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On the role of polydispersity on the phase
diagram of colloidal rods†
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The rich and complex phase diagram typical of anisotropic biological or synthetic nanoparticles, has

brought a great deal of interest over the equilibrium phase behaviour of non-spherical colloids. Amongst

the class of anisotropic nanoparticles, hard spherocylindrical colloids have been, over the years,

extensively studied because of their optical properties, for their rich phase diagrams, and their important

industrial applications, as model particles for biological systems (viruses), or for example as potential

drug carriers having the ability of surviving the attacks of the immune systems. As real anisotropic

nanoparticles are often polydisperse in size and/or in shape, unveiling the effect of such a perturbation

over their equilibrium phase diagram is of paramount importance. This work focuses on the effects of

polydispersity over the full equilibrium phase diagram of hard spherocylindrical colloids (HSCs). Previous

studies showed that a polydispersity in L alters the equilibrium phase diagram of HSCs. With this work

we determine, both theoretically as well as computationally, the effects due to a generic polydispersity,

namely in D, in L and, in both ones, on the equilibrium phase diagram and introduce a viable theoretical

generalisation of the Onsager theory that allows us to get some insight into the observed phase

behaviour.

1 Introduction

The design and synthesis of colloidal particles of various sizes,
shapes, morphologies, and functionalisations is a field that has
flourished unprecedentedly over the last decades.1–4

Amongst the plethora of synthesised colloids, a particularly
interesting class is the one constituted by nanoparticles of
anisotropic shape, whose phase diagram is enriched by meso-
phases such as the nematic, the smectic, and the uniaxial
columnar ones. Such mesophases emerge in different living
systems and have been widely exploited in materials science
and biotechnology. Prominent examples of anistropic colloids
are provided by fd-viruses,5 polymeric bottlebrushes,6,7 DNA
duplexes,8 cellulose nanocrystals,9,10 polypeptides,11,12 amyloid
fibrils,13 collagen,14 silica-coated hematite colloids,15 and gold
nanorods (AuNRs).16,17 The latter have proven to be extremely
successful when medical applications are foreseen, due to their
high biocompatibility coupled with their simple and versatile
synthesis.

Several of the aforementioned natural or synthetic colloids,
are characterised by a typical shape and/or size polydispersity.
When, for example, AuNRs are synthesised, the nucleation
process leading to the assembly of the colloidal nanoparticles
can give rise to a polydispersity both in the diameter as well as
in the elongation of the nanoparticle. Similarly, amyloid fibrils
and cellulose nanocrystals exhibit an high degree of polydis-
persity both in their diameter and length, since they form as a
result of a self-assembly process.

Here, we present a through theoretical and numerical analysis
of the effect of polydispersity on the phase behaviour of elongated
mesogenic nanoparticles. We focus on a simple prototypical
system constituted of polydisperse hard spherocylinders (HSCs),
defined by means of their elongation L and their diameter D. Every
(L, D) combination uniquely defines an aspect ratio A = L/D.

Over the years, the equilibrium properties of HSCs have
been investigated experimentally, theoretically (for an extensive
review see18 and references within) and numerically. For exam-
ple, Bolhuis, Frenkel19 and McGrother20 investigated the equi-
librium properties of monodisperse hard spherocylinders, their
works showed that if elongation A 4 3.7 four stable phases can
be found upon increasing concentration: Isotropic (I), Nematic
(N), Smectic (Sm), and Uniaxial Columnar Crystal (K). Differ-
ently, if elongation is smaller than 3, the Nematic and Smectic
phases are missing. It was then shown that polydispersity can
induce profound differences in the phase diagram of HSCs. For
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example, a polydispersity in length in a system of HSCs has been
shown to have the capability of inhibiting the formation of the
Smectic phase21,22 and to induce a broadening of the Isotropic–
Nematic (IN) coexistence region and fractionation.23–25 Theoretical
and numerical predictions on the effects of length polydispersity
on the equations of state have been confirmed by experiments on
clay rods,26 boehmite synthetic rods,27 and tobacco mosaic virus.28

While over time great attention has been put in under-
standing the role of a length (L) polydispersity on the equili-
brium properties of HSC, so far the role played by the diameter
(D) polydispersity has been neglected.22

To assess such an effect, we study the effect of polydispersity
on both diameter and length on the complete phase diagram of
HSCs solutions of different aspect ratios.

