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Molecular correlation functions for uniaxial ellipsoids in the isotropic state
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We perform event-driven molecular dynamics simulations of a system composed by uniaxial hard
ellipsoids for different values of the aspect ratio and packing fraction. We compare the molecular
orientational-dependent structure factors previously calculated within the Percus-Yevick
approximation with the numerical results. The agreement between theoretical and numerical results
is rather satisfactory. We also show that, for specific orientational quantities, the molecular structure
factors are sensitive to the particle shape and can be used to distinguish prolate from oblate
ellipsoids. A first order theoretical expansion around the spherical shape and a geometrical analysis
of the configurations confirms and explains such an observation. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2176679�
I. INTRODUCTION

The structure of simple liquids can be characterized by
the density-density correlator g�r� or by its Fourier trans-
form, the static structure factor S�q�. Strong efforts have
been made to derive analytical tools for the calculation of
these quantities, since g�r� or S�q� allows one to calculate
several thermodynamical quantities, e.g., the equation of
state. Among the most prominent theoretical approaches are
the Percus-Yevick �PY�, the hypernetted chain �HNC�, and
other more elaborate integral equations.1 For models of
simple liquids—when the number density � is not too
large—integral equations provide predictions for g�r� and
S�q� which well reproduce the “exact” results evaluated from
experiments or simulations.

For molecular liquids, structural information become
more diverse due to the presence of the orientational degrees
of freedom and of their interactions with the translational
ones. Expansion of the angular dependent microscopic den-
sity with respect to spherical harmonics and Wigner func-
tions for linear and arbitrary molecules, respectively, leads to
a generalization of S�q� to tensorial correlators S����q� �see
Sec. II B�. Several analytical approaches have been proposed
to calculate these correlation functions. The simplest one per-
forms Ansätze which relates S����q�, or the corresponding
direct correlation function c����q�, to S�q� or c�q�, q= �q� of
an appropriately chosen related simple liquid.2–9 Similar to
this is the Ansatz for c����q� based on the geometry of two
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molecules.10–12 The thermodynamical perturbation theory is
a systematic approach which uses a liquid system of isotro-
pic particles as a reference and considers the deviation of the
particles from sphericity as a perturbation. Different types of
expansions exist, depending on the quantity which is ex-
panded. For more details the reader may consult Ref. 13.
Finally, the integral equation theories have been extended to
molecular liquids.1,13

As compared to simple liquids, the quality of the integral
equations for anisotropic particles has been less intensively
investigated. Furthermore, comparisons have been mainly re-
stricted to hard ellipsoids of revolution and to the value of
the coefficients gll�m�r� and cll�m�r� of the expansion into
rotational invariants of, respectively, the pair distribution and
direct correlation function in real space. The quality of PY
and HNC theories for a liquid of hard ellipsoids14 has been
tested against molecular dynamic simulation data 15 years
ago.15 Reference 14 reports such a comparison together with
earlier Monte Carlo �MC� results,16 however, restricted to the
center of mass correlator g000�r�. Satisfactory agreement has
been found for both approximation schemes. The PY theory
seems to be inferior to HNC theory, because �i� the PY cor-
relators for oblate ellipsoids deviate stronger than the HNC
correlation from the corresponding molecular dynamics
�MD� results and �ii� PY theory does not yield an indication
for an isotropic-nematic phase transition, in contrast to HNC
theory. The good quality of PY theory for prolate ellipsoids
has been confirmed.17,18 Particularly it has been demon-
strated that reasonably good PY predictions require that

18
terms up to lmax=6 are taken into account. In variance with
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the observation of Ref. 15 it has been recently found that the
PY theory also yields an isotropic-nematic phase transition.19

Finally we mention that the direct correlation functions
cll�m�r� obtained from a MC simulation20 have been com-
pared with the Ansätze described in Refs. 2 and 4–9. Some
of them exhibit a satisfactory agreement with the MC results,
particularly for large r values. But in our opinion the agree-
ment is less good than the one found from integral equation
theory.15,17,18

