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1 INTRODUCTION

The relaxation and the transport properties of molecular liquids depend on both their trans-
lational and rotational motion. It is well known that, on approaching the glass transition
temperature Tg from above, diffusion coefficients and relaxation times exhibit remarkable
changes of several orders of magnitude which are under intense experimental, theoretical
and numerical investigation [?, ?]. In the high-temperature regime the changes usually
track the shear viscosity η in the sense that , if X denotes the diffusivity or the inverse of a
relaxation time, the product Xη/T is nearly temperature-independent. In particular, both
the Stokes-Einstein, D ≈ kT/6πηa, and the Debye-Stokes-Einstein laws, Dr ≈ kT/ηa3 are
found to work nicely, D, Dr and a being the translational and the rotational diffusivity
and the molecular radius, respectively. Differently, in deeply supercooled regimes there is
wide evidence that the product increases on cooling evidencing the breakdown of the hy-
drodinamic behavior at molecular level and the decoupling by the viscous flow [?, ?, ?, ?]
[?, ?, ?, ?, ?].

The decoupling between microscopic time scales and the viscous flow is a signature
of the heterogeneous dynamics which develops close to the glass transition, i.e. a spatial
distribution of transport and relaxation properties [?, ?, ?, ?]. Crossover temperatures
to that regime are broadly located around 1.2Tg, i.e. in the region where the critical
temperature Tc predicted by the mode-coupling theory of the glass transition ( MCT ) is
found [?, ?].

During the last years molecular dynamics simulations ( MD ) proved to be a powerful
tool to investigate supercooled liquids ( for a recent review see ref.[?] ). Most MD studies
confirmed that the decoupling is due to dynamic heterogeneities[?, ?, ?, ?, ?, ?]. In fact,
”active” [?] or ”mobile” [?] regions which largely contribute to set the macroscopic average
value have been identified. In such regions hopping processes, enhancing the transport with
respect to the hydrodynamic behavior, have been evidenced [?, ?]. The occurrence of jumps
in glasses has been reported several times in the recent past [?, ?, ?, ?].

The paper discusses the decoupling phenomena in viscous liquids by presenting the main
results of recent MD studies on molecular supercooled liquids [?, ?]. In Sec. 2 the model
and the details of the simulation are presented. The results are discussed in Sec. 3. The
conclusions are summarized in Sec. 4.

2 MODEL AND DETAIL OF SIMULATION

The system under study is a model molecular liquid of rigid dumbbells [?, ?, ?]. The
atoms A and B of each molecule have mass m and are spaced by d. Atoms on different
molecules interact via the Lennard-Jones potential:

Vαβ(r) = 4εαβ

[
(σαβ/r)

12 − (σαβ/r)
6
]
, α, β ∈ {A,B} (1)

The model parameters in reduced units are: σAA = σAB = 1.0, σBB = 0.95, εAA = εAB =
1.0, εBB = 0.95, d = 0.5, mA = mB = m = 1.0. The sample has N = Nat/2 = 1000
molecules which are accommodated in a cubic box with periodic boundary conditions. Fur-
ther details on the simulations may be found elsewhere [?]. We examined the isobar at
P = 1.5 by equilibrating the sample under isothermal-isobaric conditions and then col-
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Figure 1: (a) Temperature dependence of the translational diffusion coefficient D. The
dashed line is a fit with the power law Eq. (??) with γD = 1.93± 0.02 , Tc = 0.458± 0.002
and CD = 0.0481 ± 0.0004. (b) MCT scaling analysis of τ1. Tc = 0.458. (c) Arrhenius
plot and (d) MCT scaling analysis of the rotational correlation times τl, l = 1− 4 and the
rotational diffusion coefficient Dr. Tc = 0.458. The dashed lines are guides for the eyes.
The translational diffusion constant D and the best fit are also shown for comparison ( open
diamonds ).
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lecting the data by a production run in microcanonical conditions. The temperatures we
investigated are T = 6, 5, 3, 2, 1.4, 1.1, 0.85, 0.70, 0.632, 0.588, 0.549, 0.52, 0.5.