Inspired by a generalised Onsager theory, proposed in the works
of Speranza and Sollich24 and of Wensink and Vroege,25 we develop
a theoretical approach to account for size polydispersity in the
Equation of State (EOS) for both isotropic and nematic phases, and
compare the theoretical results to Monte Carlo (MC) simulations of
HSCs. We calculate the EOS both theoretically and numerically for a
series of polydisperse cases to assess the effect exerted by poly-
dispersity on the equilibrium properties of the system with respect
to the monodisperse one. The quantitative comparison between the
here presented numerical and theoretical results corroborate the
effectiveness of the newly derived simple theory. Moreover, by
analysing separately and contemporary polydispersities in L and
D, we find surprisingly that polydispersity affects the low packing
fraction EOS only through diameter polydispersity, while length
polydispersity does not introduce any deviation from the mono-
disperse EOS. We rationalize these findings through the scaling
behavior of HSCs excluded volume with respect to D and L.

We then explore, by means of MC simulations, the equili-
brium properties of monodisperse and polydisperse systems at
high pressure. Those systems – in the monodisperse case – are
known to be characterised by ordered phases; the introduction
of a polydispersity in D or L is shown to have a strong effect on
the monodisperse phase diagram, either suppressing or shift-
ing the phase transitions.

2 Theory
2.1 Generalisation of Parsons–Lee theory

Let us consider a system of polydisperse HSCs, whose diameter
is distributed according to a distribution Pd(D), and whose
length is distributed according to Pl(L). The average elongation
of the just introduced polydisperse HSCs therefore is
�A ¼

Ð
PdðDÞPlðLÞðL=DÞdD dL.

We can generalize the Onsager theory24,25 to account for
polydispersity in particle sizes, by introducing a density dis-
tribution ~r(O, L, D) which explicitly depends on orientation O,
length L and diameter D of the HSCs. Such a density distribu-
tion is defined so that ~r(O, L, D) dO dL dD gives the density of
rods in an interval dO around O, dL around L and dD around D.

The Helmoltz free energy within Onsager approach reads:

F = Fid + Fex (1)

where the first term is the ideal gas contribution and the
second one is an excess contribution due to particles
hindrance.

The ideal gas contribution can be written as follows:29

bFid

V
¼
ð
dO dLdD~rðO;L;DÞ lnð4p~rðO;L;DÞ�v0Þ � 1½ � (2)

where %v0 is the average volume of the HSCs, i.e.

�v0 ¼
V

N

ð
dL dDrðL;DÞv0ðL;DÞ (3)

with v0ðL;DÞ ¼
pD3

6
þ pD2L

4
and r(L, D) is the density distribu-

tion that can be expressed in terms of the distributions Pl and
Pd, and of the density of HSC r = N/V as follows:

r(L, D) = rPl(L)Pd(D) (4)

The excess contribution, by resorting to Parsons–Lee
approximation30–32 in the Onsager theory, is:

bFex

V
¼ 1

2
ZðfÞ

ð
dO1 dL1 dD1 dO2 dL2 dD2

vexclðO1;L1;D1;O2;L2;D2Þ~rðO1;L1;D1Þ~rðO2;L2;D2Þ
(5)

where b = 1/(kBT), kB is the Boltzmann constant, f is the volume
fraction, vexcl(O1, L1, D1, O2, L2, D2) is the excluded volume
between two spherocylinders with diameters D1 and D2, lengths

L1 and L2 and orientations O1 and O2, and ZðfÞ ¼ 1

4

4� 3f
ð1� fÞ2 is

the Parson–Lee factor. To simplify the analytical calculation of
the free energy, we assume – similarly to ref. 24 and 25 – that the
density distribution ~r(O, L, D) can be written as follows:

~r(O, L, D) = r(L, D) f (a(L, D), O) (6)

where f (a, O) is the orientational distribution function that is
equal to 1/4p in the isotropic phase, and to the Onsager
function in the nematic phase, i.e.:

f ða;OÞ ¼ a
4psinhðaÞ coshða cos yÞ (7)

where y is the angle between the particle and the nematic axis and a
is a non-negative parameter that quantifies the alignment of the
system. We further assume that a(L, D) = a does not depend on
particle size. Such an approximation, will be further discussed when
the theoretical predictions are compared to the computational ones.
Accordingly, the ideal gas contribution to free energy can now be
written as:

bFid

V
¼
ð
dL dDrðL;DÞ lnðrðL;DÞ�v0Þ � 1½ �

þf
�v0

ð
dOf ða;OÞ lnð4pf ða;OÞÞ

(8)

By introducing the average excluded volume %vexcl:

�vexcl ¼
V

N

� �2ð
dO1 dO2 dL1 dL2 dD1 dD2~r1~r2

vexclðL1;L2;D1;D2;O1;O2Þ
(9)
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with ~r1 = r(L1, D1) f (a, O1) and ~r2 = r(L2, D2) f (a, O2), the excess
contribution to free energy becomes:

bFex

V
¼ 1

2
ZðfÞ�vexcl

N

V

� �2

: (10)

To carry out theoretical calculations, we employ the expres-
sion provided by Onsager29 for vexcl, i.e.

vexclðL1;D1;L2;D2;O1;O2Þ ¼
4

3
p

D1 þD2

2

� �3

þ p
D1 þD2

2

� �2

ðL1 þ L2Þ þ 2
D1 þD2

2

� �
L1L2 sinðgÞ

(11)

where g = g(O1, O2) is the angle between the symmetry axes of
the two spherocylinders with orientations O1 and O2.

It is constructive to explicit the dependence of %v0 and %vexcl on
the average values of L, D, D2, and D3:

�v0 ¼
p
4

2

3
hD3iD þ hD2iDhLiL

� �
(12)

and

�vexcl ¼
p
3
hD3iD þ 3hD2iDhDiD
� �

þ p hD2iD þ hDi
2
D

� 	
hLiL

þ 2hDiDhLi
2
L

ðð
sin g½O1;O2�ð Þf ða;O1Þf ða;O2ÞdO1 dO2

(13)

where h�iL and h�iD represent the average on the length and
diameter respectively. It is immediate to appreciate that %v0 and
%vexcl only depend on hLiL, therefore they do not depend on the
particular L distribution. On the other hand, both quantities
depend on higher momenta of the D distribution, thus they
both do depend on the D distribution chosen.

2.2 Coexistence

Starting from dilute solutions, increasing the packing fraction
of HSC nanoparticles can induce a series of transitions starting
from an homogeneous phase, up to ordered ones.

Due to their anisotropy, when transitioning between homo-
geneous and in-homogeneous phases, nanoparticles might
develop one (or more) preferred relative orientation.

The reduced pressure is defined as the derivative of the free
energy with respect to the volume:

P� ¼ �b�v0
@F

@V
jN;T ¼ fþ 1

4
~vðaÞf2 2� f

ð1� fÞ3 (14)

where ~vðaÞ ¼ �vexclðaÞ
�v0

.

In the isotropic phase there is no preferential order, thus
a = 0 and f (0, O) = 1/4p. Thus ṽ(a) = ṽ for all those packing
fractions that lie in the isotropic region.

Differently, in the nematic phase, pressures and free ener-
gies are obtained by using the explicit expression for f (a, O)
defined in eqn (7). Thus, as a is f-dependent, every packing
fraction will require the computation of its ṽ(a).