The above short review on previous investigations of
hard ellipsoids makes it obvious that the debate on the ori-
entational structural properties is not quite settled. Therefore,
we have applied a newly developed event-driven MD
algorithm21 in order to calculate the static molecular correla-
tion functions of hard ellipsoids in q space. In contrast to
previous work described above, we have chosen the tensorial
correlators S����q�, �= �l ,m� �see Sec. II B�. They have the
advantage that they can directly be deduced from neutron
and synchrotron radiation scattering experiments, at least for
l�2. One of our main goals is to compare accurate numeri-
cal results with PY predictions from Ref. 8, obtained for the
Gaussian overlap model22 and with a truncation at lmax=8, a
value larger than the one previously used in Ref. 18. Besides
this, we will interpret the peak structure of these correlators,
particularly of the nondiagonal one, S2000�q�. We will dem-
onstrate that the qualitative q dependence of this nondiagonal
correlator allows us to easily distinguish between oblate and
prolate ellipsoids. The application of first order thermody-
namic perturbation theory for S2000�q� will provide support
to this finding. Finally, we want to check how far the predic-
tion of an isotropic-nematic phase transition20 found from the
growth of S2020�q=0� is reproduced by our MD simulation.

The outline of the manuscript is as follows. In the next
section we will describe the model and the tensorial func-
tions S����q�. Section III contains results concerning �i� a
comparison for S����q� from PY theory and MD simulation,
�ii� a geometrical interpretation of the q dependence of
S2000�q�, and �iii� the first order perturbation theory for
S����q�. Section IV contains our conclusions.

II. METHODS

A. Model

We study a system composed of N=256 or 2048 uniaxial
hard ellipsoids, i.e., ellipsoids with revolution axis of length
a and two other axes of identical length b in a volume V. The
aspect ratio is defined as X0�a /b, with 0�X0��. The vol-
ume of each particle is �X0b3 /6 and thus the packing frac-
tion ���X0b3� /6 �where �=N /V is the number density�.
We perform event-driven molecular dynamics simulations,
with periodic boundary conditions, at several values of 0.4
���0.51 and several 0.4�X0�2.8 values. Distances are
measured in units of the axes geometric mean l��3 ab2.
Ellipsoids have mass m=1 and a spherically symmetric
momentum of inertia, i.e., Ix= Iy = Iz=2mr2 /5 with
r=min�a ,b	 /2.

The event-driven molecular dynamics simulation21 for a
one-component hard-ellipsoids system �HES� used in this

work is described in details in Ref. 23. The prediction of
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events �collisions among molecules� is different from what
has been proposed in the past. It relies on evaluations of
distance between objects based on gradient descent and
Newton-Raphson root finding algorithms. Such strategy in
principle works for any objects whose surface is differen-
tiable and hence it is not limited to ellipsoids. The efficiency
of the algorithm is comparable to the algorithm recently pro-
posed by Donev et al.24

To create the starting configuration, we generate a ran-
dom configuration at very low � and grow independently the
particles up to the desired � �i.e., we perform a quench in �
at fixed N, X0�. To equilibrate the systems, we simulate until
the angular second Legendre polynomial correlation func-
tion, for the angle associated to the axis of symmetry, has
decayed to zero. In addition we check that particles have
diffused more than max�a ,b	. Simulations last approxi-
mately from 108 to 109 hard-ellipsoid collisions; between
1000 and 5000 equally spaced configurations have been
stored for the analysis. Figure 1 shows the studied state
points together with the known thermodynamic lines. The
majority of the studied points lies close to the equilibrium
transition line to maximize the structural signatures in the
static correlation functions.

