectors ui (with i ¼ 1;2;3) of the inertia tensor
expressed in the laboratory reference system. These vectors form an orthogonal set and can be arranged in a matrix R, i.e.
1 Not
R ¼ ðu0 u1 u2ÞT ð1Þ
where AT indicates the transpose of A.
This matrix will be referred to as the ‘‘orientational matrix” in the following. The orientational matrix relates the coordi-

nates x in the laboratory reference system to the coordinates x0 in the HRB reference system via:
x0 ¼ Rx ð2Þ
The following discussion focuses on HRBs with finite volume and bounded surface. We assume that the equation of the sur-
face of the HRB, in the ‘‘HRB reference system” with origin in the center of mass and axes parallel to the vectors fuigi, is of the
form f ðrÞ ¼ 0, where f changes sign passing from the interior to the exterior of the HRB. Moreover, the normal @f

@r and its first
order derivatives are assumed to be properly defined.

2.2. Motion of rigid bodies

In the following equations we assume that the three eigenvalues of the inertia tensor are all equal to I. The formulas for
the free rotation of a symmetric-top case are just slightly more elaborated [50], although the free rotation for a general rigid
body involves the calculation of special functions [50,51] and requires a more sophisticated algorithm which has been imple-
mented only recently [52,53]. Nevertheless, this paper being focused on an algorithm which predicts collision between HRBs,
for the sake of simplicity the discussion will be restricted to the case of a fully symmetric inertia tensor. It is straightforward
to generalize the approach to a completely asymmetric inertia tensor.

From the angular velocity w ¼ ðwx;wy;wzÞ of a free rigid body the antisymmetric matrix X can be built (see [50,54]).
It is possible to relate the orientation RðtÞ to the orientation at time t ¼ 0 via [50,54]:
RðtÞ ¼ Rð0ÞðIþMÞ ð3Þ

where M ¼ � sinðwtÞ

w Xþ 1�cosðwtÞ
w2 X2, with w ¼ kwk. Note that if w ¼ 0 then RðtÞ ¼ Rð0Þ.

The update of position and orientation of a free rigid body is therefore accomplished by using Eq. (3) together with equa-
tion xðtÞ ¼ xð0Þ þ vt, where xðtÞ is the position of the center of mass of the rigid body at time t and v is its velocity.

2.3. Distance between two rigid bodies

The present algorithm is based on a calculation of the distance between HRBs and in the following we will show how such
a distance is calculated. Consider two rigid bodies, A and B, whose surfaces are implicitly defined by equations f ðxÞ ¼ 0 and
gðxÞ ¼ 0. We also assume that if a point x is inside the rigid body A then f ðxÞ < 0ðgðxÞ < 0Þ, while if it is outside
f ðxÞ > 0ðgðxÞ > 0Þ.

The distance d between these two objects can be defined as follows:
d ¼ min
f ðxAÞ¼0
gðxBÞ¼0

kxA � xBk ð4Þ
The latter equation means that the quantity kxA � xBk has to be minimized with the constraints that points xA and xB belong,
respectively, to the surfaces of A and B. Hence, introducing the Lagrange multipliers a and b, the distance between the two
HRBs A and B can be defined as the solution of the following set of eight equations:
fxA
¼ �a2gxB

ð5aÞ
f ðxAÞ ¼ 0 ð5bÞ
gðxBÞ ¼ 0 ð5cÞ
xA þ bfxA

¼ xB ð5dÞ
where xA ¼ ðxA; yA; zAÞ;xB ¼ ðxB; yB; zBÞ; fxA ¼
@f
@xA

� �T
and gxB

¼ @g
@xB

� �T
.1

Eqs. (5b) and (5c) guarantee that xA and xB are points on A and B, Eq. (5a) guarantees that the normals to the surfaces are
anti-parallel, and Eq. (5d) guarantees that the displacement of xA from xB is collinear to the normals to the surfaces.
e that the gradient @
@x is intended to be a row vector.
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Eq. (5) defines extremal points of d [55]; for example for two convex HRBs local maxima can be found (see Fig. 1(a)) and
for two general non-overlapping non-convex HRBs these equations can have multiple solutions (see Fig. 1(b)), although only
the smallest one is the actual distance. Therefore, to solve these equations iteratively it is necessary to start from a good ini-
tial guess of ðxA;xB;a; bÞ to avoid finding spurious solutions.

In addition we note that if two rigid bodies overlap slightly (i.e. the overlapped volume is small) there is a solution with
b < 0, that is a measure of the inter-penetration of the two rigid bodies; such a solution will be referred to as the ‘‘negative
distance” solution (Fig. 2).

Finally, if we define the quantities di � kxi
A � xi

Bk, where ðxi
A;x

i
B;ai; biÞ is a solution of Eq. (5), the distance d between two

HRBs can be formally written as
Fig. 1.
solution
d ¼ sgnðbminÞmin
i
fdig ð6Þ
where sgnðxÞ is the sign function and bmin is the bi corresponding to the solution with the smallest di.

2.3.1. The Newton–Raphson method for calculating the distance
The set of Eq. (5) can be conveniently solved by a Newton–Raphson (NR) method [56]. This method, as long as a good

initial guess is provided, reaches the solution very quickly thanks to its quadratic convergence [56]. If one defines:
FðyÞ ¼

fxA
þ a2gxB

f ðxAÞ
gðxBÞ
xA þ bfxA � xB

0
BBB@

1
CCCA ð7Þ
Eq. (5) becomes FðyÞ ¼ 0, where y ¼ ðxA;xB;a; bÞ.
Given an initial point y0, a sequence of points converging to the solution can be built as follows:
yiþ1 ¼ yi þ J�1FðyiÞ ð8Þ
where J ¼ @F=@y is the Jacobian of F. In the following given a set of equations S to solve through NR method, we will refer to J
also as the Jacobian of S.

The NR method may not converge if the initial guess is not close enough to the root, hence in general it may be convenient
for the sake of numerical robustness to use a globally convergent NR method (see [56]) that converges to the solution from
any starting point. An alternative route to ensure the appropriate robustness is to provide an accurate initial guess, e.g. mak-
ing use of a steepest-descent method, as it will be shown in the next section.
Examples of solution of Eq. (5). (a) Distance between two HRBs with a possible spurious solution. (b) For non-convex objects, there can be multiple
s.

Fig. 2. When convex objects slightly overlap, the solution of Eq. (5) changes sign.
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The matrix inversion, required to evaluate J�1, can be performed by standard LU decomposition [56]. Note that LU decom-
position is of order N3=3, where N is the number of equations (8 in the present case). In Section 2.3.3 it will be shown that the
above set of equations can be reduced to 5, thus reducing the time to invert the matrix by a factor � 4.
2.3.2. Initial guess for the distance: the steepest-descent method
As initial guess of the NR it may be convenient to choose the closest pair of points on the intersection of the surfaces with

the line joining the center of mass of the two HRBs (Fig. 3(a)). Such guess is reasonable if the objects are almost spherical;
otherwise a refinement is needed.

A general method to refine such initial guess is to minimize the function
Fig. 3.
are obt
modera
DðyÞ ¼ aSDkxA � xBk2 ð9Þ
with the constraints f ðxAÞ ¼ 0 and gðxBÞ ¼ 0. In Eq. (9) y ¼ ðxA;xBÞ, and aSD is a parameter that can be tuned to optimize the
minimization procedure.