A common tangent construction on the isotropic and
nematic free energies is used to assess the coexistence region:

@

@a
FNðfN; aÞ ¼ 0

PIðfIÞ ¼ PNðfN; aÞ
mIðfIÞ ¼ mNðfN; aÞ

8><
>: (15)

The solution of such a system allows to define the packing
fraction boundaries fI = %v0rI and fN = %v0rN. The polydispersity
present in the system might, in principle, give rise to fractiona-
tion effects. The latter would induce, in the transition region,
microphase separations that would affect the coexistence
between the phases.33 This phenomenon should in principle
be taken into account in the theoretical approach. Nevertheless,
as we will discuss in the coming section and in the ESI,† the
computational exploration of the system demonstrates that no
fractionation is present in any of the analysed systems. This
allows us to neglect this aspect in our theoretical framework,
that remains therefore valid for all systems (or physical condi-
tions) that are not strongly influenced by fractionation.

3 Computational methods

The complete phase diagram is investigated by means of
extensive NPT Monte Carlo (MC) simulations of mono and
polydisperse HSCs. More precisely, monodisperse HSC systems
are simulated to set a benchmark reference. Simulations are
then performed on HSC systems characterized by either L or D
polydispersity, and polydisperse systems characterized by both
L and D polydispersities.

Polydispersity is achieved by imposing an average ratio Ā
that can be directly compared to the monodisperse benchmark
case, i.e. particles sizes are generated accordingly to Pd(D) and
Pl(L) by keeping Ā = Amono. Such an average value is attained
through a series of combinations of polydisperse and mono-
disperse distributions for L and D, as explained in detail in the
ESI.† See Fig. 1 as an example of one amongst the combination
of distributions employed. The hard core inter-particle repul-
sion is computed through the Vega and Lago algorithm used to
calculate the minimum distance between HSCs.34 The EOS are
computed on HSC systems characterised by Ā A [1, 5] from the
equilibrium packing fractions f obtained for every given
reduced pressure P* = bP%v0. More details on the equilibration
procedure can be found in Section 1 of ESI.†

The reduced pressures analysed are in the range P* A [0.01,
15], where for P* r 1, the monodisperse HSCs system is known
to be isotropic.19 As HSC with A r 3 do not have an IN
transition,19,20 investigations on the EOS obtained for P* Z 1
are restricted to systems with Ā = 4,5. Moreover, while a wide set
of different distributions for D and L (see ESI† for all of the
analysed cases and the definition of nomenclature) are used to
perform simulations at low pressures, we restrict the high
pressure analysis to the following two cases:

1. L follows a truncated Gaussian distribution, while D is
monodisperse, that we will refer to as GL.
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2. D is distributed according to an inverse Gaussian, while L
is monodisperse, that we will refer to as IGD.

Note that in both of these two cases the resulting distribu-
tion for A is a truncated Gaussian.

We used N = 1296 HSCs to carry out simulations for
pressures corresponding to the isotropic phase, while we
employed N = 2400 HSCs at higher pressures to reduce finite-
size effects.35 Further details of the simulation techniques are
reported in the ESI.†

4 Results and discussion
4.1 Effect of polydispersity on the I phase

To assess the effect of polydispersity on the equilibrium proper-
ties of the isotropic phase, we focus on P* r 1. In these
conditions, the main contribution to the excess equilibrium
pressure lies in the ṽ = %vexcl/%v0 term (see eqn (14)). We thus
estimate theoretically such a contribution for all of the analysed
cases. We obtain a value for ṽ that results to be independent of
all polydispersities in L, while it appears to be strongly affected
by all of the considered polydispersities in D, even for systems
characterised by a simultaneous polydispersity in L and D. As
an example, we report in Fig. 2 the theoretical ṽ as a function of
the Ā for the case of monodisperse HSCs, for systems with
either length or diameter polydispersity, and a system
described by a simultaneous polydispersity in L and D. We
report in Section 3 of the ESI† a direct comparison of ṽ, %v0 and
%vexcl for all the polydispersities analysed.

Parallel to the theoretical analysis, a computational explora-
tion of the Isotropic EOS is performed. As predicted by theory
for all of the Ā A [1, 5] cases analysed, the simulated EOS results
to be unperturbed with respect to their monodispersity coun-
terpart, by all of the chosen polydispersities in L. On the
contrary, every polydispersity in D changes – with a different
degree – the equilibrium properties of the solutions with
respect to the monodisperse case, as reported in panel (a) of
Fig. 3 where we report the Ā = 5 case (see ESI† for all other
cases). Such a result is qualitatively reproduced by the theore-
tical predictions, as reported in panel (b) of Fig. 3.

