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Hard spheres interacting through a square well potential were simulated by using two different
methods: Brownian cluster dynamics �BCD� and event driven Brownian dynamics �EDBD�. The
structure of the equilibrium states obtained by both methods was compared and found to be almost
identical. Self-diffusion coefficients �D� were determined as a function of the interaction strength.
The same values were found by using BCD or EDBD. Contrary to EDBD, BCD allows one to study
the effect of bond rigidity and hydrodynamic interaction within the clusters. When the bonds are
flexible, the effect of attraction on D is relatively weak compared to systems with rigid bonds. D
increases first with increasing attraction strength, and then decreases for stronger interaction.
Introducing intracluster hydrodynamic interaction weakly increases D for a given interaction
strength. Introducing bond rigidity causes a strong decrease in D which no longer shows a maximum
as function of the attraction strength. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2925686�

I. INTRODUCTION

Suspensions of particles with attraction exhibit equilib-
rium states as well as nonequilibrium states such as gels or
glasses that evolve very slowly.1–4 Numerical simulations
were found to be useful for the understanding of the structure
and the dynamics of such systems.3,5 The advantage of simu-
lations is that large scale phenomena may be related to the
microscopic trajectories of the particles. In recent years,
computer simulations have yielded valuable insight not only
into equilibrium properties such as cluster size distributions
and structure factors but also into the evolution of the system
during phase separation6–8 and gelation.9–13

Often Monte Carlo methods are used to study structural
properties at equilibrium and molecular dynamics to study
dynamics and kinetics.14,15 Monte Carlo methods allow one
to study relatively large systems and generally require less
computer time to obtain equilibrium states. A main drawback
of classical Monte Carlo methods is that the definition of
time is usually unphysical so that the evolution of the system
toward equilibrium cannot be compared to that of real sys-
tems. Molecular dynamics simulate the particle displacement
more realistically, but the system size and time scales that
can be simulated with the current generation of computers
are still relatively small.

The simplest model of interacting fluids is an ensemble
of hard spheres that interact through a square well potential.
Here, we compare two different methods to simulate this
model system: Brownian cluster dynamics �BCD� and event
driven Brownian dynamics �EDBD�.16 With BCD, clusters
are constructed by forming bonds between spheres within

each others interaction range with a given probability. With
this method, it is possible to account for hydrodynamic in-
teraction within the clusters, although not between the clus-
ters. It is also possible to study the influence of bond rigidity
on the dynamics. This is important because in real systems,
bonds may be more or less rigid. With EDBD, hydrodynamic
interaction is ignored and the bonds are inherently com-
pletely flexible. We will show here that for reversibly aggre-
gating systems, bond rigidity has no influence on the struc-
ture of the steady state, but has a huge effect on the
dynamics.

In the following, we will first describe the two simula-
tion methods. Then, we compare the structure factors and the
cluster size distributions of homogeneous equilibrium states.
We will show that almost the same structures are obtained at
steady state with both methods. The main part of the paper
deals with the self-diffusion coefficient as a function of the
interaction strength. We compare the results obtained by the
two simulation methods and discuss the influence of bond
flexibility and intracluster hydrodynamic interaction.

II. SIMULATION METHOD

We simulate hard spheres interacting through a square
well potential characterized by a well depth u�0 and a well
width � by using BCD and EDBD. Both simulation methods
start with an ensemble of Ntot randomly distributed spheres
with diameter equal to unity in a box of size L so that the
volume fraction is defined as �= �� /6� Ntot /L3. The box
sizes used in this paper range from L=50 for low volume
fractions down to L=10 for �=0.49. For the results shown
here, there was no finite size effect. Both methods use peri-
odic boundary conditions.

Event driven Brownian dynamics. This method was de-
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scribed in detail in literature16 and we only resume here the
principal features. Initially, a random velocity is assigned to
each sphere from a Gaussian distribution with average
squared velocity �v2�=3kT /M, where k is Boltzmann’s con-
stant, T is the absolute temperature, and M is the mass of the
particle. Events are defined as occurrences when the sphere
is at a distance unity or 1+� from another sphere, i.e., when
spheres touch or cross the interaction range. All spheres are
moved over a distance r=v�t, where �t is sufficiently small
so that the motion is Brownian over the relevant length
scales, i.e., the interaction range and the average distance
between the nearest neighbors.