For solving such a problem, steepest-descent (SD) steps are used, followed by corrections that hold the points xA and xB on
the surface of the two bodies. The algorithm is the following one:

1. Choose an initial guess for xA and xB.
2. Evaluate the gradient Dy of DðyÞ:
Dy ¼ ðhA;hBÞ ¼ 2aSDðxA � xB;�ðxA � xBÞÞ ð10Þ
3. Calculate the components of hA and hB parallel to the surface, i.e. Dky ¼ ðh
k
A;h

k
BÞ, where hkl ¼ hl � ðhl � n̂lÞn̂l, with

l 2 fA;Bg and n̂A ¼ fxA=kfxAk; n̂B ¼ gxB
=kgxB

k.
4. Move the two points along the direction of Dky ,
y0 ¼ ðx0A;x0BÞ ¼ y � kSDDky ð11Þ

with 0 < kSD < 1.
5. Add a small displacement dy ¼ ðnAfxA ; nBgxB

Þ to the vector y0:
y00 ¼ ðx00A;x00BÞ ¼ y0 þ dy ð12Þ

where nA and nB are such that the constraints are satisfied and the two points x00A and x00B belong to the surfaces of the two
rigid bodies, i.e. f ðx0A þ nAfxA Þ ¼ 0 and gðx0B þ nBgxB

Þ ¼ 0.
6. Terminate if the angle between n̂ and Dy is small enough, otherwise go back to step 1.

This procedure provides a guess for xA and xB. Note that the adjustment of the position of the points A and B to hold them,
respectively, onto the surfaces f and g can be implemented again with a one-dimensional Newton–Raphson method, that will
generally converge in few steps if the points are not too far from the surfaces.

The NR method for the distance requires also a guess for a and b (introduced in Eq. (5)); a ¼ kfxAk=kgxB
k; b ¼ 0 proved to

be a good guess. If the accuracy required for the convergence of the SD is high enough, the NR method will always converge
to the correct solution. However, being the SD method much slower than NR, a trade-off between accuracy and speed is
needed.
Initial guess for the distance to be used as a starting point for NR method. (a) Simple initial guess for the distance: initial points xA and xB for the NR
ained considering the interceptions of the line joining the two HEs centers with their surfaces. (b) A better guess for the distance in the case of
tely elongated HRBs (see discussion in Section 3.2 for the HEs case).
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2.3.3. Reduced system of equations
The system in Eq. (5) can be reduced to five equations eliminating Eq. (5d):
fxA
þ a2gxB

ðxA þ bfxA
Þ ¼ 0 ð13aÞ

f ðxAÞ ¼ 0 ð13bÞ
gðxA þ bfxA

Þ ¼ 0 ð13cÞ
In this case the Jacobian reduces to a 5� 5 matrix and evaluation of J�1 can be done again by LU decomposition.

2.3.4. Relaxed Newton–Raphson method
Eq. (8) has been derived using a first order expansion of FðyÞ, but if the matrix J is singular or nearly-singular in the prox-

imity of the solution, even with a good initial guess the NR step can become too large and the NR method unstable. To solve
this problem, a damping factor into Eq. (8) can be conveniently introduced, i.e. yiþ1 ¼ yi þ niJ

�1FðyiÞ, where 0 < ni < 1 and a
suitable ni has to be found in order to stabilize the NR method. It can be proved that in order to keep variations of a and b

sufficiently small, a possible choice is ni ¼min �r l
jbjkfxA k

;
�rkfxA k

2kgxB
kjaj

n o
.

2.4. Prediction of the collision time

In an event-driven (ED) algorithm one needs to predict the time of collision of pairs of HRBs. This means to evaluate—given
two objects at time t ¼ 0 and the distance as a function of time dðtÞ—the smallest time tc > 0 such that dðtcÞ ¼ 0. If a good
guess of the contact point and time is provided, solving a proper set of equations through a NR method (as it will be shown
shortly) allows to find the exact contact point and time. In the following it will also be shown how to calculate in a very effi-
cient and simple way such an initial guess, exploiting the evaluation of the distance between two rigid bodies.

2.4.1. Newton–Raphson method for the contact time
The point and time of collision satisfy the following equations:
fxðx; tÞ þ a2gxðx; tÞ ¼ 0 ð14aÞ
f ðx; tÞ ¼ 0 ð14bÞ
gðx; tÞ ¼ 0 ð14cÞ
where f and g now depend also on time because the objects move. Again, it is appropriate to employ the NR method to solve
such a system, calculating the Jacobian of Eq. (14) as we did for Eq. (5).

As discussed in [57], such method becomes very unstable even for simple convex objects unless one starts from a very
good initial guess. To construct such a guess, one can find a good bracketing of the collision time, i.e. two times t1; t2 such
that:

1. dðt1Þ > 0 and dðt2Þ < 0.
2. t2 � t1 is small enough to have at the most one collision within ðt1; t2Þ.
3. dðt1Þ; dðt2Þ are small enough in order to avoid any instability of the NR method (see above).

Once the latter bracketing has been found, the initial time for the NR is set to t1, while a good initial guess for the contact
point will be halfway on the distance between the two bodies at t1.

2.4.2. Bracketing the contact time
To first bracket the contact time a ‘‘bounding sphere” (BS) may be used (Fig. 4). The BS of a given HRB A with center rA is

the smallest sphere centered at rA that encloses A. Given two rigid bodies A and B at time t ¼ 0 and their BSs CA and CB, one
must indeed consider three possible cases:

1. CA and CB do not overlap and they will not collide: in this case A and B would not collide either.
2. CA and CB do not overlap but they will collide: in this case one has to search for a collision within the time interval ½t1; t2�

where t1 is the time when the two BSs collide and start overlapping and t2, which is greater than t1, is the time when they
just cease overlapping.

3. CA and CB overlap: in this case one has to search for a collision within the time interval ½t1; t2� where t1 ¼ 0 and t2 > t1 is
the time at which the two BSs stop overlapping.

Since the collision prediction between hard spheres (i.e. BSs) is extremely fast this technique improves the performance
by reducing the number of collisions to check and provides a first bracketing ðt1; t2Þ of the collision time.

To further improve this bracketing, the following overestimate of the rate of variation of the distance can be established:
_dðtÞ 6 kvA � vBk þ kwAkLA þ kwBkLB ð15Þ



Fig. 4. Minimal bounding sphere for a rigid body.
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where the dot indicates the derivation with respect to time; vA and vB are the velocities of the centers of mass of A and B; wA

and wB are the angular velocities of A and B, and the lengths LA; LB are such that LA P maxf ðr0 Þ60fkr0 � rAkg and
LB P maxgðr0 Þ60fkr0 � rBkg, where rA; rB are the centers of mass of the two rigid bodies.