B. Molecular structure factors

A system of N rigid molecules can be described by the
positions of the centers r j and the orientation �Euler angles�
� j of the jth molecule. The microscopic density ��r ,��
=
 j��r−r j����−� j� can be expanded with respect to plane
waves eiq·r and to Wigner matrices Dmn

l* ���.13,25 For mol-
ecules with a rotational symmetry axis, ���	 ,��, Wigner
matrices reduce to spherical harmonics and the microscopic
density can be expanded into tensorial modes,

�lm�q� = �4�il

j=1

N

eiq·rjYlm�� j� ,

where l takes integer values 
0 and m runs between −l and

FIG. 1. Hard ellipsoids phase diagram. The dashed line are the phase bound-
aries calculated by Ref. 30. The open diamonds correspond to the points of
the phase diagram which we compare with the PY results of Ref. 19. The
X’s correspond to the points of the phase diagram for which we have anal-
ized finite size effects.
l. The factor in front of the sum is for technical convenience.
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The molecular structure factors are defined as

Slml�m��q� =
1

N
��lm

* �q��l�m��q��

that will in general depend both on the modulus and on the
orientation of q. The symbol �¯� indicates an ensemble av-
erage. A convenient reference system is provided by the q
frame, where the direction of the z axis is parallel to q.13 For
molecules with a rotational symmetry axis, molecular struc-
ture factors in the q frame become diagonal in m �Ref. 26� so
that Slml�m�=�mm�Slml�m. For ellipsoids, the Slml�m�q� have
been calculated within the Percus-Yevick approximation19

and used as input of mode-coupling theory calculations to
evaluate the glass transition lines.27

III. RESULTS AND DISCUSSION

A. Comparison between PY and simulation data
for Slml�m�

Figure 2 compares the numerical results and the PY pre-
dictions from Ref. 19 for S0000, S2000, and S2020 when
X01 �an almost hard-sphere case� for both oblate and pro-
late ellipsoids. In all cases, the PY predictions satisfactorily
describe the numerical results. We note that S0000 resembles
the typical shape of the HS fluid and is practically the same
for oblate �X0=0.9� and prolate �X0=1.1� ellipsoids whereas

FIG. 2. Slml�m��q� for X0=0.9 �top� and X0=1.1 �bottom� at �=0.51, i.e.,
near the hard-sphere case X0=1. Symbols are simulation results, and the
lines are PY predictions from Ref. 19.
S2020 is structureless for all q values �as expected since the
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studied points are far from the nematic phase�. Nevertheless,
information on the angular structure are contained in S2000.
This function shows an interesting q behavior when compar-
ing the prolate and oblate cases. Indeed, it appears that the
prolate S2000�q� has an opposite sign as compared to the ob-
late one. We also notice that the location of the first peak of
S0000 coincides with the location of one extremum also in the
S2000�q�.

Figure 3 shows data for the tensorial correlation func-
tions for values deviating stronger from X0=1, namely,
X0=0.4 and X0=2.2 at �=0.4. Compared to the previous
case, S0000 is less structured, while the opposite behavior is
observed for both S2000 and S2020. Even in this case, prolate
and oblate ellipsoids are easily distinguished from the q de-
pendence of S2000: while for a prolate ellipsoids a maximum
followed by a minimum is observed, the opposite behavior
characterizes oblate ellipsoids. The location of the first peak
of S0000 is now shifted as compared to the location of the
S2000�q� extremum. It is also interesting to observe that now
a peak at q=0 is present in S2020, signaling the buildup of a
finite nematic correlation length27 on approaching the nem-
atic transition.

As a further case for comparing simulation results and
theoretical predictions, Fig. 4 shows Slml�m for �=0.5 and
X0=0.4 and 2.4. These state points are the closest points to
the isotropic-nematic boundary for which PY predictions are

FIG. 3. Slml�m��q� at �=0.4 for X0=0.4 �top� and X0=2.2 �bottom�. The
symbols are simulation results, and the lines are PY predictions from
Ref. 19.
available from Ref. 19. Even in this case, the PY results
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provide a satisfactory description of the q dependence. The
growth of S2020�0� for q→0 at high/low elongations �Figs. 3
and 4� signals the presence of a growing correlation length
�2020 for nematic order. If �2020 would be of the order of the
box size, the results of our simulations would be affected by
finite size effects. To test for the absence of such effects, we
have simulated the two representative points �=0.50,
X0=0.40, and �=0.50, X0=2.80 for N=2048 ellipsoids. As
shown in Figs. 5 and 6, the data for the biggest size are

FIG. 4. Slml�m��q� at values of � near the nematic transition line, for values
of X0 corresponding to oblate/prolate ellipsoids; X0=0.4, �=0.5 �top� and
X0=2.4, �=0.5 �bottom�.

