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We study a system of uniaxial hard ellipsoids by molecular dynamics simulations,
changing both the aspect-ratio X0 (X0¼ a/b, where a is the length of the
revolution axis and b is the length of the two other axes) and the packing fraction
�. We calculate the translational hr2(t)i and rotational h�2(t)i mean squared
displacements, the translational Dtrans and the rotational Drot diffusion
coefficients and the associated isodiffusivity lines in the ��X0 plane. For the
first time, we characterize the cage effect through the logarithmic time derivative
of loghr2(t)i and logh�2(t)i. These quantities exhibit a minimum if the system is
supercooled and we show that, consistently with our previous findings, for large
and small X0 values, rotations are supercooled, contrary to translations. In
agreement with this scenario, while the self-intermediate scattering function
exhibits stretched relaxation (i.e. glassy dynamics) only for large � and X0� 1, the
second order orientational correlator C2(t) show stretching only for large and
small X0 values. As further evidence of this pre-nematic order driven glass
transition, we observe a decoupling of the translational and rotational dynamics,
which generates an almost perpendicular crossing of the Dtrans and Drot

isodiffusivity lines.

Keywords: computer simulation; glass transition; hard ellipsoids; mode coupling
theory; nematic order

1. Introduction

Even if particles interact with only excluded volume interactions, they may exhibit a rich
phase diagram; for example, it is known that simple non-spherical hard-core particles can
form either crystalline or liquid crystalline ordered phases [1], as first shown analytically by
Onsager [2] for rod-like particles. Accurate phase diagrams of several hard-body shapes
can be found in the literature [3–6], but detailed information about dynamics properties
and kinetically arrested states of hard-core bodies are not available. While mode coupling
theory (MCT) [7] effectively describes the slowing down of the dynamics of a hard-sphere
system on increasing the packing fraction �, its molecular counterpart, the molecular
model coupling theory (MMCT) [8], has not been tested in simulated or real systems yet.
On going from spheres to non-spherical particles, non-trivial phenomena arise, due to the
interplay between translational and rotational degrees of freedom. The slowing down of
the dynamics can indeed appear either in both translational and rotational properties or in
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just one of the two. Hard ellipsoids (HE) of revolution [1,9] are one of the most prominent
systems composed of hard body anisotropic particles, and MMCT has been applied to HE
[10,11], predicting a swallow-like glass transition line. In addition, the theory suggests that
for X0/ 0:5 and X0’ 2, the glass transition is driven by a precursor of nematic order,
resulting in an orientational glass where the translational density fluctuations are quasi-
ergodic, except for very small wave vectors q.

2. Methods

We perform an extended study of the dynamics of monodisperse HE in a wide window of
� and X0 values, extending the range of X0 previously studied [12].

We study the translational and rotational mean squared displacements, looking for
evidence of the cage effect and the translational and rotational correlation functions, to
search for the onset of slowing down and stretching in the decay of the correlation. We
also focus on establishing the trends leading to dynamic slowing down in both translations
and rotations, by evaluating the loci of constant translational and rotational diffusion.
These lines, in the limit of vanishing diffusivities, approach the glass-transition lines. We
simulate a system of N¼ 512 ellipsoids at various volumes V¼L3 in a cubic box of edge L
with periodic boundary conditions. We chose the geometric mean of the axis l ¼

ffiffi
½
p

3�ab2

as the unit of distance, the mass m of the particle as the unit of mass (m¼ 1) and kBT¼ 1
(where kB is the Boltzmann constant and T is the temperature), and hence the cor-
responding unit of time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=kBT

p
. The inertia tensor is chosen as Ix¼ Iy¼ 2mr2/5,

where r¼min{a, b}. The value of the Iz component is irrelevant [13], since the angular
velocity along the symmetry (z-) axis of the HE is conserved. We simulate a grid of more
than 500 state points at different X0 and �. To create the starting configuration at a desired
�, we generate a random distribution of ellipsoids at very low � and then we progressively
decrease L to the desired �. We then equilibrate the configuration by propagating the
trajectory for times such that both angular and translational correlation functions have
decayed to zero. Finally, we perform a production run at least 30 times longer than the
time needed to equilibrate. For the points close to the isotropic-nematic (I-N) transition,
we check the nematic order by evaluating the largest eigenvalue S of the order tensor (for
further details see [14]).