With such an overestimate of _dðtÞ, that from now on will be called _dmax, an efficient strategy for the refinement of the
bracketing ðt1; t2Þ of the collision time and point is the following one:

1. Set t ¼ t1.
2. Evaluate the distance dðtÞ at time t.
3. Choose a time increment Dt as follows:
Dt ¼
dðtÞ
_dmax

if > dðtÞ > �d

�d
_dmax

otherwise

8<
: ð16Þ

where �d �minfLA; LBg.
4. Evaluate the distance at time t þ Dt.
5. If dðt þ DtÞ < 0 and dðtÞ > 0, then t1 ¼ t and t2 ¼ t þ Dt, find the collision time and point via NR and terminate. An initial

guess for this NR may be obtained through a quadratic interpolation of the points ðt; dðtÞÞ; ðt þ Dt=2; dðt þ Dt=2ÞÞ and
ðt þ Dt; dðt þ DtÞÞ.

6. If both 0 < dðt þ DtÞ < �d and 0 < dðtÞ < �d, a ‘‘grazing” collision may occur between t and t þ Dt (because distance may be
first diminishing, then growing). To look for a possible collision, evaluate the distance dðt þ Dt=2Þ and perform a quadratic
interpolation of the three points ððt; dðtÞÞ; ðt þ Dt=2; dðt þ Dt=2ÞÞ; ðt þ Dt; dðt þ DtÞÞÞ. There are three possible cases:
(a) The parabola has a minimum and dðtmÞ < 0, then set t1 ¼ t and t2 ¼ tm, find the first zero tz of this parabola and use tz

and dðtzÞ to start a NR to find the collision time and point, and terminate.
(b) If the resulting parabola has a minimum tm between t and t þ Dt, but dðtmÞ > 0, then find the minimum tmb of dðtÞ

between t and t þ Dt with the maximum possible accuracy (using a one-dimensional Brent’s method for finding min-
ima). If dðtmbÞ < 0 then set t1 ¼ t and t2 ¼ tmb and find the first zero tz of dðtÞ between t1 and t2 (with a moderate
accuracy, because tz will serve only as initial guess for the NR). Use tz and dðtzÞ to start a NR to find the collision time
and point and terminate.

(c) If the parabola does not have a minimum then keep searching (i.e. go to step 7).
7. Increment time by Dt, i.e. t ! t þ Dt.
8. if t > t2 terminate (no collision has been found).
9. Go to step 2.

Note that if starting at time t the two rigid bodies collide at time tc > t and dðtÞ > �d, then our over-estimating procedure
enforces Dt < tc � t. If the chosen �d is small enough the distance dðtÞ has only one minimum within the time interval
½t; t þ Dt� and the above scheme for predicting HRBs collisions ensures that ‘‘grazing” collisions are properly handled within
machine accuracy, i.e. all ‘‘grazing” collisions are correctly predicted. According to step 6 in the above scheme, indeed, if
dðtÞ > 0 and dðt þ DtÞ > 0, a quadratic interpolation is used to search for a negative minimum (i.e. a minimum such that
dðtmÞ < 0). If such a negative minimum can not be found, an attempt to find it is made with the maximum possible accuracy
using a suitable numerical method (e.g. Brent’s method). We stress that �d must not be chosen with unreasonably tight tol-
erance not to miss grazing collision within machine accuracy and, although finding the minimum with Brent’s method can
be time-consuming, this method is only a second option after the quadratic interpolation, which is faster and finds the min-
imum in the majority of cases.
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2.5. Elastic collision of two hard rigid bodies

As two rigid bodies collide, one has to evaluate the new velocities of centers of mass and the new angular velocities after
the collision. Assuming that colliding surfaces of the two rigid bodies are perfectly smooth and imposing the conservation of
impulse, angular momentum and energy, the velocities after the collision can be easily evaluated as shown for example in
[26].

2.6. Linked lists for bounding spheres

Predicting collisions is the most computationally demanding part of an EDMD. In order to speed up a EDMD of hard
spheres, one can use linked lists [36] to avoid to check all the N2 possible collisions among N objects. In the linked list meth-
od, the simulation box is partitioned into M3 cells and only collisions between particles inside the same cell or its 26 adjacent
cells are accounted for. This means also that, whenever an object crosses a cell boundary going from cell a to a new cell b, it
has to be removed from cell a and added to cell b.

As a first step, one can recover the same method using the BSs location as particles. In this case, the cubic box of side L
containing N identical rigid bodies is divided into M3 cells so that each cell has side length of the order of the BS diameter.
After that linked lists of these BSs are built and updated as in a ordinary EDMD of hard spheres [36]. To predict collisions of a
rigid body A, one takes into account only the rigid bodies that have their BSs inside the 26 adjacent cells or in the same cell as
A (see [36] for more details).

Unfortunately, BSs are not very efficient if the volume of the BS is much bigger than the volume of the rigid body, as it
happens for example for ellipsoids of high elongation [25,26]. In this case, the number of possible collisions which must be
calculated makes such procedure computationally inefficient. In Section 3.3 a more efficient method for objects with high
elongations will be illustrated.

2.7. Putting all together: hard rigid bodies event-driven algorithm

In an ED algorithm many events may occur, such as collisions between particles, cell crossing (if one uses linked lists),
saving of a system snapshot, output of measured quantities, etc. All these events should be ordered in a calendar so that
the next event to happen can be easily retrieved; at the same time, insertion and deletion of events in the calendar should
be done as quickly as possible.

One elegant approach was introduced almost 30 years ago by Rapaport [36], who proposed to arrange all the events into
an ordered binary tree (calendar of events), so that insertion, deletion and retrieving of events could be done with an effi-
ciency OðlogNÞ;Oð1Þ and OðlogNÞ, respectively, whereN is the number of events in the calendar. This solution is adopted to
handle events calendar in our simulations; all the details of this method can be found in [36].

Considering that all the tools to develop a standard ED algorithm for hard rigid bodies have been illustrated, the algorithm
can be resumed as follows:

1. Initialize the events calendar (predict collisions, cell-crossings, etc.).
2. Retrieve next event E and set the simulation time to the time of this event.
3. If final time has been reached, terminate.
4. If E is a collision between particles A and B then:

(a) Calculate new angular and center of mass velocities of A and B.
(b) Remove from calendar all events (collisions, cell-crossings) in which A and B are involved.
(c) Predict and schedule all possible collisions for A and B.
(d) Predict and schedule the two cell-crossings events for A and B.
5. If E is a cell crossing of a certain rigid body A:
(a) Update linked lists accordingly.
(b) Remove from calendar all events (collisions, cell-crossings) in which A is involved.
(c) Predict and schedule all possible collisions for A using the updated linked lists.
6. Go to step 2.

The novel aspect of the present algorithm is in the time-consuming step 4c, for which we have provided in the previous
section the implementation details.

3. Hard ellipsoids with an axis of symmetry

In this Section the details about a specific case for which the algorithm has been tested will be provided [42]: hard
ellipsoids with an axis of symmetry. Such ellipsoids are characterized by the elongation X0, i.e. the ratio of the length of
the symmetry axis with respect to any of the other axes. A new efficient implementation of nearest-neighbor lists (NNL)
for hard ellipsoids will be also discussed and a careful test of the performance of this approach will be shown.
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3.1. Evaluation of the distance between two ellipsoids

The surface of a hard ellipsoid can be implicitly defined as follows:
ðx� rAÞT XAðx� rAÞ ¼ 0 ð17Þ
where rA is the position of the center of mass of the ellipsoid and XA is a 3� 3 positive definite matrix. In particular if at time
t ¼ 0 the rigid body reference system coincides to the laboratory reference system it turns out that the free evolving hard
ellipsoid surface is:
XAðtÞ ¼ RT
AðtÞXAð0ÞRAðtÞ ð18Þ
where XAis a diagonal matrix, with ðXAÞ11 ¼ 1=a; ðXAÞ22 ¼ 1=b and ðXAÞ33 ¼ 1=c, where a; b; c are the three semi-axes of the
ellipsoids. For hard ellipsoids with an axis of symmetry, the values of two semi-axes are equal.