FIG. 5. Comparison of S2020�q� �top� and S2222�q� �bottom� for N=256 �full

circles� and N=2048 �open circles� ellipsoids at �=0.50, X0=0.40.
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consistent with the results for the smaller size at lower q’s,
providing evidence of the absence of finite size effects in the
studied state point. Additionally, Figs. 5 and 6 depict S2222�q�
which has a pronounced peak at q=0, and which is almost
structureless for larger q. We have also calculated correlators
with l and/or l� equal to 4. Those are not shown, because
they are of less experimental relevance. Nevertheless, we
mention that they satisfactory agree with the PY result.

B. Geometrical characterization of the q dependence
of S2000

A hand-waving understanding of the antiphase character
of the oblate/prolate S2000 function at same � can be obtained
by a geometrical analysis of the configurations. For the case
of prolate particles �X0�1�, the location q* of the first mini-
mum in S2000�q� is located at q*2� /b. At this small dis-
tance r*b, the two particles must be almost parallel. Since
q is along the z axis �q frame� and the relative distance of the
two particles has to be parallel to q in order to give a nonzero
contribution to S2000, the polar angle 	 of both ellipsoids is
close to � /2. This provides a negative contribution to S2000

because Y20�	 ,����3 cos2 	−1� /2−1/2 �Fig. 7�a�� as-
sumes its smallest possible value. Hence, around q*, where
the majority of the pairs are parallel, S2000 will have a mini-
mum. On the other hand, at the first maximum of S2000 �q
�q*� correlation between pairs of ellipsoids with relative
distance s*max�a ,b	�r* is sampled. As we are working
in the q frame, the pairs of ellipsoids at a distance s* that will
contribute to the maximum at q* are those whose relative
distance is parallel to q. If we take into account the excluded
volume effects due to the ellipsoids at distance r*, we see
that the sterically favored configurations are the ones shown
in Fig. 7�b�. For such pairs of ellipsoids, the total contribu-
tion to S2000 in the q frame is positive. Therefore if we find
an extremum at a distance s* for prolate ellipsoids we ex-
pect that one to be positive.

The analysis of the configurations contributing to the
peaks of S2000 for oblate ellipsoids is analogous. In the q
frame there is a shift of ±� /2 in 	. Therefore, the sign of Y20

is inverted and consequently the sign of S2000 is inverted with

FIG. 6. Comparison of S2020�q� �top� and S2222�q� �bottom� for N=256 �full
circles� and N=2048 �open circles� ellipsoids at �=0.50, X0=2.8.
respect to the prolate case �see Fig. 8�.
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C. First order perturbation theory for Slml�m�

Specializing the results of Ref. 13 to hard ellipsoids, it is
possible to expand the radial distribution function
g�r12,u1 ,u2� in a power series in =X0−1,

g�r12,u1,u2� = 

i=0

�

gi�r12,u1,u2� , �1�

where gn=O�n�, r12 is the vector connecting two centers of
the two ellipsoids, and ui are the unit vectors along the rota-
tional symmetry axes. The first two terms of the expansion
are

FIG. 7. �a� Sketch of configurations of two prolate ellipsoids with a center-
to-center distance close to r*. The values of Y20 in the q frame are negative
for the two prolate ellipsoids because their rotational symmetry axes are
almost perpendicular to q. �b� Configurations of ellipsoids with a center-to-
center distance corresponding to s*. The shaded region represents the vol-
ume excluded by particles at a distance �r*. The values of Y20 in the q
frame is positive because the rotational symmetry axes of both ellipsoids are
almost parallel to q. The lines with the arrows placed on the ellipsoids
centers represent the axes of symmetry of the ellipsoids.
g0�r12,u1,u2� = gHS�r12� , �2�
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g1�r12,u1,u2� = − �̄gHS�r12���u1,u2,e12���r12 − �̄� − ��̄