3. Results and discussion

3.1. Mean squared displacements

A first characterization of HE dynamics is offered by translational and rotational mean
squared displacements (MSD). Translational MSD is defined as

hr2ðtÞi ¼
1

N

X

i

hkxiðtÞ � xið0Þk
2i, ð1Þ

where N is the number of HE, and xi(t) is the position of the centre-of-mass of the i-th HE.
Analogously the rotational MSD is

h�2ðtÞi ¼
1

N

X

i

hk��ik
2i, ð2Þ
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where ��i ¼
R t
0 !idt, !i being the angular velocity of the i-th HE. In Figure 1, trans-

lational and rotational MSD are reported for three different elongations at different
volume fractions. Both translational and rotational MSD shows for short times a ballistic
regime, where hr2(t)i, h�2(t)i/ t2, which crosses over to a diffusion process at long times;
i.e. hr2(t)i, h�2(t)i/ t. For the state points simulated in the present study, for h�2

i the
ballistic short-time and the diffusive long-time regimes are separated by an intermediate

Figure 1. (Colour online). Translational (top) and rotational (bottom) MSD for three different
elongations at different volume fractions. Top (from left to right) X0¼ 1/3 (from top to bottom:
�¼ 0.20. . .0.45), 1.0 (�¼ 0.20. . .0.53), 3.0 (�¼ 0.20. . .0.52). Bottom (from left to right): X0¼ 1/3
(�¼ 0.20. . . 0.45), 1.2 (�¼ 0.20. . .0.518), 3.0 (�¼ 0.20. . .0.52). Dashed lines and dot-dashed lines are
guides to the eye, showing the ballistic and diffusive regime, respectively.

Figure 2. (Colour online). �tra(t) and �rot(t) (see text for their definitions) for the most ‘supercooled’
state points simulated for four different elongations. Dotted lines indicate the ballistic and diffusive
regimes.
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time window, due to particles caging, only for high elongations; i.e. for X0¼ 1/3 and X0¼ 3
in Figure 1. In contrast, for hr2i this intermediate regime shows up only for elongations
close to 1. The scenario just depicted is more apparent if we consider the quantities:
�tra(t)¼ @log(hr

2(t)i)/@log t and �rot(t)¼ @log(h�
2(t)i)/@log t (see Figure 2). The short- and

the long-time limits of �tra(t), �rot(t) correspond to the ballistic ( �tra(0), �rot (0)¼ 2) and
the diffusive regimes (�rot(1), �rot(1)¼ 1), respectively. Anyway, if the translational, or
rotational, velocity autocorrelation function (VCF) exhibits a negative tail at long times,
�tra(t) shows a minimum. In other words, a monotonically decreasing translational
(rotational) VCF, that is without the cage effect, corresponds to a monotonically
decreasing �tra(t) (�rot(t))[15].

3.2. Orientational correlation function

The cage effect of h�2(t)i for large X0, approaching the nematic phase, supports the
possibility of a close-by glass transition. To further support this possibility we evaluate
the self part of the intermediate scattering function Fselfðq, tÞ ¼

1
N h
P

j e
i�ðxjðtÞ�xjð0ÞÞi and the

second order orientational correlation function C2(t), defined as [12] C2(t)¼hP2(cos�(t))i,
where P2(x)¼ (3x2� 1)/2 and �(t) is the angle between the symmetry axis at time t and at
time 0. The over-compressing, achievable for HE, is rather limited (as for the well known
hard-sphere case), nevertheless rotational and translational correlation functions reveal
that the onset of dynamic slowing down and glassy dynamics can be detected by the
appearance of stretching. Fself shows exponential behavior close to the I-N transition
(X0¼ 3.2, 0.3448) on the prolate and oblate side, and only when X0� 1, does Fself develop
a small stretching, consistent with the minimum of the swallow-like curve observed in the
fluid–crystal line [16,17], in the jamming locus as well as in the predicted behavior of the
glass line for HE [8] and for small elongation dumbbells [18,19].

In contrast to the Fself behavior, the orientational correlation function C2 shows
stretching at large anisotropy (i.e. at small and large X0 values), but decays within the
microscopic time for almost spherical particles, in accordance with the cage effect of
h�2(t)i. Previous studies of the rotational dynamics of HE [12] did not report stretching
in C2, probably due to the smaller values of X0 previously investigated, and to the present
increased statistic, which allows us to follow the full decay of the correlation functions.

In summary, C2 becomes stretched approaching the I-N transition, while Fself remains
exponential on approaching the transition. To quantify the amount of stretching in C2,
we fit it to the function A exp[�(t/�C2

)�C2] (stretched exponential) for several state points
and we show in Figure 3 the X0 dependence of �C2

and �C2
for three different values of �.