To evaluate the distance between two ellipsoids A and B at a time t one has to solve either Eqs. (5) or (13) by the Newton–
Raphson method calculating the related Jacobians.

3.2. A better guess of the distance

As already discussed, the NR method needs a good guess of the starting point and for this purpose a steepest-descent
method has been presented in Section 2.3.2. For ellipsoids with moderate elongations (0:2 < X0 < 5:0), the initial guess
can be calculated in an alternative and very simple way. The simplest possibility is to use as a first guess for xA and xB

the intersections of the vector rAB ¼ rA � rB, joining the centers of mass of the two ellipsoids, with their surfaces. This guess
is quite rough and a possible improvement can be achieved, as explained in the following.

First of all the components of rAB in the reference systems of the two ellipsoids are calculated, i.e. v0A ¼ �RA � rAB and
v0B ¼ RB � rAB. Then these two vectors will be scaled by the semi-axes of the ellipsoids and their components will be trans-
formed back to the laboratory reference system, i.e. vA ¼ RT

AðS � v0AÞ and vB ¼ RT
BðS � v0BÞ, where RA and RB are the orientational

matrices of A and B, respectively, and
S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
a 0 0
0 b 0
0 0 c

0
B@

1
CA ð19Þ
Finally the intersections with the HE surfaces of the vector vA centered at the center of mass of A and vB centered at the cen-
ter of mass of B are computed and these two points are the desired guesses for xA and xB for the NR. The effects of such trans-
formations are shown in the right panel of Fig. 3.

At this point, distance evaluation can be started with the initial values for a and b set to 0. This method provides a speed-
up of around 10%.

3.3. Nearest-neighbor lists

Increasing the elongation of the ellipsoids, the linked list method illustrated before becomes progressively less efficient at
moderate and high densities [25]. Indeed given one ellipsoid A, when using the linked lists one has to predict the collision
times of A with all ellipsoids in the cell of A and with all ellipsoid in the 26 adjacent cells. In the case of rotationally sym-
metric ellipsoids, the number of collision time predictions grows as X2

0 if X0 > 1 and as 1=X0 if X0 < 1 [26] (see also Section
4.3). In order to reduce the number of predictions at very high or very small elongations, Donev et al. [25] suggest to sur-
round each particle A with a bounding neighborhood having the same shape as A (i.e. in the case of HEs they use ellipsoids)
and to predict collisions only between particles having overlapping bounding neighborhoods. Similarly to what is proposed
by Donev et al. [25] we suggest to build an oriented bounding parallelepiped (OBP), instead of an ellipsoid, at a certain time t
around each HE and to predict collisions only between HEs having overlapping parallelepipeds (Fig. 5).

Each parallellepiped encloses the corresponding ellipsoid completely, and it is centered at the center of mass of the ellip-
soid itself. More precisely, given an ellipsoid A with semi-axes a; b; c and center of mass rA, the vertices va of the parallele-
piped, with a 2 f1; . . . ;6g are:
va ¼ rA þ r2ðaÞðsr1ðaÞ þ DNNLÞur1ðaÞ ð20Þ
where r1ðaÞ ¼ 1þ ða� 1Þ 	 2;r2ðaÞ ¼ 2ðamod2Þ � 1 and s ¼ ðs1; s2; s3Þ ¼ ða; b; cÞ. Moreover fuigi2f1;2;3g are the principal axes
of the ellipsoid and DNNL is a positive parameter that can be tuned to optimize the performance of the NNL (see Section 4.5).

Given an ellipsoid A, the set of ellipsoids having their parallelepipeds overlapping with the parallelepiped enclosing A, is
the NNL of A. Each parallelepiped i is immobile and contains only the ith ellipsoid; if ti is the time when the ellipsoid will
collide with its containing parallelepiped, its NNL will have to be rebuilt not after the time tr ¼miniftig.

In addition, if a collision between two ellipsoids i and j occurs, then the new contact times ti and tj of these two ellipsoids
with their parallelepipeds will have to be evaluated and the new time for rebuilding the NNL lists, i.e. t0r ¼minftr ; ti; tjg, will
have be set.



Fig. 5. Nearest-neighbor lists are built through OBPs: ellipsoids A and B are nearest neighbors, and they may collide among them before colliding with their
OBP; neither A or B can collide with C during this time. The ‘‘thickness” of the OBP is DNNL .
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3.3.1. Distance between a rigid body and a plane
For predicting the time of collision between an ellipsoid and a parallelepiped the distance between an ellipsoid and each

of the six faces of the parallelepiped must be calculated. This means that one has to evaluate the distance between the sur-
faces defined through Eq. (17) and a plane defined through the following equation:
Fig. 6.
center o
nP � ðx� rPÞ ¼ 0; ð21Þ
where both rP and nP do not depend on time because the plane is immobile (Fig. 6).
Again a NR method can be used to calculate this distance. In Section 2 the second rigid body B may also be a plane (as

defined through Eq. (21)) or, alternatively, a plane can be thought as a limiting case of a very large ellipsoids, in which case
the Jacobians needed to solve Eqs. (5) and (13) can be easily calculated.

A good guess is required also to solve Eqs. (5) or (13) through a NR method. Let l be the axis passing through the center of
the ellipsoid and parallel to the vector nP . If intersections points xE and xP of l with the ellipsoid and the plane, respectively,
are evaluated, then these two points (if Eq. (5) is used) or only xE (if Eq. (13) is used) proved to be a good initial guess for the
NR method.

3.3.2. Prediction of the collision time
Given a good bracketing of collision time of an ellipsoid A with one of the six planes, Eq. (14), where f defines the surface

of an ellipsoid and g the surface of a plane, can be again solved numerically by NR method.
As for the collision of two ellipsoids, the collision time can be bracketed using an overestimate of _dðtÞ (being dðtÞ the dis-

tance between an ellipsoid and a plane of the parallelepiped). If the ellipsoid surface is the locus of points such that f ðxÞ ¼ 0
and the plane is defined as in Eq. (21), the distance between an ellipsoid and a plane can be defined as d ¼minf ðxAÞ¼0jxA � n̂Pj,
where n̂P ¼ nP=knPk. Similarly to what has been done for two ellipsoids, it can be proved that _dðtÞ 6 jvA � n̂P j þ LAkwAk. From
now on, the latter overestimate will be called _dpm.

It is now possible to illustrate the algorithm to refine the collision time of an ellipsoid with its OBP, that is very similar to
the one illustrated in Section 2.4.2 to refine the bracketing of the collision time between two HEs. Consider an ellipsoid A and
the six planes of the corresponding parallelepiped, with respect to each plane there are six different overestimations of _dðtÞ,
labeled as _di

pm, and six different distances diðtÞ at time t. The differences of the present algorithm with the one discussed in
Section 2.4.2 are the following:
The initial NR guess to calculate the distance between a plane P and an ellipsoid E uses the points xE and xP . Here nP is the normal to the plane; the
f mass of the ellipsoid is on the line from xP with direction nP .
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 Evaluation of distance dðtÞ now becomes evaluation of all distances diðtÞ.