3 RESULTS AND DISCUSSION

3.1 Diffusion

3.1.1 Translational diffusion coefficient

The translational diffusion coefficient D is evaluated by the Einstein relation [?]:

D = lim
t→∞

R(t)
6t

(2)

where R(t) is the mean squared displacement of center of mass at time t. In Fig. ??(a) the
temperature dependence of D is shown and fitted by the power-law

D = CD (T − Tc)
γD (3)

Theoretical justification of Eq (??) is provided by MCT [?]. In particular, the ideal MCT
predicts the inequality γD > 1.5. The best fit values are γD = 1.93 ± 0.02 and Tc =
0.458± 0.002, CD = 0.0481± 0.0004.

3.1.2 Rotational correlation times and diffusion coefficient

The rotational diffusion coefficient may be defined as [?, ?]:

Dr = lim
t→∞

Rr

4t
(4)

where Rr is the mean square value of the angular displacement :

φi(t)− φi(0) = ∆φi(t) =
∫ t

0
ωi(t′) dt′ (5)

The rotational correlation times τl are defined as the area below the rotational correlation
functions [?]. l is the rank of the involved Legendre polynomial. Fig. ??(c) and Fig. ??(d)
present the temperature dependence of τl, l = 1 − 4 and Dr. It is seen that a wide region
exists where the above quantities exhibit approximately the same Arrhenius behavior (
about 0.7 < T < 2 ). At lower temperatures the apparent activation energy of the rotational
correlation times increase. In particular, τ1 becomes shorter than τ2 and a similar crossover
is anticipated between τ3 and τ4 at temperatures just below 0.5. Differently, the rotational
diffusion coefficient Dr exhibits the same activation energy for T < 0.9. This behavior
extends below the critical temperature Tc [?].

Fig. ??(b) and fig. ??(d) show the MCT analysis of the rotational diffusion and the
correlation times. According to MCT, τl, D−1

r ∝ (T − Tc)−γ [?, ?]. Fig. ??(b) proves that
τl complies with MCT scaling over more than three orders of magnitude. Deviations are
seen for l > 1.
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Figure 2: Long-time (a) and short-time (b) behavior of the waiting-time distribution ψ(t)
at different temperatures. The superimposed lines are best fits with Eq. (??) and ξ = 0.49,
τ = 2550 ( T = 0.5 ), ξ = 0.63, τ = 420 ( T = 0.549 ) and ξ = 1, τ = 49 ( T = 0.632 ).
(c) The rotational waiting-time distribution ψrot at different temperatures. (d) Top: best
fits of ψrot at T = 0.5 with the exponential ( τ = 102 ± 3 ), the stretched exponential (
β = 0.78 ± 0.02 and τ = 63 ± 4 ) and the truncated power law Eq. (??) ( ξ = 0.34 ± 0.04
and τ = 125 ± 3 ). The insert is a magnification of the short-time region. Notice that the
fit with the power law is virtually superimposed to ψrot. Bottom: residuals of the fits by
the truncated power-law and the stretched exponential.

3.2 Waiting-time distributions

At low temperatures a fraction of the overall biatomic molecules moves by jumps of finite size
[?, ?]. The waiting time between two jumps is a random quantity. The related distributions
for both the translational and rotational jumps are presented here. They are denoted as
ψ(t) and ψrot(t), respectively.

3.2.1 Translational jumps

In the present study a molecule jumps at time t if the displacement between t and t+ ∆t∗

(∆t∗ = 24) exceeds
√

∆R∗ = σAA/2 = 0.5. Further details on the procedure to detect jump
events are provided elsewhere [?].

Fig.??(a) and Fig. ??(b) show the waiting-time distribution ψ(t) at different temper-
atures. At high temperature ψ(t) is exponential. On cooling, the exponential decay is
replaced at short times by a slowly-decaying regime. We fitted the decay by the function:
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ψ(t) =
[
Γ(ξ)τ ξ

]−1
tξ−1e−t/τ 0 < ξ ≤ 1 (6)

The choice is motivated by the remark that in glassy systems rearrangements are rare events
due to the constraints hampering the structural relaxation. It is believed that intermittent
behaviour in particle motion develops on cooling [?, ?, ?, ?]. A signature of intermittence
is the power law decay of ψ(t) ( for 2D liquids see [?] ) and related quantities such as the
first-passage time distribution [?]. The exponent ξ of Eq. (??) has a simple interpretation.
If a dot on the time axis marks each relaxation event ( a jump ), the fractal dimension of
the set of dots is ξ. For ξ < 1, it is found ψ(t) ∝ tξ−1 at short times [?, ?].