Interestingly, while the absolute comparison for fpoly

between theory and simulation results to be qualitative, the
difference Df = fmono � fpoly between the equilibrium packing
fraction obtained for the monodisperse and all polydisperse
cases can be reproduced quantitatively from theoretical calcu-
lations (see Fig. 4). More details on this can be found in
Section 7 of the ESI.†

4.2 Isotropic–Nematic transition

After having assessed the quantitative agreement between the
theoretical and computational predictions for the equilibrium
properties in the isotropic phase, we extend the analyses
to explore the effect induced by polydispersity on the IN
transition. We obtain, following the procedure reported in
Section 2.2, the theoretical packing fraction that determines
the limit of both the nematic and isotropic phases. We report
the theoretical values obtained for fI and fN in panel (a) of
Fig. 5 as a function of Ā for both the monodisperse case and the
polydisperse systems analysed.

Fig. 1 Example of Truncated Gaussian distributions for L (panel (b)), and D
(panel (c)) generating an inverse Gaussian distribution for A (panel (a)) that
was used to simulate an HSC system in the isotropic region. A represen-
tative snapshot of an equilibrium configuration for such a polydisperse
system obtained at P* = 1 is reported as an inset of panel (a).

Fig. 2 Trend of ṽ as a function of Ā for the case of monodisperse HSCs
(blue circles), GL (orange diamonds), GD (red crosses), and for contem-
porary L and D polydispersity GL,D (purple triangles). All the data are
theoretically evaluated. The trends obtained are unaffected by the length
polydispersity.

Fig. 3 EOS of the systems in the case of Ā = 5 as computed from MC
simulations (a) and the corresponding theoretical evaluations (b) for the
monodisperse case (blue circles), GL (orange diamonds) and IGD (green
squares). Dashed lines in panel (a) are a guide to the eye. The curves are in
qualitative agreement. For a direct comparison between theory and
computational results for all of the analysed cases see Fig S5 in the ESI.†
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As already observed for the EOS in the isotropic phase, the
theoretical I–N transition appears not to be affected by any
polydispersity in L. On the other hand, introducing a polydis-
persity in D shifts the transition towards higher packing
fractions.

We then estimate the global alignment of the particles from
the order parameter S, defined as the largest eigenvalue of the
ordering matrix tensor Qa,b:

Qa;b ¼
1

2N

X
i

3hðuiÞaðuiÞbi � da;b
� 	

where ab A x, y, z (i.e. laboratory frame) and the unit vector (ui)a
is the component a of the main axis of particle i. For S = 0 the
system is completely isotropic, while S Z 0.5 is defined as a
cutoff to define the nematic phase. Accordingly, the last
packing fraction at which S o 0.5 defines the limit of stability
of the isotropic phase, while the first packing fraction with
S Z 0.5 represents reaching the nematic phase. In Fig. 5 we
report, for Ā = (4, 5), the phase diagram of the monodisperse
case (b) and the cases with length (c) and diameter (d) poly-
dispersities. The theoretical and computational results are
again in qualitative agreement, showing that the I–N transition
occurs for all cases (monodisperse and polydisperse) at lower f
for higher aspect ratios. Moreover, it is again shown both
theoretically and computationally that a length polydispersity
does not affect the equilibrium properties obtained for the
monodisperse case, while a D polydispersity induces a devia-
tion of the coexistence line shifting the transitions towards
higher fs.