 In step 3 choose a time increment Dt as follows:
Dt ¼
min

i
diðtÞ= _di

pm

n o
if > diðtÞ > �nnl

d

�nnl
d

max
i
f _di

pmg
otherwise

8>><
>>:

ð22Þ

where �nnl
d � LA.


 Step 6 becomes the following: perform a quadratic interpolation for all distances such that 0 < diðt þ DtÞ < �d and
0 < diðtÞ < �d, using the points ðt; diðtÞÞ; ðt þ Dt=2; diðt þ Dt=2ÞÞ and ðt þ Dt; diðt þ DtÞÞ. Then check for possible zeros of
the resulting parabolas and if zeros are found, take the smallest zero and find the collision time and point using again
the NR method.

Grazing collisions in this specific case are dealt with differently from collisions between two HEs. The trick is to consider,
for predicting the escape time of a HE, a smaller bounding box. In particular the chosen distance between each of the six
planes forming the bounding box and the embedded HE is DNNL � �nnl

d . With this choice of the bounding box dimensions,
if a collision is missed, due to a grazing collision, the HE is not outside its bounding box anyway and values for �NNL

d around
10�2 b can be safely chosen.

The times t1 and t2 are evaluated making use of the BS of A as illustrated in the following. Consider the ellipsoid A and its
BS CA at a certain time t when the NNL has to be rebuilt. Two possible different cases may occur:

1. CA is enclosed into the parallelepiped: in this case t1 is the time when the BS will collide with one of the six planes of the
parallelepiped and t2 > t1 is the time when the BS stops intersecting the plane.

2. CA intersects the parallelepiped: in this case t1 ¼ t and t2 > t1 is the time at which the two BSs cease to overlap.
3.3.3. Overlap of parallelepipeds
For building NNL all the parallelepipeds overlapping with a given one have to be found. This task can be accomplished

quite efficiently, using a technique well known in computer graphics [58]. Consider two parallelepipeds corresponding to
ellipsoids A and B with centers rA and rB, principal axes uA

a and uB
a and semi-axes a; b; c. Consider the following straight lines

originating from the center tj ¼ rA þ nwj with wj 2 ffuA
aga; fuB

aga; fuA
a � uB

bga;bg, where a; b ¼ 1;2;3; n 2 R and j ¼ 1; . . . ;15 la-
bels all the possible directions.

The centers of the ellipsoids rA and rB will be projected onto all these lines, obtaining the points ~rA
j and ~rB

j and the vertices
of the two parallelepipeds will be projected as well, obtaining the points pA

i;j and pB
i;j, where i ¼ 1; . . . ;8 labels all the possible

vertices of a parallelepiped.
Using the projected vertices one can build for each direction j two spheres with centers ~rA

j and ~rB
j and

qA
j ¼maxifkpA

i;j � ~rA
j kg and qB

j ¼ maxifkpB
i;j � ~rB

j kg. The two parallelepipeds do not overlap if and only if all these pairs of
spheres do not overlap.

3.4. Prediction of the collision time between two ellipsoids

Exploiting linked lists and BSs, one obtains a time interval ½t1; t2� that brackets the possible contact time between two
ellipsoids A and B. Making also use of NNL, a better bracketing of the collision time can be estimated, with the bracketing
time interval becoming ½t1;~t2�, with ~t2 ¼minft2; trg, where tr is the time at which the NNL rebuild is scheduled. Then starting
from t ¼ t1 the collision time can be finely bracketed by applying the algorithm illustrated in Section 2.7 for the general case
of hard rigid bodies with the substitution t2 ! ~t2.

Finally bracketing of the contact point and time for the collision between two HEs can be used in the NR to solve Eq. (14).

3.5. Event-driven molecular dynamics of hard ellipsoids

The ED molecular dynamics of HEs is similar to what illustrated in Section 2.7. The only addition is the use of NNL to
speed the simulation up. With respect to the ED algorithm for hard rigid bodies illustrated in Section 2.7 the list of changes
is the following:


 Between steps 3 and 4 add the following further 3.1 step:
3.1. If E is the ‘‘NNL rebuild” event then:
(a) Remove all events from calendar.
(b) Update the system to current time.
(c) Evaluate tr .
(d) Check for overlaps between parallelepipeds and build the NNL accordingly.
(e) Predict all cell-crossings and schedule them.
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(f) Predict all collisions between ellipsoids and schedule them.
(g) Schedule next NNL rebuild.
(h) Schedule all other remaining events removed from calendar (output of summary, etc.).

 In step 4 add the following further sub-step (b.1) between sub-steps (b) and (c):
(b.1) Evaluate new collision times tA and tB of A and B with their parallelepipeds and schedule a new ‘‘NNL rebuild‘‘ event

if tA or tB are less than tr .


 In sub-step (c) of step 4 and sub-step (c) of step 5 to predict the collision between A and B make use of their NNL.

Note that linked lists are used just to rebuild the NNL, that is given a parallelepiped corresponding to an ellipsoid A, one
searches for overlapping parallelepipeds among all the ones that are in the same cell as A or in one of the 26 neighbors cells,
assuming that the cells side is greater than the length of the diagonal of the parallelepipeds. To rebuild NNLs Donev et al. [26]
use, in addition to LL, also a collection of small spheres, called bounding sphere complex and in their implementation this
method ensures that the cost of building the NNLs can be controlled increasing the elongation. In our implementation of
NNL, that relies on the use of bounding parallelepipeds, the average collision time (see discussion in Section 4.3) is quite
independent from elongation for X0 up to 10 (0:1). This is mainly due to the fact that the time needed to check overlaps be-
tween bounding parallelepipeds is negligible.

In the above scheme NNL update is a global event (complete update), in [26] a method is described that allows to update
only NNLs of affected particles after a collision (partial update) . In their implementation NNL are built using HEs instead of
parallelepipeds and partial update method outperforms the complete update method (see [26]). Differently in our imple-
mentation the time needed to update NNLs at moderate and high densities, which is what we are interested in the most,
is negligible (see next Section) and the NNLs partial update method cannot offer any significant speedup.

4. Performance results

To analyze the performance of the algorithm, monodisperse uniaxial HEs in the isotropic liquid phase have been simu-
lated, characterized by the aspect ratio X0 ¼ a=b (where a is the length of the revolution axis and b of the other ones) and

by the packing fraction / ¼ pX0b3q=6 (where q ¼ N=V is the number density). N ¼ 256 particles have been simulated at var-
ious volumes V and elongations X0 in a cubic box with periodic boundary conditions. The length of the smallest semi-axis is
chosen as unit of distance and the mass m of the particle as unit of mass (m ¼ 1). Temperature is one in units of the Boltz-

mann constant kB; the corresponding unit of time is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2

=ðkBTÞ
q

. A spherically symmetric moment of inertia, i.e.