The best fits at T = 0.5, 0.549 and 0.632 are shown in fig.??(a) and fig. ??(b). The
increase of temperature results in a weak increase of the exponent ξ and a more marked
decrease of τ . Interestingly, ψ(t) exhibits small but reproducible deviations from Eq. (??)
at T = 0.5 . They suggest that the long-time decay is faster than the exponential one. If
the exponential decay is replaced by a gaussian one, the fit improves quite a lot and the ξ
exponent changes from 0.49 to 0.45.

3.2.2 Rotational jumps

The distribution ψrot(t) of the waiting-time, namely the residence time in one angular site
of the unit vector ui being parallel to the axis of the i-th molecule, offers a simple way to
characterize rotational jumps. A jump of the i-th molecule is detected at t0 if the angle
between ui(t0) and ui(t0 + ∆t∗) is larger than 100◦ with ∆t∗ = 24. Other details are
identical to the translational case.

Fig.??(c) shows ψrot(t) at different temperatures. At T = 0.632 is virtually exponential
whereas at lower temperatures the short-time behavior is different. In fig. ??(d) ψrot(t) at
T = 0.5 is compared to the truncated power law eq. (?? ), the stretched ( exp[−(t/τ)β]
) and the usual exponential functions. The better agreement of Eq. (??) at short times is
appreciated by the residuals.

It is worth noting that it was found that the time needed to complete the translational
jumps exhibits a distribution [?, ?]. The absence of a similar distribution for the rotational
jumps points to a larger freedom of the latter.

It is an important conclusion of the present study that intermittency has been evidenced
at short times in both the translational and the rotational jump motion.

3.3 Breakdown of Stokes-Einstein and Debye-Stokes-Einstein laws

This section is devoted to discuss the decoupling of the single-particle dynamics from the
viscosity which occurs at low temperatures.

3.3.1 The shear viscosity

The system under study exhibits a dramatic increase of the viscosity on cooling [?, ?].
Fig.??(a) shows that the divergence of the viscosity is conveniently described by the power
law in eq. (??) in a smaller range than the one of the translational diffusion coefficient ( see
fig. ?? (a) ).
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3.3.2 Breakdown of the Stokes-Einstein law

Several experimental [?, ?, ?, ?] and numerical [?, ?, ?, ?, ?, ?] works evidenced a decoupling
of the translational diffusion and the viscosity on approaching the glass transition. Typically,
the decoupling occurs around Tc [?]. MD investigated the issue in one- and two-components
atomic systems. It is therefore of interest to examine the present molecular system from
that respect.

The decoupling manifests as an enhancement of the translational diffusion D with re-
spect to the prediction of the Stokes-Einstein relation ( SE ) which reads [?]

D =
kT

ηµ
(7)

µ is a constant that depends on both the molecule geometry and the boundary conditions
( BC ). For a sphere of radius a, µ equals 6πa or 4πa if stick or slip BC occur, respectively.
The cases of uniaxial ellipsoids with both stick and slip BC were worked out [?, ?].

In Fig. ??(b) we plot the ratio Dη/kT as a function of temperature. At higher tem-
peratures the ratio levels off at about 0.105 ± 0.007. On cooling, there is first a mild
change followed by a steep increase below T = 0.632 = 1.38Tc. We remind that SE pre-
dicts a temperature-independent ratio. It is worth noting that the SE law breaks down at
T ∼ 0.632 where intermittency is apparent at short times ( see fig.??(b) ).

It is believed that the SE failure is a signature of the heterogeneous dynamics of super-
cooled liquids [?, ?, ?, ?]. Alternative views are provided by frustrated lattice gas models
[?] and the “energy landscape” picture [?, ?, ?, ?, ?].