It is important to notice that, by computing f (a,O) in all the
simulated polydisperse systems, it is possible to appreciate the
coexistence of a subdominant isotropic phase along with
the dominant ordered Nematic one. Such a ‘‘noise’’ induced
by polydispersity appears to be stronger for packing fractions

close to the I–N transition and tends to diminish for higher packing
fractions. Moreover the subdominant isotropic phase has a stronger
contribution arising from particles that for fixed values of D have a
shorter L (particles that alone would not have a I–N transition), and
particles that for fixed values of L have a smaller D (particles that, by
having a smaller ṽ, would require a higher f for experiencing the
I–N transition). To assess the validity of the approximation
performed by neglecting all D and L contributions to f (a, O), we
compute from theory a by minimising the orientational distribution
function in the nematic phase, and in the simulations by fitting the
orientational distribution function to an Onsager distribution. We
estimate a and the nematic order parameter S both in the simula-
tions as well as from theory, obtaining the data reported in Table 1.

Despite using a Parson–Lee decoupling approximation, known
to be accurate up to low/moderate volume fractions,20,36,37 and
neglecting all fractionation effects, the theoretical predictions
appear to be in good agreement with the computational ones.
This justifies the simplified approach used.

4.3 Assessing the complete phase diagram

Further simulations are then performed to assess the effect of a
polydispersity in L and D on the complete phase diagram, once
global order is achieved. This allows to complete the explora-
tion of the EOS starting from the low density isotropic regions
up to what are reported to be ordered phases in the
monodisperse case.

The complete computational phase diagram obtained for
monodisperse and polydisperse systems is reported in Fig. 6,
together with the nematic order parameter (S) computed for
Ā = 5 both in the monodisperse as well as in the D and L
polydisperse case. Three dimensional pair distributions

Fig. 4 Quantitative agreement between simulations and generalised
Onsager theory for Ā = 1 (a) and Ā = 5 (b). Packing fraction difference
Df between the monodisperse system and GL (orange diamonds) and
between monodisperse and IGD (green squares). Solid lines report the
theoretical values obtained for the two distributions. Fig. 5 Panel (a): Theoretical isotropic nematic transition for monodis-

perse (blue circles), GL (orange diamonds) and IGD (green squares) as a
function of Ā. Panels (b, c and d): computational phase diagram obtained
for the I–N coexistence for monodisperse, GL, and IGD systems
respectively.
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function are computed on all systems as a measure of the
emergence of a global order (as a function of increasing P*)
beyond the nematic phase (see ESI†).

We observe that, while monodisperse systems present both
smectic and a crystalline phases, a polydispersity either in L or
in D (or in both) suppresses the crystalline phase in the
explored range of pressures. Moreover, a polydispersity in
length also suppresses the formation of the smectic phase, in
favour of a columnar one.21 On the other hand, the polydis-
persity in diameter shifts the emergence of the nematic phase
towards higher packing fractions with respect to the monodisperse
case, as predicted by the theory. Unlike the polydisperse L case,

systems with D polydispersity present a smectic phase, which
remains the dominant one for all of the analysed pressures. In fact,
the perturbation due to polydispersity in D on the total length of the
particles is almost negligible, thus allowing the formation of layers.
Nevertheless, a polydispersity in D introduces a non negligible
perturbation of the planar interparticle distribution, thus preventing
the formation of the 2D local ordering needed for the stability of a
crystalline phase. Contrary to what happens in the case of poly-
disperse Hard Spheres where polydispersity promotes compressi-
bility at high pressures, polydisperse HSCs result to be less
compressible with respect to their monodisperse counterpart.
Finally, when high pressures are reached, the effects of the two
polydispersities equalize thus providing the same compressibility,
as can be seen in Fig. 6.

5 Conclusions

With this work, we analysed the effect, on the equilibrium
phase diagram of Hard Spherocylindrical colloids, of different
shape polydispersities. Starting from very dilute systems we
analysed, both theoretically as well as computationally, the
effects of a polydispersity in L, in D and consequently in A on
the equilibrium properties of solutions of anisotropic colloids.

We explored both the isotropic phase as well as the region of
the phase space where ordered nematic, smectic and crystalline
phases were expected for the monodisperse cases.

We then compared the results obtained for polydisperse
systems to their monodisperse counterpart e.g. systems
described by the same average Ā.