Ix ¼ Iy ¼ Iz ¼ 2mr2=5 is chosen, where r ¼minða; bÞ=2 is the radius of the sphere inscribed in the ellipsoid. Notice that the
value of the moment of inertia along the symmetry axis is not relevant for the present system, since angular velocity around
the symmetry axis is zero. Although ellipsoids of revolution behave as symmetric tops, the colliding surfaces will be treated
as perfectly smooth and therefore the component of angular velocity along the symmetry axis will be conserved in each col-
lision. In the following we indicate as ‘‘reduced time” the simulation time expressed in reduced units, while ‘‘CPU time”
means the real time spent by the CPU for calculations, expressed in seconds. To test the algorithm speed, we use the CPU
time per ellipsoid collision, labeled with sc and defined as sc ¼ Ttot

Ncoll
, where Ttot is the (real) time needed to perform Ncoll col-

lisions during a simulation.
Predicting a collision for a pair of colliding HEs (labeled by A and B) requires the CPU time Dtcoll:
Dtcoll ¼
XNA

pc

l

dtA
l þ

XNB
pc

l

dtB
l ð23Þ
where NX
pc indicates the number of collisions that have to be predicted for ellipsoid X (X ¼ A;B) and with dtX

l the CPU time
requested to predict one collision. Indeed, after a collision between two HEs, all the possible future events involving the two
colliding HEs must be predicted. If the quantity ‘‘average prediction time” is defined as follows:
hdtiX �
1

NX
pc

XNX
pc

l

dtX
l ð24Þ
where again X ¼ A;B. Eq. (23) can be rewritten as:
Dtcoll ¼ NA
pchdtiA þ NB

pchdtiB ð25Þ
On passing note that, using LL and/or NNL, NA
pc and NB

pc are Oð1Þ varying the total number N of HEs in the simulation. Such a
number will be generally greater for LL than for NNL, but we will discuss this point more accurately later. Also note that hdtiA
and hdtiB depend mostly on the average number of Newton–Raphson steps performed to predict the collision time. In addi-
tion, during the simulation NNL and LL have to be updated and this will cost an extra time Dtu per HE collision, so that the
time per ellipsoid collision sc is:
sc ¼ Dtcoll þ Dtu ð26Þ
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The contribution of the LLs update to Dtu compared to the NNLs update contribution is always negligible, meaning that the
main contribution comes from the update of the NNLs, because it is more time consuming. Indeed, NNLs update requires the
evaluation of the escape time of each HE from its bounding box and this is time consuming. Moreover, at high densities, Dtu

is usually negligible with respect to Dtcoll, because the diffusivity of the particles is low at high densities and the average es-
cape time of HE from their bounding boxes becomes quite long. All simulations are performed on a Intel Xeon CPU 3.06 GHz
(codenamed ‘‘Prestonia”) with a L2 cache size of 512 kB and a 533 MHz FSB.

4.1. Generation of the initial configurations

To create the starting configuration at a desired /, an extremely diluted a-FCC crystal has been melted [59]; afterwards,
the particles have been grown independently up to the desired packing fraction (quench in / at fixed N;X0). The details of the
growth algorithm will be illustrated in a future publication. To generate history-independent configurations, tests have been
performed on equilibrium configurations. To test the equilibration of the sample, the decay of the self correlation function
Fself ðq; tÞ ¼ 1

N

PN
i eq�ðriðtÞ�rið0ÞÞ and of the orientational correlation function, C2ðtÞ ¼ P2ðcos hðtÞÞ, where P2ðxÞ ¼ ð3x2 � 1Þ=2 and

hðtÞ is the angle between the symmetry axis at time t and at time zero, have been studied.

4.2. Dependence of the algorithm speed on density

Elongations X0 ¼ 0:50 and 2:00 have been considered, fixing �d ¼ 10�5 and the thickness of the neighbor shell DNNL ¼ 0:15.
Using only LLs both in the prolate and in the oblate case (see Fig. 7)), sc increases going from lower to higher densities. In

this case Dtu is negligible and the average time to predict a collision hdti is roughly proportional to the number of HEs inside
each LL cell, that in turn is proportional to the volume fraction / of the system.

When using both LLs and NNLs the scenario is quite different. In Fig. 7 results from simulations using NNLs are shown,
and it is apparent that there are two different regimes of scð/Þ at low and high volume fractions /. The interpretation of this
observed behavior is quite straightforward. Indeed, considering Eq. (26), below / � 0:5 there are few HEs within each NNL,
i.e. NA

pc � 0 and NB
pc � 0 and the time per collision sc is dominated by Dtu, that is by the time per collision needed to update

the NNLs. In this case Dtu is proportional to the number of average evaluations of the contact time of a HE with its bounding
box tr , i.e. if l / 1=/ is roughly the mean free path between two HEs collisions, then Dtu / l=DNNL / 1

/. In Fig. 7 the /�1 depen-
dence is evident at small /.

In contrast, at high densities Dtu is negligible and the CPU time needed to predict a collision is dominated by Dtcoll, that in
turn depends linearly on the number of neighbors within the bounding box of a certain HE, i.e.
Fig. 7.
using o
dashed
than LL
linear d
inset is
of this
sc / NA /
4p
3

/ðaþ DNNLÞðbþ DNNLÞðc þ DNNLÞ � 1 ð27Þ
At high volume fractions this equation simplifies to sc / / and again Fig. 7 confirms this dependence on / at high volume
fractions.

Finally, comparing NNLs and LLs results in Fig. 7, it is apparent that using NNLs the time per HE collision is significantly
smaller than in the case where only LLs are used. Moreover, it is far less density-dependent. This stems from the fact that in
Eq. (25) NA

pc and NB
pc using NNLs are much smaller than the same quantities using LLs (see also discussion in the next section).
Time per collision sc in the prolate case (X0 ¼ 0:50) using only LLs (green diamonds) and also NNLs (orange circles) and in the oblate case (X0 ¼ 2:00)
nly LLs (red triangles) and also NNLs (blue squares). Dot-dashed lines are guides to the eyes, showing the / and 1=/ behavior for the NNLs case, while
lines are guide to the eyes showing a linear behavior in / for the LLs case (see discussion in Section 4.2). NNLs show much less density dependence
s. Note that in all simulations the number of LL cells into which the box is partitioned is not kept fixed. As a consequence sc versus / shows a simple
ependence up to / � 0:55, where, due to increasing density, the number of LL cells decreases by one unit breaking the linear behavior of scð/Þ. The
a zoom of sc vs / employing also NNLs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

article.)
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4.3. Dependence of algorithm speed on elongation

In the following we will show results for simulations performed at volume fractions / ¼ 0:30;0:40;0:50. First, the case
where only LLs are employed is considered. Besides the expected decrease of sc upon increasing the density, a marked in-
crease of sc upon increasing/decreasing the elongation with respect to the hard sphere case X0 ¼ 1 is clearly apparent in
Fig. 8(a). The explanation for such behavior is straightforward: as noticed in [26], the number of HEs in a LL cell increases
as X2

0 (1=X0) for the prolate (oblate) case, and in turns sc increases as X2
0 (1=X0) at big (small) elongations. In contrast, using

NNLs sc is quite X0-independent, increasing significantly the performance at big and small elongations with respect to LLs
(see Fig. 8(b)). In this case the number of neighbors is independent from / on changing the elongation and the computational
efficiency depends only on NR method efficiency, that is quite X0-independent. On passing we note that at very high elon-
gation (X0’5), the NR method requires more steps to converge and the exact number of steps depends on the initial guess.
Nevertheless, we checked that, at least up to X0 ¼ 10, the algorithm’s performance does not change (i.e. sc remains X0-inde-
pendent) if NNLs are used.