Around T = 0.77 a plateau at 0.151 ± 0.01 is reached. The diatomic molecule under
study may be sketched as a prolate ellipsoid with semiaxis b = 3/4 and c = 1/2. SE
predicts that the corresponding ratio Dη/kT for stick and slip BC is equal to 0.091 and
0.1415, respectively. The values compare well to the high- and low-T plateau in fig.??(b).
By setting b = 0.69 and c = 2/3b the agreement is improved with Dη/kT = 0.098 and
0.154 for stick and slip BC, respectively. The above analysis provides reasonable evidence
of a precursors effect of the SE breakdown which manifests itself as an apparent stick-slip
transition. A similar crossover has been observed in colloidal suspensions [?].

3.3.3 Breakdown of the Debye-Stokes-Einstein Law

For large Brownian particles the reorientation in a liquid occurs via a series of small angular
steps, i.e. it is diffusive. Hydrodynamics predicts that the diffusion manifests a strong
coupling to the viscosity η which is accounted for by the Debye-Stokes-Einstein law ( DSE
). For biaxial ellipsoids it takes the form [?]

Di =
kT

µiη
, i = x, y, z (8)

Dx,y,z are the principal values of the diffusion tensor, k is the Boltzmann constant. The
coefficients µi depend on the geometry and BC. For a sphere with stick BC µx,y,z = 6v, v
being the volume of the sphere. The cases of uniaxial ellipsoids with stick and slip BC were
worked out [?, ?, ?].

If the viscosity is not high ( η < 1Poise ) DSE works nicely even at a molecular level .
At higher viscosities DSE is found to overestimate the rotational correlation times of tracers
in supercooled liquids by time-resolved fluorescence and Electron Spin Resonance ( ESR )
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Figure 3: Viscosity. (a) Temperature dependence of the shear viscosity. The slope of the
superimposed line is γη = −2.20± 0.03. (b) Temperature dependence of the ratio Dη/kT .
Dashed lines are the SE predictions for prolate ellipsoids with semiaxis b = 0.46 and c = 0.69
and stick or slip BC. Magnification of the supercooled region is shown by the inset. (c) Plots
of the quantity η/XkT with X = D−1

r , l(l + 1)τl. (d) Magnification of the the supercooled
regime. The dashed lines in (c) and (d) are the DSE predictions for stick and slip BC. In
the region 1 < T < 2 the ratio η/XkT depends little on X due to diffusional behavior.
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studies [?, ?, ?]. In this decoupling region ESR evidenced that the tracer rotates by jump
motion [?]. On the other hand, photobleaching [?] and NMR [?], studies found only small
deviations from DSE even close to Tg.

We have studied the coupling between the rotational relaxation and the viscosity. From
this respect we also considered the popular alternative form of eq. (??) which is written in
terms of rotational correlation times by assuming that the reorientation is diffusive, i.e. it
occurs by small angular steps. It is well suited for comparison with the experiments which
do not usually provide direct access to the rotational diffusion coefficients. In the present
case the alternative form is obtained by replacing D−1

r with the product l(l+1)τl in eq. ??.
In fig. ??(c) we plot the ratio η/XkT with X = D−1

r , l(l + 1)τl with l = 1− 4 together
with DSE predictions for both stick and slip BC.

At high temperatures if X = l(l + 1)τl with l > 1 the ratio roughly approaches the
value expected for stick BC. For X = D−1

r DSE with slip BC fits better. The τl case is
intemediate. On cooling η/XkT increases. For intermediate temperatures the rotational
diffusion takes place since l(l + 1)τl and Dr are all close to the DSE expectation with slip
BC. Notably, Drη/kT remains close to this value in the wide interval 2 < T < 6.

At lower temperatures η/XkT diverges. The stronger deviations are exhibited by Dr

and τ1,3. The results are readily intepreted. At low temperature molecules undergo 180◦

flips [?]. These affect the pair τ1,3 much more than the pair τ2,4. The large decoupling of
Dr is also understood since the latter is mainly affected by fast dynamics.

4 CONCLUSIONS

The transport and the relaxation properties of a biatomic supercooled liquid on the isobar
P = 1.5 has been studied. The results point out that at low temperature a fraction of the
overall molecules performs jump motion with intermittent behavior. The resulting changes
in the dynamics weaken the coupling with the viscosity. Interesting precursor effects to be
described as apparent slip-stick transitions are observed.
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