�� d3r3gHS�r12,r13,r23�

�����u1,u3;e13��u3
��r13 − �̄�

+ ���u2,u3,e23��u3
��r23 − �̄�� , �3�

where gHS�r12� and gHS�r12,r13,r23� are the static two-
particle and three-particle distribution functions of hard
spheres with effective diameter �̄ depending on , rij =rijeij,

FIG. 8. �a� Sketch of configurations of two oblate ellipsoids with a center-
to-center distance close to r*. The values of Y20 in the q frame is positive for
the two prolate ellipsoids because their rotational symmetry axes are almost
parallel to q. �b� Configurations of ellipsoids with a center-to-center distance
corresponding to s*. The shaded region represents the volume excluded by
particles at a distance �r*. The values of Y20 in the q frame is negative for
prolate ellipsoids because the rotational symmetry axes of both ellipsoids
are almost perpendicular to q. The lines with the arrows placed on the
ellipsoids centers represent the axes of symmetry of the ellipsoids.
�=N /V is the number density and
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�f�u��u �
1

4�
�

0

2�

d��
0

�

d	 sin�	� f�u�	,��� . �4�

The effective diameter �̄ is defined as �̄
= ��d�u1 ,u2 ,e12��u1

�u2
, where d�u1 ,u2 ,e12� is the distance at

contact of two ellipsoids with axis along ui and e12=r12/r12

is the direction between the centers of the ellipsoids. The
function � measures the “nonsphericity” of the potential and
is defined self-consistently as d�u1 ,u2 ,e12�= �̄�1
+��u1 ,u2 ,e12��. At first order in , � and �̄ can be evaluated
analytically from geometrical considerations,

�̄ = b�1 +


3
+ O�2�� , �5�

��u1,u2,e12� =


3
�P2�e12 · u1� + P2�e12 · u2�� + O�2� , �6�

where Pl is the Legendre polynomial of order l.
The general expression of the molecular structure factor

Slml�m in terms of g�r12,u1 ,u2� is

Slml�m�q� = �ll� + il�−l�4�

�� d3r12��g�r12,u1,u2� · eiq·r12

�Ylm
* �u1�Yl�m�u2��u1

�u2
. �7�

Using the properties of Legendre polynomials, we have
that ���u ,w ,e��w= � /3�P2�e ·u�, so we can rewrite g up to
first order,

g�r12,u1,u2�

= gHS�r12� −
��̄

3
�gHS��̄��P2�u1 · e12� + P2�u2 · e12��

���r12 − �̄� + �� d3r3gHS�r12,r23,r13�

����r13 − �̄�P2�u1 · e13� + ��r23 − �̄�P2�u2 · e23��� .

�8�

The zeroth order g0 is spherically symmetric and will
contribute with a diagonal term Slmlm

0 . The first order term
contains functions of the form P2�ui ·eij� that can be recasted
in terms of linear combinations of spherical harmonics
Ylm�ui� with l=0,2; so the first order term will contribute
only to Slml�m with l , l�=0,2 and l� l�.

In particular, in the q frame the � independent part of g1

contains only linear combinations of Y00 and Y20; it is then

possible to evaluate Slml�m with the result,
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Slml�m�q,��

= �ll�Slmlm
0 �q� − �

2�

3�5
��̄3gHS��̄�

���x−1 − 2x−3�sin x + 2x−2 cos x�

���lm,20�l�m,00 + �lm,00�l�m,20� + �Flml�m��̄� + O�2� ,

�9�

where x= �q��̄ and Flml�m��̄� is a function of �̄ that does not
depend on . Its calculation requires the knowledge of the
static three-point correlator gHS�r12,r13,r23�, which, how-
ever, is not known exactly.