4.4. Optimizing the parameter �d

The main parameter entering in the collision prediction algorithm is �d (see Section 2.4.2) and it is important to establish
the optimal value in terms of efficiency. As already discussed in Section 2.4.2, too large a value for this parameter may result
in a failure of EDMD due to overlaps of HEs. Hence, the best choice for �d is the largest value not generating HEs overlaps.

Fig. 9 shows that sc monotonically decreases as �d is decreased, and that /-dependence is rather weak. In practice, a value
like �d ¼ 10�4 � 10�5 is usually a good, reliable and safe choice for most situations.

4.5. Optimizing neighbor lists

Changing the parameter DNNL, i.e. changing the size of the bounding boxes, computational times vary non-monotonically.
If DNNL tends to 0, the number of neighbors NA

pc;N
B
pc in Eq. (25) tends to 0 accordingly, but NNLs updates tend to be infinitely

frequent, because escape time of HE from their bounding boxes tends to 0. Therefore sc diverges to infinity, if DNNL ! 0. If
DNNL !1 (assuming one has a system with infinite particles), escape times tends to1 and time intervals between two suc-
cessive NNLs rebuilds diverge, but NA

pc !1;N
B
pc !1 in Eq. (25), so that again sc !1.

As a result, there must be a minimum of sc as a function of DNNL. The value of DNNL, which minimizes sc is the optimal value
for this parameter and it will be labeled D�NNL. Fig. 10 shows for two volume fractions that scðDNNLÞ exhibits a clear minimum.
D�NNL depends much more on the volume fraction / than on the elongation X0 and this is clear from Fig. 11, where D�NNL is
plotted as a function of / for different X0. The latter result is due to the fact that in Eq. (25) Dtcoll, through NA

pc;N
B
pc , strongly

depends on /, while both Dtcoll and Dtu weakly depend on X0.
Fig. 11 provides a simple estimate of D�NNL, that ranges from 0.1 to 0.8 if 0:5 < X0 < 2:0 and 0:25 < / < 0:55, upon chang-

ing volume fraction and elongation.

5. Simulating superquadrics

In Sections 3 and 4 we have shown in detail how to apply the algorithm illustrated in Section 2 to simulate HEs and its
performance in this particular case. The algorithm proposed by Donev et al. [25,26] has been generalized to arbitrary convex
shapes [28–31], analogously we consider here the simulation of SQs, that are a possible generalization of HEs studied in the
previous section, skipping anyway some details that will be supplied in a future publication.
Fig. 8. Dependence of average collision time sc on elongation X0. (a) sc at / ¼ 0:30; 0:40 and 0:50 using only LLs. In this case the average collision time is
linked to the number of particles in the first neighbor shell and grows with elongation. The dashed lines are guides to the eyes showing the 1=X0 and X2

0

behaviors (see text). (b) Comparison of performance results with and without the use of NNLs plotting sLL
c =sNNL

c versus the aspect ratio X0 for three different
volume fractions / ¼ 0:30;0:40; 0:50. sNNL

c is the collision time employing NNLs and sLL
c is the collision time using only LLs. The use of LLs severely degrades

the performance of the algorithm for elongated HEs.



Fig. 10. The average collision time depends non-monotonically upon DNNL , showing a clear minimum for a certain D�NNL value (see text). In this figure such a
dependence is shown for 4 particular state points (X0 ¼ 0:5 at / ¼ 0:45; 0:57 and X0 ¼ 2:0 at / ¼ 0:45;0:57).

Fig. 11. In this figure the dependance of D�NNL on / for X0 ¼ 0:5;2:0 (left panel) and the dependance of D�NNL on X0 for / ¼ 0:40; 0:55 (right panel) is shown.
D�NNL decreases significantly with increasing / (left panel) but it has a weak dependence on X0 (right panel).

Fig. 9. Dependence of sc on �d (using NNLs) for two different elongations (X0 ¼ 0:5;2:0) at various values of / ranging from 0.30 to 0.55. Arrows indicate
decreasing volume fractions.
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5.1. Geometry and simulation details

A straightforward generalization of Eq. (17), that defines the surface of an HE, leads to the definition of particles, called
SQs, whose surface is the following:
f ðx; y; zÞ ¼ x
a

���
���

n
þ y

b

���
���
m
þ z

c

���
���
p

� 1 ¼ 0 ð28Þ
where the parameters n;m; p are real numbers and a; b; c are the SQ semi-axes. A monodisperse system of N ¼ 512 SQs has
been simulated with m ¼ n ¼ 2 and with two equal semi-axes, i.e. b ¼ c.

Such SQs can be characterized by the elongation X0 ¼ a=b and by the parameter p, that determines the sharpness of the
edges (see Fig. 12). SQs of elongation X0 < 1 are called ‘‘oblate”, while SQs of elongation X0 > 1 are called ‘‘prolate”, as for the
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HEs. Elongations X0 ¼ 0:5 and X0 ¼ 2:0 have been studied. Nicely for X0 ¼ 0:5 and p ¼ 8 the SQ has a pillow-like shape, while
for X0 ¼ 2:0 and p ¼ 8 it has a boat-like shape, as shown in Fig. 12. The system of prolate and oblate SQs has been simulated
in a cubic box of volume V with periodic boundary conditions at the volume fraction / ¼ 0:256 and at various values of p. The
length of the smallest semi-axes is chosen as 0.8 times the unit of distance, the mass of the SQ as unit of mass (m ¼ 1) and
the moment of inertia is spherically symmetric, i.e. Ix ¼ Iy ¼ Iz ¼ 1, as in the case of HEs.

The code for simulating SQs can be straightforwardly derived from the HE code, indeed for implementing the EDMD of
SQs it suffices to:


 Evaluate the Jacobians in Eq. (5) (or Eqs. (13) and (14)) using Eq. (28).

 Calculate the Jacobians pertaining to the collision of a SQ with a plane to make use of NNL (see Section 3.3).

 Adapt the steepest-descent method described in Section 2.3.2.

 Adapt the guess of the distance shown in Section 3.2.
5.2. Performance results

Fig. 13 shows the average collision time sc for the system of SQs using either LLs or NNLs. With regard to the dependence
of sc on /;X0; �d and DNNL we do not expect a significantly different behavior from what has been observed for HEs. Hence
here we focus on the dependence of the average collision time on the parameter p.

For the LLs case p ranges from 2 to 8, while enabling NNLs it ranges from 2 to 4 only. In the case of LLs for values of p > 8
the NR for calculating the distance between SQs starts having convergence problems, while in the case of NNLs the NR for
calculating the distance between a SQ and a plane starts having convergence issues. In the present implementation of the
algorithm for locating the collision time between SQs and between a SQ and a plane the greater the p the slower will be
the NR method to reach convergence (up to a maximum value above which the NR method starts failing) and the greater
will be the number of steps needed to locate the contact point (see Section 2.4.2).