The velocity of the spheres involved in the event is
changed while conserving the energy and the momentum.
When the event is a collision, the spheres will elastically
bounce in opposite directions. When the sphere enters a well,
its velocity is increased because the potential energy is de-
creased. When the sphere tries to leave a well, it either
bounces back elastically or it exits with a lower velocity. The
change in the velocity and the probability to exit the well
depend on u.

The mean squared displacement of a single sphere is
given by �r2�=n��t�2�v2�, where n is the number of simula-
tion steps and �t is equal to the maximum time step. If time
is defined as t�n�t, then the free diffusion coefficient of a
single sphere is equal to D0=kT�t / �2M�. We note that in
literature, often u is fixed and T is varied.

Brownian cluster dynamics. Spheres are considered to be
in contact when they are within each others interaction
range, i.e., when the center to center distance is smaller than
1+�. � is the total number of contacts in the system. In the
so-called cluster formation step, spheres in contact are bound
with probability P. Alternatively, bonds are formed with
probability � and broken with probability �, so that the P
=� / ��+��. In the latter case, one can vary the kinetics of the
aggregation from diffusion limited ��=1� to reaction limited
��→0� with the same P and thus the same degree of revers-
ibility. Clusters are defined as collections of bound spheres,
and monomers are clusters of size 1. After this procedure, Nc

clusters are formed. We mention that more complex interac-
tion potentials can be simulated by making P a function of
the distance between two spheres.

The ratio of the number of bound ��b� to free contacts
��−�b� is given by the Boltzmann distribution �b / ��−�b�
=exp�−�H / �kT��, where �H is the enthalpy difference be-
tween bound and free contacts. The formation of �b ran-
domly distributed bonds over � contacts leads to a decrease
in the free energy equal to u per contact. This decrease may
be written as the sum of the decrease in the enthalpy and the
gain of the entropy: �u=�b�H−T�S. The latter is deter-
mined by the number of ways �b bonds can distributed over
� contacts: T�S=kTln��! / ��b!��−�b�!��. Noticing that P
=�b /�, we can express P in terms of u:

P = 1 − exp� u

kT
	 . �1�

The cluster construction step is followed by one of the
three different movement steps that each simulates a differ-
ent type of cluster dynamics.

BCD1. Ntot times a sphere is randomly selected and for
each selected sphere, a single attempt is made to move it a
distance s in a random direction. The movement is accepted
if it does not lead to overlap with any other sphere in the
system and if it does not lead to the separation of bound
spheres beyond the interaction range. Again, it is important
to choose the step size s sufficiently small so that the motion
is Brownian over the relevant length scales. We have found
that the results on the equilibrium structure were independent
of the step size if s was at least five times smaller than the
interaction range and at least three times smaller than the
average distance between nearest neighbors.8,17

The mean squared displacement of a single sphere is
given by �r2�=ns2, where n is again the number of simula-
tion steps. Time was defined as t�ns2, so that the free dif-
fusion coefficient of single spheres is equal to D0=1 /6.

BCD2. Nc times a cluster is randomly selected and for
each selected cluster, a single attempt is made to move the
cluster over a distance s /
d in a random direction with d the
diameter of the cluster. By definition, this cooperative move-
ment never leads to bond breaking. The movement is refused
if it leads to overlap of any of the spheres in the clusters with
other spheres in the system. The free diffusion coefficient of
single spheres is thus still 1 /6, but the free diffusion coeffi-
cient of clusters is 1 / �6d�.

BCD3. This movement step is a combination of the pre-
vious two. First, the movement step BCD1 is executed and
the displacement of the centers of mass of each cluster is
calculated. Then, each cluster is given an additional displace-
ment in the same direction so that the total displacement of
the center of mass is the same as would be obtained by the
movement step of BCD2. Again, displacements are refused if
they lead to overlap. As for movement step BCD2, the free
diffusion coefficient of single spheres is 1 /6 and that of
larger clusters is 1 / �6d�. A lower degree of flexibility can be
simulated by performing movement step BCD1 with a lower
frequency than movement step BCD2.