To have a general overview of the effect of such perturba-
tions, we focused on systems characterised by a set of elonga-
tions Ā A [1, 5] and a combination of possible polydispersities
(either only on D or L or on both). This allows us to include the
cases Ā 4 3 where an isotropic/nematic transition was expected
for the monodisperse systems.

Already in the isotropic phase, we could appreciate the
different effect brought to the equilibrium properties by the
polydispersity in L and the one in D. While the first one does
not perturb the equilibrium properties of the corresponding
monodisperse case, all analysed polydispersities in D increase –
to a different extent – the compressibility of the system.

To unveil the reasons underlying such a behaviour, we
generalised the Onsager theory to include all possible polydis-
persities. We could then infer that the main contribution to the
free energy in the isotropic region was brought by ṽ, i.e. the
ratio between the average excluded volume, and the average
volume of the particles in the system. Such a quantity appears
to be unaffected by any polydispersity in L, while it strongly
depends on each polydispersity chosen for D. We could also
compare the predictions for the equilibrium phase diagram
obtained by means of the generalised Onsager theory to the
ones obtained computationally. We demonstrated a qualitative
agreement for the polydisperse EOS between the two
approaches, while obtaining a quantitative prediction for the

Table 1 a and nematic parameter S obtained from theory (Th) and from
simulations (Sim)

System type Th. a Sim. a Th. S Sim. S

GL (PI = 0.5) 5.38 5.19 0.546 0.533
IGD (PI = 0.5) 5.40 5.82 0.547 0.573

Fig. 6 Comparison between the systems with Ā = 5 for monodisperse
cases (blue circles), GL (orange diamonds), and IGD (green squares) solu-
tions. The phase diagram, the EOS and the nematic order parameter (S) are
represented on the top, middle and bottom panels, respectively.
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deviation of each polydisperse EOS with respect to the
monodisperse one.

The theoretical framework developed to explore the isotro-
pic phase, was extended to assess the Isotropic/Nematic transi-
tion in presence of polydispersity. As happened for the isotropic
EOS, we obtained an independence of the I–N transition on
each chosen polydispersity in L, while different polydispersities
in D shift the transition to higher pressures with respect to the
monodisperse case. The theoretical results were then compared
and corroborated qualitatively by Monte Carlo simulations.
While the I–N transition can be either affected (polydispersity
in D) or unaffected (polydispersity in L) by a perturbation of the
average shape/size of the colloidal nanoparticles, the average
phase diagram in the non isotropic region is strongly affected
by both polydispersities. The results of21 are here confirmed for
the polydispersity in L that is shown to suppress smectic and
crystalline phases in favour of a columnar one (even in the case
of L much shorter than what was studied in21 i.e. almost
infinite aspect ratio). We then demonstrated that a polydisper-
sity in D suppresses the crystalline phase, while it does not
affect the emergence of the smectic phase typical of the
corresponding monodysperse system.

Author contributions

All authors contributed equally to the conceptualization of the
work and to Writing (both original draft as well as review and
editing). CADF: Data curation and Formal Analysis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

SDG would like to acknowledge the funding ‘‘Ricerca e Inno-
vazione’’ 2014–2020 – D.M. 1423. 16-09-2022. All authors would
like to acknowledge the Grant of Excellence Departments,
MIUR-Italy (ARTICOLO 1, COMMI 314 – 337 LEGGE 232/2016).

References

1 T. Hueckel, G. M. Hocky and S. Sacanna, Nat. Rev. Mater.,
2021, 6, 1053–1069.

2 S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez,
S.-H. Kim, D. J. Pine and G.-R. Yi, Nat. Commun., 2013, 4, 1688.

3 V. N. Manoharan, Science, 2015, 349, 1253751.
4 S. C. Glotzer and M. J. Solomon, Nat. Mater., 2007, 6,

557–562.
5 Z. Dogic and S. Fraden, Langmuir, 2000, 16, 7820–7824.
6 P. Corsi, E. Roma, T. Gasperi, F. Bruni and B. Capone, Phys.

Chem. Chem. Phys., 2019, 21, 14873–14878.
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