About the performance comparison between HEs and SQs from Fig. 13 it turns out that the SQs simulations (see p ¼ 2, i.e.
HEs) are at least 5–6 times slower than the HEs ones and this is mainly due to the more time consuming calculation of the
Jacobians in Eqs. (5), (13) and (14). Finally, as discussed above it is apparent from Fig. 13 the increase of sc at high p in all cases.
6. Possible applications of the present algorithm

The algorithm illustrated in this paper has been already applied in several fields, like biophysics, soft-matter and con-
densed-matter physics. First of all, this new algorithm was employed to investigate the dynamics of HEs [43], finding, for
the first time, evidence of a pre-nematic order-driven glass transition. The fact that this algorithm can simulate hard objects
of convex arbitrary shape offers new intriguing possibilities for investigating the changes in the phase diagram of HEs on
changing particles shape. For example, concerning the pre-nematic order-driven glass transition observed in [43], it is stim-
ulating to think about the possibility to completely inhibit the nematic transition with a different choice of the HRB shape
and/or introducing shape polydispersity. Work in this direction is under way. Changing the HRB shape may result in a phase
Fig. 12. Shape of the superquadrics used in the simulations. Top: on the left a prolate SQ with p ¼ 8 and X0 ¼ 0:5 is represented in 3D. On the right the plots
of the contour resulting from the intersection of the SQ (for several p ranging from 2 to 8) with the plane x ¼ 0 are shown. Bottom: on the left an oblate SQ
with p ¼ 8 and X0 ¼ 2:0 is represented in 3D. On the right the plots of the contour resulting from the intersection of the SQ (for several p ranging from 2 to 8)
with the plane y ¼ 0 are shown.



Fig. 13. Average collision time sc for simulations of N ¼ 512 SQs at / ¼ 0:256 for elongations X0 ¼ 0:5 and X0 ¼ 2:0 using only LL (left panel) and also using
NNL (right panel).
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diagram, which is richer than the one of simple HEs, since new phases (cubatic, smectic, etc.) may appear [2]. Moreover,
changing the shape and introducing shape polydispersity may have effects on packing and on mixing/demixing of hard
objects.

This algorithm has also been extended [44] to combinations of hard and localized attractive interactions, modeled as site-
site square-well potentials. In this way, the hard-body may be decorated with an arbitrary number of spherical patches
(sticky spots) arranged in fixed site locations. The algorithm for the prediction of the collision time between ‘‘sticky spots”
is an adaptation of the algorithm illustrated in the present paper for HEs (some details can be found in [44] but this topic will
be discussed extensively in a forthcoming publication).

Spheres decorated with sticky spots have been used to simulate primitive models of water [44] and silica [45] and to
study the kinetics of self-assembly of an idealized fluid model [48]. Hard ellipsoids with sticky spots have been employed
to study a model of a chemical gel [46].

HEs decorated with attractive interacting sites may also be used to model complex hard molecules, retaining some degree
of flexibility. In this approach, the loss in the details of the system is counterbalanced by its extreme flexibility and by the
possibility of investigating time scales which are not accessible by standard methods (like ‘‘ab-initio” calculations or full-
atom molecular dynamics simulations). There are several directions in which this methodology could be applied. A very
promising field of interest is represented by biophysical systems. A particular problem that has received much attention over
the last years is the IgG antibody-antigen interaction. An immunoglobulin (or antibody) is a ‘‘Y” shaped protein that is ubiq-
uitous in most vertebrates. Its role is to bind to viruses or bacteria to facilitate their neutralization process. It is extremely
interesting that a single object has the ability to bind to biological targets whose size can vary from much smaller to much
larger than its own. The introduction of square-well interactions [44] between hard-body particles can be used to generalize
the Go model [60] and better account for steric effects between different proteins. Previously, primitive model of proteins
had been developed to study biophysical problems. In the 4-beads model, described in [61], each amino acid is represented
by a maximum of four beads. Three beads correspond to the amide N, the a-carbon C, the carbonyl C0 groups. The fourth bead
models the amino-acid side-chain group of atoms, and it is placed at the center of the nominal Cb atom. Exploiting the new
algorithm proposed in the present paper, each amino-acid with its interacting (active) sites can be modeled as a set of spher-
ical spots that form one unique rigid body. In biological simulations it is worth noting that the solvent can be also introduced
explicitly in several ways:


 Using a primitive model, e.g. the primitive model of water used in [44] to take into account the directionality of the hydro-
gen bonding.


 Using a simplified solvent of hard spherical particles (this technique has been used for studying the interaction of IgG and
antigens).


 Adapting the method for performing Brownian dynamics of square-well particles discussed in [38] to the present
algorithm.

Finally, this algorithm may find applications in the field of computer science: animations and virtual reality may benefit
from the physical accuracy and efficiency of the present method. In general, virtual motions of objects in 3D space require an
accurate prediction of collisions and are fundamental for robotics, computer graphics, 3D computer games [62] and CAD
applications. For example, because of its flexibility in shape, ellipsoids are often chosen as bounding volumes for robotic
arms in collision detection [63–65].
7. Conclusions

In this paper a new efficient method for performing event-driven molecular dynamics simulations of non-spherical HRBs
has been proposed. This new method is based on the traditional NR method for solving a set of non-linear equations. In par-
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ticular, geometrical distance and contact point and time between two moving HRBs can be calculated through the NR meth-
od in a very efficient way. The method has been tested against a well established and studied system, the hard ellipsoids of
revolution and also against a less common system like the SQs. Anyhow HEs and SQs are just particular cases for the present
algorithm, since more general convex hard bodies can be simulated. Furthermore also non-convex hard bodies can be in
principle simulated by the present algorithm, if all the possible solutions of Eq. (5) (or Eq. (13)) can be found, because in this
case the actual distance can be simply obtained by Eq. (6).

In the specific case of uniaxial HEs the time per collision achieved at moderate and high densities for elongations
X0 ¼ 0:5;2:0 is around 2.5 ms, a value which is comparable to the performance of the method described in [26]. For compar-
ison, in our implementation the time per sphere collision is about 0.25 ms, i.e. simulating hard spheres is about an order of
magnitude faster than simulating HEs, even for nearly spherical HEs (the same observation has been carried out in [26]).

To solve the set of equations to evaluate the contact point and time (see Eq. (14)) by the NR method, a good initial guess
(‘‘bracketing”) of the solution has to be provided. It has been shown (see Section 2.4.2) that an initial guess for Eq. (14) can be
found by evaluating the geometrical distance between the two colliding HRBs and by making use of a simple overestimate of
the rate of variation of the distance ( _dmax). It is worth stressing that using such an algorithm for bracketing the contact point
and time, ‘‘grazing collisions” do not constitute a problem within machine accuracy. If �d/10�4 all collisions are correctly
predicted and this choice of �d does not depend on volume fraction or aspect ratio of simulated HEs. Also a new method
to implement NNL based on oriented bounding boxes has been presented. This new NNL method is fast and flexible enough
to be easily extended to more complex shapes than simple HEs and SQs.

The present algorithm can also be generalized, without losing numerical efficiency, to the case of attractive interactions
modeled via discontinuous step-wise potentials, including the interesting case of site-site square-well interaction, providing
the possibility of modeling highly directional interactions between the rigid bodies. This possibility can be further refined by
transforming site-site interactions into a permanent link between objects, by simply changing the depth of square-well
interactions. In this way, the objects can be linked into flexible structures. Such flexibility couples well with the novel
NNL implementation described.
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