The methods EDBD, BCD1, and BCD3 simulate sys-
tems with flexible bonds, while BCD2 simulates systems
with rigid bonds. Using EDBD and BCD1, the effective fric-
tion coefficient of clusters is proportional to their aggrega-
tion number �so-called Rouse dynamics�,18 while for BCD2
and BCD3, it is proportional to their radius �so-called Zimm
dynamics�.19 It is, of course, straightforward to modify
BCD2 to simulate systems with rigid bonds in which the
friction coefficient is proportional to their aggregation num-
ber. This has not been done here, because in reality hydro-
dynamic interaction causes the free diffusion coefficient of
clusters in solution to be inversely proportional to their
radius.20 The movement steps of EDBD and BCD1 are simi-
lar and one expects that diffusion coefficients obtained by
these methods are close.

BCD may be considered a Monte Carlo type simulation,
but if one is interested only in the structural properties at
equilibrium, it is more efficient to use other Monte Carlo
techniques that do not yield realistic kinetics or dynamics.
BCD does not fulfill the condition of detailed balance, but
does lead to a steady state independent of the starting con-
figuration, which shows that it fulfills the condition of
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balance.21 The same steady state is reached for each of the
three movement steps with one exception: BCD2 does not
lead to crystallization. The reason is that the pathway to form
crystals is extremely unlikely when the bonds are rigid.
BCD2 is therefore an excellent method to explore the prop-
erties of attractive spheres while avoiding crystallization.8

III. RESULTS AND DISCUSSION

A. Equilibrium structure

The strength of the attraction is determined by the well
width and the well depth. However, the equilibrium structure
obtained at different � is close if u is chosen such that the
second virial coefficient is the same, especially if � is
small.8,22 B2 may be written as the sum of a repulsive �ex-
cluded volume� part and an attractive part: B2=Brep−Batt,
with

Brep = 4,

Batt =
4P

1 − P
��1 + ��3 − 1� ,

where the unit of B2 is the volume of a sphere.
As mentioned in the Introduction, strong attraction be-

tween the spheres leads to phase separation, while weak at-
traction leads to a homogeneous equilibrium state containing
a distribution of transient clusters. All the three movement
procedures of BCD lead to the same homogeneous equilib-
rium state, so for the structural properties, we do not differ-
entiate between the three methods. We have characterized
these states in terms of the static structure factor �S�q�� and
the cluster size distribution.

The structure factor at q→0 is inversely proportional to
the compressibility and can be expressed in terms of a virial
expansion at small volume fractions: 1 /S�0�=1+2B2�
+3B3�2, with B3 the third virial coefficient. For hard spheres
interacting with a square well potential, B2 and B3 have been

analytically calculated.23 Figure 1 shows a comparison of
1 /S�0� as a function of � obtained from BCD simulations
with the values calculated by using the virial expansion.
There is good agreement up to �=0.1 beyond which higher
order virial terms become important.

Figure 2 compares S�q� obtained with BCD and EDBD
for �=0.15 at two interaction strengths. Within the uncer-
tainty range, the same structures were observed with the two
methods.

The cluster size distribution represents a more precise
characterization. Clusters of bound spheres can be formed by
connecting spheres in contact with probability P=1
−exp�u / �kT�� as defined above. A detailed analysis of these
cluster size distributions has been reported elsewhere.8 Here,
we have analyzed the size distribution of clusters formed by
connecting all contacts in order to facilitate comparison be-
tween BCD and EDBD. The width of the distribution in-
creases with increasing u until at a critical value, a system
spanning transient network of spheres in contact is formed.
Figure 3 shows a comparison of N�m�, i.e., the average den-
sity of clusters consisting of m spheres, at �=0.15 and �
=0.1 for two values of Batt: 2 and 4. There is a very small,
but systematic difference between the cluster size distribu-
tions obtained with BCD and EDBD. Slightly larger clusters
are formed with BCD. Nevertheless, we may conclude from
these examples and similar comparisons at other conditions
that the equilibrium structures obtained by BCD and EDBD
are almost the same.