Therefore, S2000 shows a peak of opposite sign around
q� �̄−1 as observed above when discussing the simulation
data; in general, first order theory predicts

D�q,�� = S2000�q,�� + S2000�q,− �� = 0, �10�

for  small enough. We check this last property by our simu-
lations. Figure 9 �top� shows S2000�q ,��, S2000�q ,−��, and
D�q ,�� for =0.05. The sum D�q ,�� vanishes within the

FIG. 9. Check of Eq. �10� for the case �=0.49. The upper panel shows
S2000�q� for X0=1±� and D�q ,�� for �=0.10. The lower panel shows the
average of �D�q ,��� �empty circles� over all q�50 from the simulation as a
function of �2 for several values of �. The behavior at low � is linear in �2 as
predicted from the first order perturbation theory. The presence of a constant
term in ��D�q ,�� � � for �→0 is due to the noise implicit in the measures. In
fact, the values �D�q ,��� �empty squares� at small � are dominated by the
noise and are scattered around zero. The �2 regime seems to break down
around ��0.3.
error, supporting the prediction of Eq. �10�. To gather a feel-
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ing of the range of validity of this prediction we show in Fig.
9 �bottom� the average value �over all q�50� of �D�q ,���
and D�q ,�� as a function of �2. The behavior of �D�q ,��� and
��D�q ,���� confirms the linear dependence on �2 predicted
from Eq. �10� for ��0.1.

IV. CONCLUSIONS

In this paper we have presented a comparison between
PY predictions and MD simulation results for the tensorial
correlators in a hard ellipsoids liquid, close to the phase co-
existence lines.

The major focus has been on the calculation of static
molecular correlation functions. In contrast to earlier work
we have not chosen the r-dependent coefficients gll�m�r� of
an expansion with respect to rotational invariants but the
tensorial correlators Slml�m��q� in q space. Those have the
advantage that they can be obtained from scattering experi-
ments, at least for l , l��2. The comparison of the correlators
from MD simulations with the corresponding ones from the
PY theory19 is rather satisfactory for all correlators and all
pairs of �X0 ,�� we have studied. Accordingly, the good
agreement between results from the PY theory and an earlier
MD simulation found in Ref. 18 is confirmed. An interesting
observation made is the qualitative difference of the nondi-
agonal correlator S2000�q� for oblate and prolate shapes.
Since the back transform to real space is a linear procedure,
this qualitative different behavior should also exist for
G2000�r� which is related to the coefficient g200�r�. Indeed,
Fig. 1�a� for X0=2 and Fig. 4 for X0=1/3 from Ref. 15 show
that the first extremum of g200�r� is a minimum and a maxi-
mum, respectively.

The qualitative shape dependence of S2000�q� has been
proven analytically. Using the first order perturbation theory
with respect to =X0−1 we have shown that �S2000�q��prolate

�−S2000�q��oblate.
We have not attempted to compare S2000�q� from this

perturbational approach, with the corresponding result from
our MD simulation and PY theory, because one needs the
static three-point correlator for hard spheres as an input
which is not known.

It has recently been predicted28 that the time-dependent
correlator S2000�q , t�, which is a measure of the coupling be-
tween the center of mass �l=0� and orientational �“quadru-
polar” part l=2� motion, has an effect on the light scattering
spectra. This effect has been found experimentally29 and
might offer the possibility to check how far spectra from
light scattering experiments may allow to discriminate be-
tween oblate and prolate particles.

Finally, we have checked the growth of nematic order. In
contrast to the PY result in Ref. 14 the authors of Ref. 19
have found that S2020�q=0� from PY theory diverges at a
critical volume fraction �c�X0� for X0�2 and X0�0.5. At �c

an isotropic-nematic transition occurs. Our simulation repro-
duces the shape and the growth of the peak of S2020�q� at low
q’s. We have also demonstrated that, for the chosen values of
X and �, no finite size effects influences this peak. We have
0
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not attempted to determine �c�X0� from our simulation since
this type of analysis would request much larger system sizes
than we are currently able to simulate.

The PY tensorial correlators have been recently used as
input in molecular mode-coupling theory to evaluate the
glass lines in the �X0−�� plane. The theoretical calculations
suggest the possibility of a new mechanism of slowing down
of the dynamics driven by the increase of the nematic order.
Therefore, the validity of the PY predictions, particularly for
the peak of S2020 close to q=0, presented in this work con-
firms that this new mechanism is not arising from a failure of
the PY predictions, but it is a genuine prediction of the mo-
lecular mode-coupling approach.
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