In all cases, slowing down of the characteristic time and stretching increases progressively
on approaching the I-N transition.

3.3. Isodiffusivity lines

For all the simulated state points, we evaluated the translational (Dtrans) and rotational
(Drot) diffusion coefficients. Then, by proper interpolation of Dtrans and Drot, we evaluate
the corresponding isodiffusivity lines, which are the loci of points, in the X0-� diagram,
having the same diffusivity. Isodiffusivity lines are shown in Figure 4. What emerges
clearly from this figure is a striking decoupling of the translational and rotational
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dynamics: translational isodiffusivity lines resemble the swallow-like shape of the
coexistence between the isotropic liquid and crystalline phases (as well as the MMCT
prediction for the glass transition [8]), while rotational isodiffusivity lines have
qualitatively the same shape as the I-N coexistence curve.

Figure 4. (Colour online). Isodiffusivity lines. Solid lines are isodiffusivity lines from translational
diffusion coefficients Dtrans, and dashed lines are isodiffusivities lines from rotational diffusion
coefficients Drot. Arrows indicate decreasing diffusivities. Left and right arrows refer to rotational
diffusion coefficients. Diffusivities along the left arrow are 1.5, 0.75, 0.45, 0.3, 0.15. Diffusivities
along the right arrow are 1.5, 0.75, 0.45, 0.3, 0.15, 0.075, 0.045. The central arrow refers to
translational diffusion coefficients, whose values are 0.5, 0.3, 0.2, 0.1, 0.04, 0.02. The thick long-
dashed curves are coexistence curves of all first order phase transitions in the phase diagram of HE,
evaluated by Frenkel and Mulder [20]. Solid lines are coexistence curves for the I-N transition of
oblate and prolate ellipsoids, obtained analytically by Tijpto-Margo and Evans [6].

Figure 3. (Colour online). �C2
and �C2

are obtained from fits of C2 to a stretched exponential for
�¼ 0.40, 0.45 and 0.50. Top: �C2

as a function of X0. Bottom: �C2
as a function of X0. The time

window used for the fits is chosen in such a way to exclude the microscopic short-time ballistic
relaxation. For 0.5885X05 1.7 the orientational relaxation is exponential.
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Translation isodiffusivity lines run almost parallel to the x-axis, i.e. translational
diffusion is mainly controlled by volume fraction (packing), that is the y-axis in Figure 4.
In contrast, due to the almost perpendicular crossing of translational and rotational
isodiffusivity lines, the rotational isodiffusivity lines are instead mostly controlled by X0,
showing a progressive slowing down of the rotational dynamics independent from the
translational behavior. In other words, moving along a translational isodiffusivity path,
Drot progressively decreases until the rotational diffusion is completely arrested.
Unfortunately, in our specific case of monodisperse HE, before reaching this point the
I-N nematic instability intervenes, and we were able to observe only a limited degree of
supercooling. It would be intriguing to design a system of hard particles, where the
nematic transition is completely inhibited. Likely this system can be obtained by a proper
choice of the disorder in the particle’s shape and/or elongations. MMCT predicts
a nematic glass for large X0 HE [8], in which orientational degrees of freedom start to
freeze approaching the isotropic-nematic transition line, while translational degrees of
freedom mostly remain ergodic. Hence, our slowing down of the rotational dynamics is
consistent with the results of this theory.

4. Conclusions

In summary we investigated the dynamics properties of a system of monodisperse HE and
we have shown that clear precursors of dynamic slowing down, like the stretching of
correlation functions and the cage effect, can be observed in the region of the phase
diagram where a (meta)stable isotropic phase can be studied. In particular our data
suggest, in accordance with MMCT predictions [8], at least two possible glass transi-
tion mechanisms: a slowing down in the orientational degrees of freedom (when
X0/ 0:5,X0’ 2), driven by the elongation of the particles and related to pre-nematic
order (quantitative predictions about precursors effects of I-N transition can be also found
in [21] and they can be checked using our data; work on this is under way), and a slowing
down in the translational degrees of freedom (active for 0:5/X0/ 2) driven by packing
and related to the cage effect. The main effect of the existence of these two complementary
arrest mechanisms is a decoupling of the translational and rotational dynamics which
generates an almost perpendicular crossing of the Dtrans and Drot isodiffusivity lines.
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