IV. DIFFUSION

It can be shown that random displacement with constant
step size as done with BCD leads to Brownian diffusion at
distances much larger than the step size.24,25 For a proper
comparison of the dynamic properties of BCD and EDBD
simulations, one has to ensure that the time scales and the
free diffusion coefficients are the same, which can be done
by choosing �t=s2 and kT�t /M =1 /3. Figure 4 shows a
comparison of the average mean square displacement of hard

FIG. 1. Concentration dependence of the compressibility for equilibrium
systems at �=0.5 for Batt=10 obtained by BCD. The solid line represents a
calculation by using the second and third virial coefficients, see text. The
error bars represent the 95% confidence based on the results of eight
simulations.

FIG. 2. Comparison of the structure factor of equilibrium systems at �
=0.15 and �=0.1 obtained by BCD �filled symbols� and EDBD �open sym-
bols� with Batt=2 �squares� or Batt=6 �circles�.
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spheres obtained from BCD and EDBD at �=0.3. In both
simulations, �r2� becomes proportional to t and the diffusion
coefficient can be calculated as D= �r2� / �6t�. Figure 5 shows
that the same � dependence of D is obtained by the two
methods within the uncertainty of the simulations. D de-
creases with increasing volume fraction due to steric hin-
drance, and the diffusion critically slows down at the so-
called glass transition, which has been the subject of
intensive investigation.26,27

When we introduce attraction between the spheres, we
need to consider cooperative cluster motion and bond flex-
ibility. EDBD allows only one type of motion, but by using
BCD, one can choose between different movement steps.

We have simulated the mean square displacement of
spheres by using EDBD and BCD with the three different
movement steps described above. In each case, diffusive mo-
tion was observed for large t and the diffusion coefficient
could be determined. BCD1 and EDBD simulate the same

situation and therefore the results should be the same. Figure
6 shows an example of the dependence of D on the step size
obtained by using BCD1. It appears that the exact value of D
is more sensitive to the step size than the static structure
factor or the cluster size distribution since the latter did not
significantly depend on the step size for s�� /5. The value
extrapolated to s=0 is the same as the value found with
EDBD within the simulation error. Similar results were ob-
tained at different volume fractions and interaction strengths.
The fact that these very different simulation methods lead to
the same results strengthens confidence in both methods. In
terms of computational efficiency, both methods are equiva-
lent.

A comparison of the dependence of D on Batt obtained
with BCD by using the three different movement steps is
shown in Fig. 7 for two different volume fractions �0.15 and

FIG. 3. Comparison of the cluster size distribution of equilibrium systems at
�=0.15 and �=0.1 obtained by BCD �filled symbols� and EDBD �open
symbols� with Batt=2 �squares� or Batt=4 �circles�.

FIG. 4. Comparison of the mean square displacement of noninteracting hard
spheres obtained by BCD �filled symbols� and EDBD �open symbols�.

FIG. 5. Comparison of the decrease in the diffusion coefficient with increas-
ing volume fraction for noninteracting hard spheres obtained with BCD
�filled symbols� and EDBD �open symbols� �Ref. 16�.

FIG. 6. Dependence of the diffusion coefficient on the step size by using
BCD1 ��=0.49, Batt=6, �=0.1, filled symbols�. The dashed line represents
the result from EDBD by using the same conditions. The solid line is a
linear fit through the data. We note that at �=0.49, the average gap between
randomly distributed spheres is 0.014 �Refs. 28 and 29�.
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0.49� and two different well widths �0.1 and 0.5�. The range
of Batt that can be explored is limited by the liquid-liquid or
liquid-crystal phase separation that occurs at strong attrac-
tion. The values of D shown in Fig. 7 were obtained at a
single value of s, but for a few examples, the effect of s was
determined, which showed that they were about 10% smaller
than the values extrapolated to s=0.

D strongly decreases with increasing attraction when the
bonds are rigid �BCD2�. In this case, the displacement of
bound spheres is equal to that of the center of mass of the
clusters to which they belong. The size of the clusters rapidly
increases with increasing attraction and beyond a critical
value, a transient �bond� percolating network is formed.
Spheres that are part of the network are immobile until the
bonds that tie them to the network are broken. A detailed
study of the diffusion coefficient of square well fluids form-
ing rigid bonds by using BCD2 has been recently reported.30

It was shown that D decreases with increasing Batt following
a power law for large Batt and only becomes zero when the
bonds are irreversible, i.e., Batt→	.

In comparison, the influence of attraction on D is weak
when the bonds are flexible, i.e., using EDBD, BCD1, or
BCD3. The difference between methods BCD1 �EDBD� and
BCD3 is that for the latter, clusters move faster �Zimm dy-
namics� so that D is slightly larger. The effect increases with
increasing cluster size and is expected to be maximal close to
the percolation threshold. The values of Batt at the bond per-
colation thresholds are about 6 at �=0.15 for both well
widths, while at �=0.49, they are 0.5 and 1.2 for �=0.1 and
0.5, respectively. The difference between the two methods
decreases for larger Batt when most spheres belong to the
percolating network that has no center of mass movement.

The few remaining free spheres are mostly monomers so that
the movement steps BCD1 and BCD3 become equivalent.

Regardless of the method, the effect of attraction on D is
qualitatively different if the bonds are flexible because in that
case, bound spheres can freely move within the interaction
range. D weakly increases with increasing attraction until it
reaches a maximum beyond which it decreases. The relative
amplitude of the increase is very small for the volume frac-
tions studied here, but becomes important at higher volume
fractions.27 It is at the origin of the so-called re-entrant glass
transition of interacting spheres as a function of the attraction
strength.31,32 The influence of attraction on the critical slow-
ing down of hard spheres has attracted a lot of attention in
the recent past and has been investigated for square well
fluids by using EDBD simulations.7

The appearance of a maximum diffusion coefficient can
be qualitatively understood by considering two opposing ef-
fects. On one hand, attraction causes clustering of particles
so that more space is created in which monomers and clus-
ters can freely diffuse, leading to faster diffusion of the
spheres. On the other hand, bonds restrict the motion of
spheres, and the long time diffusion of bound spheres is
equal to the center of mass diffusion of the clusters to which
they belong. The restriction becomes more important as the
average bond lifetime increases.

When the attraction is weak, the average bond lifetime is
still small so that the effect of restriction is weak and the
effect of creating more free space dominates, leading to an
increase in D. With increasing Batt, the clusters become
larger and the average bond lifetime increases until the effect
of increasing restriction of the movement becomes more im-
portant than the effect of increasing free volume so that D

FIG. 7. Variation of the diffusion coefficient with in-
creasing attraction obtained from BCD1 �circles�,
BCD2 �triangles�, and BCD3 �squares� at two different
volume fractions and two different interaction widths.
The interaction strength is expressed in terms of the
attractive part of the second virial coefficient. Solid
lines are guides to the eyes.
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decreases. These features are independent of the volume
fraction and the well width. The effect of attraction on the
diffusion coefficient remains small in the single phase regime
if the bonds are flexible at least for ��0.5.

V. SUMMARY

BCD and EDBD simulations of hard spheres interacting
with a square well potential lead to steady states that have
almost the same structure factor and the cluster size distribu-
tion.

EDBD assumes flexible bonds and ignores hydrody-
namic interaction. The values of the self-diffusion coefficient
obtained by EDBD are very close to those obtained with
BCD if the same assumptions are used. A weak maximum of
D is found as a function of the interaction strength caused by
the opposing effects of increasing free volume and increasing
bond lifetime.

The effect of intracluster hydrodynamics �Zimm dynam-
ics� and bond rigidity can be explored with BCD. Introduc-
ing rigid bonds leads to a strong decrease in D with increas-
ing attraction and suppresses the maximum. Introducing
intracluster hydrodynamics to the system with flexible bonds
weakly increases D at a given interaction strength.
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